blob: ac393bf25aff3591aedbb5242f16177a856c40c8 [file] [log] [blame] [raw]
/* pdp8_cpu.c: PDP-8 CPU simulator
Copyright (c) 1993-2001, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
cpu central processor
07-Jun-01 RMS Fixed bug in JMS to non-existent memory
25-Apr-01 RMS Added device enable/disable support
18-Mar-01 RMS Added DF32 support
05-Mar-01 RMS Added clock calibration support
15-Feb-01 RMS Added DECtape support
14-Apr-99 RMS Changed t_addr to unsigned
The register state for the PDP-8 is:
AC<0:11> accumulator
MQ<0:11> multiplier-quotient
L link flag
PC<0:11> program counter
IF<0:2> instruction field
IB<0:2> instruction buffer
DF<0:2> data field
UF user flag
UB user buffer
SF<0:6> interrupt save field
The PDP-8 has three instruction formats: memory reference, I/O transfer,
and operate. The memory reference format is:
0 1 2 3 4 5 6 7 8 9 10 11
+--+--+--+--+--+--+--+--+--+--+--+--+
| op |in|zr| page offset | memory reference
+--+--+--+--+--+--+--+--+--+--+--+--+
<0:2> mnemonic action
000 AND AC = AC & M[MA]
001 TAD L'AC = AC + M[MA]
010 DCA M[MA] = AC, AC = 0
011 ISZ M[MA] = M[MA] + 1, skip if M[MA] == 0
100 JMS M[MA] = PC, PC = MA + 1
101 JMP PC = MA
<3:4> mode action
00 page zero MA = IF'0'IR<5:11>
01 current page MA = IF'PC<0:4>'IR<5:11>
10 indirect page zero MA = xF'M[IF'0'IR<5:11>]
11 indirect current page MA = xF'M[IF'PC<0:4>'IR<5:11>]
where x is D for AND, TAD, ISZ, DCA, and I for JMS, JMP.
Memory reference instructions can access an address space of 32K words.
The address space is divided into eight 4K word fields; each field is
divided into thirty-two 128 word pages. An instruction can directly
address, via its 7b offset, locations 0-127 on page zero or on the current
page. All 32k words can be accessed via indirect addressing and the
instruction and data field registers. If an indirect address is in
locations 0010-0017 of any field, the indirect address is incremented
and rewritten to memory before use.
*/
/* The I/O transfer format is as follows:
0 1 2 3 4 5 6 7 8 9 10 11
+--+--+--+--+--+--+--+--+--+--+--+--+
| op | device | pulse | I/O transfer
+--+--+--+--+--+--+--+--+--+--+--+--+
The IO transfer instruction sends the the specified pulse to the
specified I/O device. The I/O device may take data from the AC,
return data to the AC, initiate or cancel operations, or skip on
status.
The operate format is as follows:
+--+--+--+--+--+--+--+--+--+--+--+--+
| 1| 1| 1| 0| | | | | | | | | operate group 1
+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | |
| | | | | | | +--- increment AC 3
| | | | | | +--- rotate 1 or 2 4
| | | | | +--- rotate left 4
| | | | +--- rotate right 4
| | | +--- complement L 2
| | +--- complement AC 2
| +--- clear L 1
+-- clear AC 1
+--+--+--+--+--+--+--+--+--+--+--+--+
| 1| 1| 1| 1| | | | | | | | 0| operate group 2
+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | |
| | | | | | +--- halt 3
| | | | | +--- or switch register 3
| | | | +--- reverse skip sense 1
| | | +--- skip on L != 0 1
| | +--- skip on AC == 0 1
| +--- skip on AC < 0 1
+-- clear AC 2
+--+--+--+--+--+--+--+--+--+--+--+--+
| 1| 1| 1| 1| | | | | | | | 1| operate group 3
+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | \______/
| | | | |
| | +--|-----+--- EAE command 3
| | +--- AC -> MQ, 0 -> AC 2
| +--- MQ v AC --> AC 2
+-- clear AC 1
The operate instruction can be microprogrammed to perform operations
on the AC, MQ, and link.
*/
/* This routine is the instruction decode routine for the PDP-8.
It is called from the simulator control program to execute
instructions in simulated memory, starting at the simulated PC.
It runs until 'reason' is set non-zero.
General notes:
1. Reasons to stop. The simulator can be stopped by:
HALT instruction
breakpoint encountered
unimplemented instruction and stop_inst flag set
I/O error in I/O simulator
2. Interrupts. Interrupts are maintained by three parallel variables:
dev_done device done flags
int_enable interrupt enable flags
int_req interrupt requests
In addition, int_req contains the interrupt enable flag, the
CIF not pending flag, and the ION not pending flag. If all
three of these flags are set, and at least one interrupt request
is set, then an interrupt occurs.
3. Non-existent memory. On the PDP-8, reads to non-existent memory
return zero, and writes are ignored. In the simulator, the
largest possible memory is instantiated and initialized to zero.
Thus, only writes outside the current field (indirect writes) need
be checked against actual memory size.
