/* pdp11_fp.c: PDP-11 floating point simulator (32b version) | |
Copyright (c) 1993-2001, Robert M Supnik | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name of Robert M Supnik shall not | |
be used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from Robert M Supnik. | |
05-Jun-98 RMS Fixed implementation specific shift bugs | |
20-Apr-98 RMS Fixed bug in MODf integer truncation | |
17-Apr-98 RMS Fixed bug in STCfi range check | |
16-Apr-98 RMS Fixed bugs in STEXP, STCfi, round/pack | |
09-Apr-98 RMS Fixed bug in LDEXP | |
04-Apr-98 RMS Fixed bug in MODf condition codes | |
This module simulates the PDP-11 floating point unit (FP11 series). | |
It is called from the instruction decoder for opcodes 170000:177777. | |
The floating point unit recognizes three instruction formats: | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ no operand | |
| 1 1 1 1| 0 0 0 0 0 0| opcode | 170000: | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 170077 | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ one operand | |
| 1 1 1 1| 0 0 0| opcode | dest spec | 170100: | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 170777 | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ register + operand | |
| 1 1 1 1| opcode | fac | dest spec | 171000: | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 177777 | |
The instruction space is further extended through use of the floating | |
point status register (FPS) mode bits. Three mode bits affect how | |
instructions are interpreted: | |
FPS_D if 0, floating registers are single precision | |
if 1, floating registers are double precision | |
FPS_L if 0, integer operands are word | |
if 1, integer operands are longword | |
FPS_T if 0, floating operations are rounded | |
if 1, floating operations are truncated | |
FPS also contains the condition codes for the floating point unit, | |
and exception enable bits for individual error conditions. Exceptions | |
cause a trap through 0244, unless the individual exception, or all | |
exceptions, are disabled. Illegal address mode, undefined variable, | |
and divide by zero abort the current instruction; all other exceptions | |
permit the instruction to complete. (Aborts are implemented as traps | |
that request an "interrupt" trap. If an interrupt is pending, it is | |
serviced; if not, trap_req is updated and processing continues.) | |
Floating point specifiers are similar to integer specifiers, with | |
the length of the operand being up to 8 bytes. In two specific cases, | |
the floating point unit reads or writes only two bytes, rather than | |
the length specified by the operand type: | |
register for integers, only 16b are accessed; if the | |
operand is 32b, these are the high order 16b | |
of the operand | |
immediate for integers or floating point, only 16b are | |
accessed; if the operand is 32b or 64b, these | |
are the high order 16b of the operand | |
*/ | |
#include "pdp11_defs.h" | |
/* Floating point status register */ | |
#define FPS_ER (1u << FPS_V_ER) /* error */ | |
#define FPS_ID (1u << FPS_V_ID) /* interrupt disable */ | |
#define FPS_IUV (1u << FPS_V_IUV) /* int on undef var */ | |
#define FPS_IU (1u << FPS_V_IU) /* int on underflow */ | |
#define FPS_IV (1u << FPS_V_IV) /* int on overflow */ | |
#define FPS_IC (1u << FPS_V_IC) /* int on conv error */ | |
#define FPS_D (1u << FPS_V_D) /* single/double */ | |
#define FPS_L (1u << FPS_V_L) /* word/long */ | |
#define FPS_T (1u << FPS_V_T) /* round/truncate */ | |
#define FPS_N (1u << FPS_V_N) | |
#define FPS_Z (1u << FPS_V_Z) | |
#define FPS_V (1u << FPS_V_V) | |
#define FPS_C (1u << FPS_V_C) | |
#define FPS_CC (FPS_N + FPS_Z + FPS_V + FPS_C) | |
#define FPS_RW (FPS_ER + FPS_ID + FPS_IUV + FPS_IU + FPS_IV + \ | |
FPS_IC + FPS_D + FPS_L + FPS_T + FPS_CC) | |
/* Floating point exception codes */ | |
#define FEC_OP 2 /* illegal op/mode */ | |
#define FEC_DZRO 4 /* divide by zero */ | |
#define FEC_ICVT 6 /* conversion error */ | |
#define FEC_OVFLO 8 /* overflow */ | |
#define FEC_UNFLO 10 /* underflow */ | |
#define FEC_UNDFV 12 /* undef variable */ | |
/* Floating point format, all assignments 32b relative */ | |