3. Adding I/O devices. Three modules must be modified:
pdp8_defs.h add interrupt request definition
pdp8_cpu.c add IOT dispatch
pdp8_sys.c add pointer to data structures to sim_devices
*/
#include "pdp8_defs.h"
#define ILL_ADR_FLAG 0100000 /* invalid addr flag */
#define save_ibkpt (cpu_unit.u3) /* saved bkpt addr */
#define UNIT_V_NOEAE (UNIT_V_UF) /* EAE absent */
#define UNIT_NOEAE (1 << UNIT_V_NOEAE)
#define UNIT_V_MSIZE (UNIT_V_UF+1) /* dummy mask */
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
uint16 M[MAXMEMSIZE] = { 0 }; /* main memory */
int32 saved_LAC = 0; /* saved L'AC */
int32 saved_MQ = 0; /* saved MQ */
int32 saved_PC = 0; /* saved IF'PC */
int32 saved_DF = 0; /* saved Data Field */
int32 IB = 0; /* Instruction Buffer */
int32 SF = 0; /* Save Field */
int32 emode = 0; /* EAE mode */
int32 gtf = 0; /* EAE gtf flag */
int32 SC = 0; /* EAE shift count */
int32 UB = 0; /* User mode Buffer */
int32 UF = 0; /* User mode Flag */
int32 OSR = 0; /* Switch Register */
int32 old_PC = 0; /* old PC */
int32 dev_done = 0; /* dev done flags */
int32 int_enable = INT_INIT_ENABLE; /* intr enables */
int32 int_req = 0; /* intr requests */
int32 dev_enb = -1 & ~INT_DF; /* device enables */
int32 ibkpt_addr = ILL_ADR_FLAG | ADDRMASK; /* breakpoint addr */
int32 stop_inst = 0; /* trap on ill inst */
extern int32 sim_int_char;
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_svc (UNIT *uptr);
t_stat cpu_set_size (UNIT *uptr, int32 value);
/* CPU data structures
cpu_dev CPU device descriptor
cpu_unit CPU unit descriptor
cpu_reg CPU register list
cpu_mod CPU modifier list
*/
UNIT cpu_unit = { UDATA (&cpu_svc, UNIT_FIX + UNIT_BINK, MAXMEMSIZE) };
REG cpu_reg[] = {
{ ORDATA (PC, saved_PC, 15) },
{ ORDATA (AC, saved_LAC, 12) },
{ FLDATA (L, saved_LAC, 12) },
{ ORDATA (MQ, saved_MQ, 12) },
{ ORDATA (SR, OSR, 12) },
{ GRDATA (IF, saved_PC, 8, 3, 12) },
{ GRDATA (DF, saved_DF, 8, 3, 12) },
{ GRDATA (IB, IB, 8, 3, 12) },
{ ORDATA (SF, SF, 7) },
{ FLDATA (UB, UB, 0) },
{ FLDATA (UF, UF, 0) },
{ ORDATA (SC, SC, 5) },
{ FLDATA (GTF, gtf, 0) },
{ FLDATA (EMODE, emode, 0) },
{ FLDATA (ION, int_req, INT_V_ION) },
{ FLDATA (ION_DELAY, int_req, INT_V_NO_ION_PENDING) },
{ FLDATA (CIF_DELAY, int_req, INT_V_NO_CIF_PENDING) },
{ FLDATA (PWR_INT, int_req, INT_V_PWR) },
{ FLDATA (UF_INT, int_req, INT_V_UF) },
{ ORDATA (INT, int_req, INT_V_ION+1), REG_RO },
{ ORDATA (DONE, dev_done, INT_V_DIRECT), REG_RO },
{ ORDATA (ENABLE, int_enable, INT_V_DIRECT), REG_RO },
{ FLDATA (NOEAE, cpu_unit.flags, UNIT_V_NOEAE), REG_HRO },
{ ORDATA (OLDPC, old_PC, 15), REG_RO },
{ FLDATA (STOP_INST, stop_inst, 0) },
{ ORDATA (BREAK, ibkpt_addr, 16) },
{ ORDATA (WRU, sim_int_char, 8) },
{ ORDATA (DEVENB, dev_enb, 32), REG_HRO },
{ NULL } };
MTAB cpu_mod[] = {
{ UNIT_NOEAE, UNIT_NOEAE, "no EAE", "NOEAE", NULL },
{ UNIT_NOEAE, 0, "EAE", "EAE", NULL },
{ UNIT_MSIZE, 4096, NULL, "4K", &cpu_set_size },
{ UNIT_MSIZE, 8192, NULL, "8K", &cpu_set_size },
{ UNIT_MSIZE, 12288, NULL, "12K", &cpu_set_size },
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size },
{ UNIT_MSIZE, 20480, NULL, "20K", &cpu_set_size },
{ UNIT_MSIZE, 24576, NULL, "24K", &cpu_set_size },
{ UNIT_MSIZE, 28672, NULL, "28K", &cpu_set_size },
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size },
{ 0 } };
DEVICE cpu_dev = {
"CPU", &cpu_unit, cpu_reg, cpu_mod,
1, 8, 15, 1, 8, 12,
&cpu_ex, &cpu_dep, &cpu_reset,
NULL, NULL, NULL };
t_stat sim_instr (void)
{
extern int32 sim_interval;
register int32 IR, MB, IF, DF, LAC, MQ;
register t_addr PC, MA;
int32 device, pulse, temp, iot_data;
t_stat reason;
extern UNIT clk_unit;
extern int32 sim_rtc_init (int32 time);
extern int32 tti (int32 pulse, int32 AC);
extern int32 tto (int32 pulse, int32 AC);
extern int32 ptr (int32 pulse, int32 AC);
extern int32 ptp (int32 pulse, int32 AC);
extern int32 clk (int32 pulse, int32 AC);
extern int32 lpt (int32 pulse, int32 AC);
extern int32 rk (int32 pulse, int32 AC);
extern int32 rx (int32 pulse, int32 AC);
extern int32 df60 (int32 pulse, int32 AC);
extern int32 df61 (int32 pulse, int32 AC);
extern int32 df62 (int32 pulse, int32 AC);
extern int32 rf60 (int32 pulse, int32 AC);
extern int32 rf61 (int32 pulse, int32 AC);
extern int32 rf62 (int32 pulse, int32 AC);
extern int32 rf64 (int32 pulse, int32 AC);
extern int32 mt70 (int32 pulse, int32 AC);
extern int32 mt71 (int32 pulse, int32 AC);
extern int32 mt72 (int32 pulse, int32 AC);
extern int32 dt76 (int32 pulse, int32 AC);
extern int32 dt77 (int32 pulse, int32 AC);
/* Restore register state */
PC = saved_PC & 007777; /* load local copies */
IF = saved_PC & 070000;
DF = saved_DF & 070000;
LAC = saved_LAC & 017777;
MQ = saved_MQ & 07777;
int_req = INT_UPDATE;
reason = 0;
sim_rtc_init (clk_unit.wait); /* init calibration */
/* Main instruction fetch/decode loop */
while (reason == 0) { /* loop until halted */
if (sim_interval <= 0) { /* check clock queue */
if (reason = sim_process_event ()) break; }
if (int_req > INT_PENDING) { /* interrupt? */
int_req = int_req & ~INT_ION; /* interrupts off */
SF = (UF << 6) | (IF >> 9) | (DF >> 12); /* form save field */
IF = IB = DF = UF = UB = 0; /* clear mem ext */
old_PC = M[0] = PC; /* save PC in 0 */
PC = 1; } /* fetch next from 1 */
MA = IF | PC; /* form PC */
if (MA == ((t_addr) ibkpt_addr)) { /* breakpoint? */
save_ibkpt = ibkpt_addr; /* save ibkpt */
ibkpt_addr = ibkpt_addr | ILL_ADR_FLAG; /* disable */
sim_activate (&cpu_unit, 1); /* sched re-enable */
reason = STOP_IBKPT; /* stop simulation */
break; }
IR = M[MA]; /* fetch instruction */
PC = (PC + 1) & 07777; /* increment PC */
int_req = int_req | INT_NO_ION_PENDING; /* clear ION delay */
sim_interval = sim_interval - 1;
/* Instruction decoding.
The opcode (IR<0:2>), indirect flag (IR<3>), and page flag (IR<4>)
are decoded together. This produces 32 decode points, four per
major opcode. For IOT, the extra decode points are not useful;
for OPR, only the group flag (IR<3>) is used.
The following macros define the address calculations for data and
jump calculations. Data calculations return a full 15b extended
address, jump calculations a 12b field-relative address.
Autoindex calculations always occur within the same field as the
instruction fetch. The field must exist; otherwise, the instruction
fetched would be 0000, and indirect addressing could not occur.
Note that MA contains IF'PC.
*/
#define ZERO_PAGE MA = IF | (IR & 0177)
#define CURR_PAGE MA = (MA & 077600) | (IR & 0177)
#define INDIRECT if ((MA & 07770) != 00010) MA = DF | M[MA]; \
else MA = DF | (M[MA] = (M[MA] + 1) & 07777)
#define ZERO_PAGE_J MA = IR & 0177
#define CURR_PAGE_J MA = (MA & 007600) | (IR & 0177)
#define INDIRECT_J if ((MA & 07770) != 00010) MA = M[MA]; \
else MA = (M[MA] = (M[MA] + 1) & 07777)
#define CHANGE_FIELD IF = IB; UF = UB; \
int_req = int_req | INT_NO_CIF_PENDING
switch ((IR >> 7) & 037) { /* decode IR<0:4> */
/* Opcode 0, AND */
case 000: /* AND, dir, zero */
ZERO_PAGE;
LAC = LAC & (M[MA] | 010000);
break;
case 001: /* AND, dir, curr */
CURR_PAGE;
LAC = LAC & (M[MA] | 010000);
break;
case 002: /* AND, indir, zero */
ZERO_PAGE;
INDIRECT;
LAC = LAC & (M[MA] | 010000);
break;
case 003: /* AND, indir, curr */
CURR_PAGE;
INDIRECT;
LAC = LAC & (M[MA] | 010000);
break;
/* Opcode 1, TAD */
case 004: /* TAD, dir, zero */
ZERO_PAGE;
LAC = (LAC + M[MA]) & 017777;
break;
case 005: /* TAD, dir, curr */
CURR_PAGE;
LAC = (LAC + M[MA]) & 017777;
break;
case 006: /* TAD, indir, zero */
ZERO_PAGE;
INDIRECT;
LAC = (LAC + M[MA]) & 017777;
break;
case 007: /* TAD, indir, curr */
CURR_PAGE;
INDIRECT;
LAC = (LAC + M[MA]) & 017777;
break;
/* Opcode 2, ISZ */
case 010: /* ISZ, dir, zero */
ZERO_PAGE;
M[MA] = MB = (M[MA] + 1) & 07777; /* field must exist */
if (MB == 0) PC = (PC + 1) & 07777;
break;
case 011: /* ISZ, dir, curr */
CURR_PAGE;
M[MA] = MB = (M[MA] + 1) & 07777; /* field must exist */
if (MB == 0) PC = (PC + 1) & 07777;
break;
case 012: /* ISZ, indir, zero */
ZERO_PAGE;
INDIRECT;
MB = (M[MA] + 1) & 07777;
if (MEM_ADDR_OK (MA)) M[MA] = MB;
if (MB == 0) PC = (PC + 1) & 07777;
break;
case 013: /* ISZ, indir, curr */
CURR_PAGE;
INDIRECT;
MB = (M[MA] + 1) & 07777;
if (MEM_ADDR_OK (MA)) M[MA] = MB;
if (MB == 0) PC = (PC + 1) & 07777;
break;
/* Opcode 3, DCA */
case 014: /* DCA, dir, zero */
ZERO_PAGE;
M[MA] = LAC & 07777;
LAC = LAC & 010000;
break;
case 015: /* DCA, dir, curr */
CURR_PAGE;
M[MA] = LAC & 07777;
LAC = LAC & 010000;
break;
case 016: /* DCA, indir, zero */
ZERO_PAGE;
INDIRECT;
if (MEM_ADDR_OK (MA)) M[MA] = LAC & 07777;
LAC = LAC & 010000;
break;
case 017: /* DCA, indir, curr */
CURR_PAGE;
INDIRECT;
if (MEM_ADDR_OK (MA)) M[MA] = LAC & 07777;
LAC = LAC & 010000;
break;
/* Opcode 4, JMS */
case 020: /* JMS, dir, zero */
ZERO_PAGE_J;
CHANGE_FIELD;
MA = IF | MA;
old_PC = PC;
if (MEM_ADDR_OK (MA)) M[MA] = PC;
PC = (MA + 1) & 07777;
break;
case 021: /* JMS, dir, curr */
CURR_PAGE_J;
CHANGE_FIELD;
MA = IF | MA;
old_PC = PC;
if (MEM_ADDR_OK (MA)) M[MA] = PC;
PC = (MA + 1) & 07777;
break;
case 022: /* JMS, indir, zero */
ZERO_PAGE;
INDIRECT_J;
CHANGE_FIELD;
MA = IF | MA;
old_PC = PC;
if (MEM_ADDR_OK (MA)) M[MA] = PC;
PC = (MA + 1) & 07777;
break;
case 023: /* JMS, indir, curr */
CURR_PAGE;
INDIRECT_J;
CHANGE_FIELD;
MA = IF | MA;
old_PC = PC;
if (MEM_ADDR_OK (MA)) M[MA] = PC;
PC = (MA + 1) & 07777;
break;
/* Opcode 5, JMP */
case 024: /* JMP, dir, zero */
ZERO_PAGE_J;
CHANGE_FIELD;
old_PC = PC;
PC = MA;
break;
case 025: /* JMP, dir, curr */
CURR_PAGE_J;
CHANGE_FIELD;
old_PC = PC;
PC = MA;
break;
case 026: /* JMP, indir, zero */
ZERO_PAGE;
INDIRECT_J;
CHANGE_FIELD;
old_PC = PC;
PC = MA;
break;
case 027: /* JMP, indir, curr */
CURR_PAGE;
INDIRECT_J;
CHANGE_FIELD;
old_PC = PC;
PC = MA;
break;
/* Opcode 7, OPR group 1 */
case 034:case 035: /* OPR, group 1 */
switch ((IR >> 4) & 017) { /* decode IR<4:7> */
case 0: /* nop */
break;
case 1: /* CML */
LAC = LAC ^ 010000;
break;
case 2: /* CMA */
LAC = LAC ^ 07777;
break;
case 3: /* CMA CML */
LAC = LAC ^ 017777;
break;
case 4: /* CLL */
LAC = LAC & 07777;
break;
case 5: /* CLL CML = STL */
LAC = LAC | 010000;
break;
case 6: /* CLL CMA */
LAC = (LAC ^ 07777) & 07777;
break;
case 7: /* CLL CMA CML */
LAC = (LAC ^ 07777) | 010000;
break;
case 010: /* CLA */
LAC = LAC & 010000;
break;
case 011: /* CLA CML */
LAC = (LAC & 010000) ^ 010000;
break;
case 012: /* CLA CMA = STA */
LAC = LAC | 07777;
break;
case 013: /* CLA CMA CML */
LAC = (LAC | 07777) ^ 010000;
break;
case 014: /* CLA CLL */
LAC = 0;
break;
case 015: /* CLA CLL CML */
LAC = 010000;
break;
case 016: /* CLA CLL CMA */
LAC = 07777;
break;
case 017: /* CLA CLL CMA CML */
LAC = 017777;
break; } /* end switch opers */
/* OPR group 1, continued */
if (IR & 01) LAC = (LAC + 1) & 017777; /* IAC */
switch ((IR >> 1) & 07) { /* decode IR<8:10> */
case 0: /* nop */
break;
case 1: /* BSW */
LAC = (LAC & 010000) | ((LAC >> 6) & 077) | ((LAC & 077) << 6);
break;
case 2: /* RAL */
LAC = ((LAC << 1) | (LAC >> 12)) & 017777;
break;
case 3: /* RTL */
LAC = ((LAC << 2) | (LAC >> 11)) & 017777;
break;
case 4: /* RAR */
LAC = ((LAC >> 1) | (LAC << 12)) & 017777;
break;
case 5: /* RTR */
LAC = ((LAC >> 2) | (LAC << 11)) & 017777;
break;
case 6: /* RAL RAR - undef */
LAC = LAC & (IR | 010000); /* uses AND path */
break;
case 7: /* RTL RTR - undef */
LAC = (LAC & 010000) | (MA & 07600) | (IR & 0177);
break; } /* uses address path */
break; /* end group 1 */
/* OPR group 2 */
case 036:case 037: /* OPR, groups 2, 3 */
if ((IR & 01) == 0) { /* group 2 */
switch ((IR >> 3) & 017) { /* decode IR<6:8> */
case 0: /* nop */
break;
case 1: /* SKP */
PC = (PC + 1) & 07777;
break;
case 2: /* SNL */
if (LAC >= 010000) PC = (PC + 1) & 07777;
break;
case 3: /* SZL */
if (LAC < 010000) PC = (PC + 1) & 07777;
break;
case 4: /* SZA */
if ((LAC & 07777) == 0) PC = (PC + 1) & 07777;
break;
case 5: /* SNA */
if ((LAC & 07777) != 0) PC = (PC + 1) & 07777;
break;
case 6: /* SZA | SNL */
if ((LAC == 0) || (LAC >= 010000))
PC = (PC + 1) & 07777;
break;
case 7: /* SNA & SZL */
if ((LAC != 0) && (LAC < 010000)) PC = (PC + 1) & 07777;
break;
case 010: /* SMA */
if ((LAC & 04000) != 0) PC = (PC + 1) & 07777;
break;
case 011: /* SPA */
if ((LAC & 04000) == 0) PC = (PC + 1) & 07777;
break;
case 012: /* SMA | SNL */
if (LAC >= 04000) PC = (PC + 1) & 07777;
break;
case 013: /* SPA & SZL */
if (LAC < 04000) PC = (PC + 1) & 07777;
break;
case 014: /* SMA | SZA */
if (((LAC & 04000) != 0) || ((LAC & 07777) == 0))
PC = (PC + 1) & 07777;
break;
case 015: /* SPA & SNA */
if (((LAC & 04000) == 0) && ((LAC & 07777) != 0))
PC = (PC + 1) & 07777;
break;
case 016: /* SMA | SZA | SNL */
if ((LAC >= 04000) || (LAC == 0)) PC = (PC + 1) & 07777;
break;
case 017: /* SPA & SNA & SZL */
if ((LAC < 04000) && (LAC != 0)) PC = (PC + 1) & 07777;
break; } /* end switch skips */
if (IR & 0200) LAC = LAC & 010000; /* CLA */
if ((IR & 06) && UF) int_req = int_req | INT_UF;
else { if (IR & 04) LAC = LAC | OSR; /* OSR */
if (IR & 02) reason = STOP_HALT; } /* HLT */
break; } /* end group 2 */
/* OPR group 3 standard
MQA!MQL exchanges AC and MQ, as follows:
temp = MQ;
MQ = LAC & 07777;
LAC = LAC & 010000 | temp;
*/
temp = MQ; /* group 3 */
if (IR & 0200) LAC = LAC & 010000; /* CLA */
if (IR & 0020) { /* MQL */
MQ = LAC & 07777;
LAC = LAC & 010000; }
if (IR & 0100) LAC = LAC | temp; /* MQA */
if ((IR & 0056) && (cpu_unit.flags & UNIT_NOEAE)) {
reason = stop_inst; /* EAE not present */
break; }
/* OPR group 3 EAE
The EAE operates in two modes:
Mode A, PDP-8/I compatible
Mode B, extended capability
Mode B provides eight additional subfunctions; in addition, some
of the Mode A functions operate differently in Mode B.
The mode switch instructions are decoded explicitly and cannot be
microprogrammed with other EAE functions (SWAB performs an MQL as
part of standard group 3 decoding). If mode switching is decoded,
all other EAE timing is suppressed.
*/
if (IR == 07431) { /* SWAB */
emode = 1; /* set mode flag */
break; }
if (IR == 07447) { /* SWBA */
emode = gtf = 0; /* clear mode, gtf */
break; }
/* If not switching modes, the EAE operation is determined by the mode
and IR<6,8:10>:
<6:10> mode A mode B comments
0x000 NOP NOP
0x001 SCL ACS
0x010 MUY MUY if mode B, next = address
0x011 DVI DVI if mode B, next = address
0x100 NMI NMI if mode B, clear AC if
result = 4000'0000
0x101 SHL SHL if mode A, extra shift
0x110 ASR ASR if mode A, extra shift
0x111 LSR LSR if mode A, extra shift
1x000 SCA SCA
1x001 SCA + SCL DAD
1x010 SCA + MUY DST
1x011 SCA + DVI SWBA NOP if not detected earlier
1x100 SCA + NMI DPSZ
1x101 SCA + SHL DPIC must be combined with MQA!MQL
1x110 SCA + ASR DCM must be combined with MQA!MQL
1x111 SCA + LSR SAM
EAE instructions which fetch memory operands use the CPU's DEFER
state to read the first word; if the address operand is in locations
x0010 - x0017, it is autoincremented.
*/
/* EAE continued */
switch ((IR >> 1) & 027) { /* decode IR<6,8:10> */
case 020: /* mode A, B: SCA */
LAC = LAC | SC;
break;
case 0: /* mode A, B: NOP */
break;
case 021: /* mode B: DAD */
if (emode) {
MA = IF | PC;
INDIRECT; /* defer state */
MQ = MQ + M[MA];
MA = DF | ((MA + 1) & 07777);
LAC = (LAC & 07777) + M[MA] + (MQ >> 12);
MQ = MQ & 07777;
PC = (PC + 1) & 07777;
break; }
LAC = LAC | SC; /* mode A: SCA then */
case 1: /* mode B: ACS */
if (emode) {
SC = LAC & 037;
LAC = LAC & 010000;
break; }
SC = (~M[IF | PC]) & 037; /* mode A: SCL */
PC = (PC + 1) & 07777;
break;
case 022: /* mode B: DST */
if (emode) {
MA = IF | PC;
INDIRECT; /* defer state */
if (MEM_ADDR_OK (MA)) M[MA] = MQ & 07777;
MA = DF | ((MA + 1) & 07777);
if (MEM_ADDR_OK (MA)) M[MA] = LAC & 07777;
PC = (PC + 1) & 07777;
break; }
LAC = LAC | SC; /* mode A: SCA then */
case 2: /* MUY */
MA = IF | PC;
if (emode) { INDIRECT; } /* mode B: defer */
temp = (MQ * M[MA]) + (LAC & 07777);
LAC = (temp >> 12) & 07777;
MQ = temp & 07777;
PC = (PC + 1) & 07777;
SC = 014; /* 12 shifts */
break;
/* EAE continued */
case 023: /* mode B: SWBA */
if (emode) break;
LAC = LAC | SC; /* mode A: SCA then */
case 3: /* DVI */
MA = IF | PC;
if (emode) { INDIRECT; } /* mode B: defer */
if ((LAC & 07777) >= M[MA]) { /* overflow? */
LAC = LAC | 010000; /* set link */
MQ = ((MQ << 1) + 1) & 07777; /* rotate MQ */
SC = 01; } /* 1 shift */
else { temp = ((LAC & 07777) << 12) | MQ;
MQ = temp / M[MA];
LAC = temp % M[MA];
SC = 015; } /* 13 shifts */
PC = (PC + 1) & 07777;
break;
case 024: /* mode B: DPSZ */
if (emode) {
if (((LAC | MQ) & 07777) == 0) PC = (PC + 1) & 07777;
break; }
LAC = LAC | SC; /* mode A: SCA then */
case 4: /* NMI */
temp = (LAC << 12) | MQ; /* preserve link */
for (SC = 0; ((temp & 017777777) != 0) &&
(temp & 040000000) == ((temp << 1) & 040000000); SC++)
temp = temp << 1;
LAC = (temp >> 12) & 017777;
MQ = temp & 07777;
if (emode && ((LAC & 07777) == 04000) && (MQ == 0))
LAC = LAC & 010000; /* clr if 4000'0000 */
break;
case 025: /* mode B: DPIC */
if (emode) {
temp = (LAC + 1) & 07777; /* SWP already done! */
LAC = MQ + (temp == 0);
MQ = temp;
break; }
LAC = LAC | SC; /* mode A: SCA then */
case 5: /* SHL */
SC = (M[IF | PC] & 037) + (emode ^ 1); /* shift+1 if mode A */
temp = ((LAC << 12) | MQ) << SC; /* preserve link */
LAC = (temp >> 12) & 017777;
MQ = temp & 07777;
PC = (PC + 1) & 07777;
SC = emode? 037: 0; /* SC = 0 if mode A */
break;
/* EAE continued */
case 026: /* mode B: DCM */
if (emode) {
temp = (-LAC) & 07777; /* SWP already done! */
LAC = (MQ ^ 07777) + (temp == 0);
MQ = temp;
break; }
LAC = LAC | SC; /* mode A: SCA then */
case 6: /* ASR */
SC = (M[IF | PC] & 037) + (emode ^ 1); /* shift+1 if mode A */
temp = ((LAC & 07777) << 12) | MQ; /* sext from AC0 */
if (emode && (SC != 0)) gtf = (temp >> (SC - 1)) & 1;
temp = temp >> SC;
if (LAC & 04000) temp = temp | ((SC > 24)? -1:
(-1 << (24 - SC)));
LAC = (temp >> 12) & 017777;
MQ = temp & 07777;
PC = (PC + 1) & 07777;
SC = emode? 037: 0; /* SC = 0 if mode A */
break;
case 027: /* mode B: SAM */
if (emode) {
temp = LAC & 07777;
LAC = MQ + (temp ^ 07777) + 1; /* L'AC = MQ - AC */
gtf = (temp <= MQ) ^ ((temp ^ MQ) >> 11);
break; }
LAC = LAC | SC; /* mode A: SCA then */
case 7: /* LSR */
SC = (M[IF | PC] & 037) + (emode ^ 1); /* shift+1 if mode A */
temp = ((LAC & 07777) << 12) | MQ; /* clear link */
if (emode && (SC != 0)) gtf = (temp >> (SC - 1)) & 1;
temp = temp >> SC;
LAC = (temp >> 12) & 07777;
MQ = temp & 07777;
PC = (PC + 1) & 07777;
SC = emode? 037: 0; /* SC = 0 if mode A */
break; } /* end switch */
break; /* end case 7 */
/* Opcode 6, IOT */
case 030:case 031:case 032:case 033: /* IOT */
if (UF) { /* privileged? */
int_req = int_req | INT_UF;
break; }
device = (IR >> 3) & 077; /* device = IR<3:8> */
pulse = IR & 07; /* pulse = IR<9:11> */
iot_data = LAC & 07777; /* AC unchanged */
switch (device) { /* decode IR<3:8> */
case 0: /* CPU control */
switch (pulse) { /* decode IR<9:11> */
case 0: /* SKON */
if (int_req & INT_ION) PC = (PC + 1) & 07777;
int_req = int_req & ~INT_ION;
break;
case 1: /* ION */
int_req = (int_req | INT_ION) & ~INT_NO_ION_PENDING;
break;
case 2: /* IOF */
int_req = int_req & ~INT_ION;
break;
case 3: /* SRQ */
if (int_req & INT_ALL) PC = (PC + 1) & 07777;
break;
case 4: /* GTF */
LAC = (LAC & 010000) |
((LAC & 010000) >> 1) | (gtf << 10) |
(((int_req & INT_ALL) != 0) << 9) |
(((int_req & INT_ION) != 0) << 7) | SF;
break;
case 5: /* RTF */
gtf = ((LAC & 02000) >> 10);
UB = (LAC & 0100) >> 6;
IB = (LAC & 0070) << 9;
DF = (LAC & 0007) << 12;
LAC = ((LAC & 04000) << 1) | iot_data;
int_req = (int_req | INT_ION) & ~INT_NO_CIF_PENDING;
break;
case 6: /* SGT */
if (gtf) PC = (PC + 1) & 07777;
break;
case 7: /* CAF */
gtf = 0;
emode = 0;
int_req = int_req & INT_NO_CIF_PENDING;
dev_done = 0;
int_enable = INT_INIT_ENABLE;
LAC = 0;
break; } /* end switch pulse */
continue; /* skip rest of IOT */
/* IOT, continued: memory extension */
case 020:case 021:case 022:case 023:
case 024:case 025:case 026:case 027: /* memory extension */
switch (pulse) { /* decode IR<9:11> */
case 1: /* CDF */
DF = (IR & 0070) << 9;
break;
case 2: /* CIF */
IB = (IR & 0070) << 9;
int_req = int_req & ~INT_NO_CIF_PENDING;
break;
case 3: /* CDF CIF */
DF = IB = (IR & 0070) << 9;
int_req = int_req & ~INT_NO_CIF_PENDING;
break;
case 4:
switch (device & 07) { /* decode IR<6:8> */
case 0: /* CINT */
int_req = int_req & ~INT_UF;
break;
case 1: /* RDF */
LAC = LAC | (DF >> 9);
break;
case 2: /* RIF */
LAC = LAC | (IF >> 9);
break;
case 3: /* RIB */
LAC = LAC | SF;
break;
case 4: /* RMF */
UB = (SF & 0100) >> 6;
IB = (SF & 0070) << 9;
DF = (SF & 0007) << 12;
int_req = int_req & ~INT_NO_CIF_PENDING;
break;
case 5: /* SINT */
if (int_req & INT_UF) PC = (PC + 1) & 07777;
break;
case 6: /* CUF */
UB = 0;
int_req = int_req & ~INT_NO_CIF_PENDING;
break;
case 7: /* SUF */
UB = 1;
int_req = int_req & ~INT_NO_CIF_PENDING;
break; } /* end switch device */
break;
default:
reason = stop_inst;
break; } /* end switch pulse */
continue; /* skip rest of IOT */
/* IOT, continued: other special cases */
case 010: /* power fail */
switch (pulse) { /* decode IR<9:11> */
case 1: /* SBE */
break;
case 2: /* SPL */
if (int_req & INT_PWR) PC = (PC + 1) & 07777;
break;
case 3: /* CAL */
int_req = int_req & ~INT_PWR;
break;
default:
reason = stop_inst;
break; } /* end switch pulse */
continue; /* skip rest of IOT */
default: /* unknown device */
reason = stop_inst; /* stop on flag */
continue; /* skip rest of IOT */
/* IOT, continued: I/O devices */
case 1: /* PTR */
iot_data = ptr (pulse, iot_data);
break;
case 2: /* PTP */
iot_data = ptp (pulse, iot_data);
break;
case 3: /* TTI */
iot_data = tti (pulse, iot_data);
break;
case 4: /* TTO */
iot_data = tto (pulse, iot_data);
break;
case 013: /* CLK */
iot_data = clk (pulse, iot_data);
break;
case 060: /* DF32/RF08 */
if (dev_enb & INT_DF) iot_data = df60 (pulse, iot_data);
else if (dev_enb & INT_RF) iot_data = rf60 (pulse, iot_data);
else reason = stop_inst;
break;
case 061:
if (dev_enb & INT_DF) iot_data = df61 (pulse, iot_data);
else if (dev_enb & INT_RF) iot_data = rf61 (pulse, iot_data);
else reason = stop_inst;
break;
case 062:
if (dev_enb & INT_DF) iot_data = df62 (pulse, iot_data);
else if (dev_enb & INT_RF) iot_data = rf62 (pulse, iot_data);
else reason = stop_inst;
break;
case 064:
if (dev_enb & INT_RF) iot_data = rf64 (pulse, iot_data);
else reason = stop_inst;
break;
case 066: /* LPT */
iot_data = lpt (pulse, iot_data);
break;
case 070: /* TM8E */
if (dev_enb & INT_MT) iot_data = mt70 (pulse, iot_data);
else reason = stop_inst;
break;
case 071:
if (dev_enb & INT_MT) iot_data = mt71 (pulse, iot_data);
else reason = stop_inst;
break;
case 072:
if (dev_enb & INT_MT) iot_data = mt72 (pulse, iot_data);
else reason = stop_inst;
break;
case 074: /* RK8E */
if (dev_enb & INT_RK) iot_data = rk (pulse, iot_data);
else reason = stop_inst;
break;
case 075: /* RX8E */
if (dev_enb & INT_RX) iot_data = rx (pulse, iot_data);
break;
case 076: /* TC01/TC08 */
if (dev_enb & INT_DTA) iot_data = dt76 (pulse, iot_data);
else reason = stop_inst;
break;
case 077:
if (dev_enb & INT_DTA) iot_data = dt77 (pulse, iot_data);
else reason = stop_inst;
break; } /* end switch device */
LAC = (LAC & 010000) | (iot_data & 07777);
if (iot_data & IOT_SKP) PC = (PC + 1) & 07777;
if (iot_data >= IOT_REASON) reason = iot_data >> IOT_V_REASON;
break; } /* end switch opcode */
} /* end while */
/* Simulation halted */
saved_PC = IF | (PC & 07777); /* save copies */
saved_DF = DF & 070000;
saved_LAC = LAC & 017777;
saved_MQ = MQ & 07777;
return reason;
} /* end sim_instr */
/* Reset routine */
t_stat cpu_reset (DEVICE *dptr)
{
int_req = (int_req & ~INT_ION) | INT_NO_CIF_PENDING;
saved_DF = IB = (saved_PC >> 12) & 03;
UF = UB = gtf = emode = 0;
return cpu_svc (&cpu_unit);
}
/* Breakpoint service */
t_stat cpu_svc (UNIT *uptr)
{
if ((ibkpt_addr & ~ILL_ADR_FLAG) == save_ibkpt) ibkpt_addr = save_ibkpt;
save_ibkpt = -1;
return SCPE_OK;
}
/* Memory examine */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
if (vptr != NULL) *vptr = M[addr] & 07777;
return SCPE_OK;
}
/* Memory deposit */
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
M[addr] = val & 07777;
return SCPE_OK;
}
/* Memory size change */
t_stat cpu_set_size (UNIT *uptr, int32 value)
{
int32 mc = 0;
t_addr i;
if ((value <= 0) || (value > MAXMEMSIZE) || ((value & 07777) != 0))
return SCPE_ARG;
for (i = value; i < MEMSIZE; i++) mc = mc | M[i];
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
return SCPE_OK;
MEMSIZE = value;
for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0;
return SCPE_OK;
}