#define FP_V_SIGN (63 - 32) /* high lw: sign */ | |
#define FP_V_EXP (55 - 32) /* exponent */ | |
#define FP_V_HB FP_V_EXP /* hidden bit */ | |
#define FP_V_F0 (48 - 32) /* fraction 0 */ | |
#define FP_V_F1 (32 - 32) /* fraction 1 */ | |
#define FP_V_FROUND (31 - 32) /* f round point */ | |
#define FP_V_F2 16 /* low lw: fraction 2 */ | |
#define FP_V_F3 0 /* fraction 3 */ | |
#define FP_V_DROUND (-1) /* d round point */ | |
#define FP_M_EXP 0377 | |
#define FP_SIGN (1u << FP_V_SIGN) | |
#define FP_EXP (FP_M_EXP << FP_V_EXP) | |
#define FP_HB (1u << FP_V_HB) | |
#define FP_FRACH ((1u << FP_V_HB) - 1) | |
#define FP_FRACL 0xFFFFFFFF | |
#define FP_BIAS 0200 /* exponent bias */ | |
#define FP_GUARD 3 /* guard bits */ | |
/* Data lengths */ | |
#define WORD 2 | |
#define LONG 4 | |
#define QUAD 8 | |
/* Double precision operations on 64b quantities */ | |
#define F_LOAD(qd,ac,ds) ds.h = ac.h; ds.l = (qd)? ac.l: 0 | |
#define F_LOAD_P(qd,ac,ds) ds -> h = ac.h; ds -> l = (qd)? ac.l: 0 | |
#define F_LOAD_FRAC(qd,ac,ds) ds.h = (ac.h & FP_FRACH) | FP_HB; \ | |
ds.l = (qd)? ac.l: 0 | |
#define F_STORE(qd,sr,ac) ac.h = sr.h; if ((qd)) ac.l = sr.l | |
#define F_STORE_P(qd,sr,ac) ac.h = sr -> h; if ((qd)) ac.l = sr -> l | |
#define F_GET_FRAC_P(sr,ds) ds.l = sr -> l; \ | |
ds.h = (sr -> h & FP_FRACH) | FP_HB | |
#define F_ADD(s2,s1,ds) ds.l = (s1.l + s2.l) & 0xFFFFFFFF; \ | |
ds.h = (s1.h + s2.h + (ds.l < s2.l)) & 0xFFFFFFFF | |
#define F_SUB(s2,s1,ds) ds.h = (s1.h - s2.h - (s1.l < s2.l)) & 0xFFFFFFFF; \ | |
ds.l = (s1.l - s2.l) & 0xFFFFFFFF | |
#define F_LT(x,y) ((x.h < y.h) || ((x.h == y.h) && (x.l < y.l))) | |
#define F_LT_AP(x,y) (((x -> h & ~FP_SIGN) < (y -> h & ~FP_SIGN)) || \ | |
(((x -> h & ~FP_SIGN) == (y -> h & ~FP_SIGN)) && (x -> l < y -> l))) | |
#define F_LSH_V(sr,n,ds) \ | |
ds.h = (((n) >= 32)? (sr.l << ((n) - 32)): \ | |
(sr.h << (n)) | ((sr.l >> (32 - (n))) & and_mask[n])) \ | |
& 0xFFFFFFFF; \ | |
ds.l = ((n) >= 32)? 0: (sr.l << (n)) & 0xFFFFFFFF | |
#define F_RSH_V(sr,n,ds) \ | |
ds.l = (((n) >= 32)? (sr.h >> ((n) - 32)) & and_mask[64 - (n)]: \ | |
((sr.l >> (n)) & and_mask[32 - (n)]) | \ | |
(sr.h << (32 - (n)))) & 0xFFFFFFFF; \ | |
ds.h = ((n) >= 32)? 0: \ | |
((sr.h >> (n)) & and_mask[32 - (n)]) & 0xFFFFFFFF | |
/* For the constant shift macro, arguments must in the range [2,31] */ | |
#define F_LSH_1(ds) ds.h = ((ds.h << 1) | ((ds.l >> 31) & 1)) & 0xFFFFFFFF; \ | |
ds.l = (ds.l << 1) & 0xFFFFFFFF | |
#define F_RSH_1(ds) ds.l = ((ds.l >> 1) & 0x7FFFFFFF) | ((ds.h & 1) << 31); \ | |
ds.h = ((ds.h >> 1) & 0x7FFFFFFF) | |
#define F_LSH_K(sr,n,ds) \ | |
ds.h = ((sr.h << (n)) | ((sr.l >> (32 - (n))) & and_mask[n])) \ | |
& 0xFFFFFFFF; \ | |
ds.l = (sr.l << (n)) & 0xFFFFFFFF | |
#define F_RSH_K(sr,n,ds) \ | |
ds.l = (((sr.l >> (n)) & and_mask[32 - (n)]) | \ | |
(sr.h << (32 - (n)))) & 0xFFFFFFFF; \ | |
ds.h = ((sr.h >> (n)) & and_mask[32 - (n)]) & 0xFFFFFFFF | |
#define F_LSH_GUARD(ds) F_LSH_K(ds,FP_GUARD,ds) | |
#define F_RSH_GUARD(ds) F_RSH_K(ds,FP_GUARD,ds) | |
#define GET_BIT(ir,n) (((ir) >> n) & 1) | |
#define GET_SIGN(ir) GET_BIT((ir), FP_V_SIGN) | |
#define GET_EXP(ir) (((ir) >> FP_V_EXP) & FP_M_EXP) | |
#define GET_SIGN_L(ir) GET_BIT((ir), 31) | |
#define GET_SIGN_W(ir) GET_BIT((ir), 15) | |
extern jmp_buf save_env; | |
extern int32 FEC, FEA, FPS; | |
extern int32 CPUERR, trap_req; | |
extern int32 N, Z, V, C; | |
extern int32 R[8]; | |
extern fpac_t FR[6]; | |
extern int32 GeteaW (int32 spec); | |
extern int32 ReadW (int32 addr); | |
extern void WriteW (int32 data, int32 addr); | |
fpac_t zero_fac = { 0, 0 }; | |
fpac_t one_fac = { 1, 0 }; | |
fpac_t fround_fac = { (1u << (FP_V_FROUND + 32)), 0 }; | |
fpac_t fround_guard_fac = { 0, (1u << (FP_V_FROUND + FP_GUARD)) }; | |
fpac_t dround_guard_fac = { (1u << (FP_V_DROUND + FP_GUARD)), 0 }; | |
fpac_t fmask_fac = { 0xFFFFFFFF, (1u << (FP_V_HB + FP_GUARD + 1)) - 1 }; | |
static const uint32 and_mask[33] = { 0, | |
0x1, 0x3, 0x7, 0xF, | |
0x1F, 0x3F, 0x7F, 0xFF, | |
0x1FF, 0x3FF, 0x7FF, 0xFFF, | |
0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, | |
0x1FFFF, 0x3FFFF, 0x7FFFF, 0xFFFFF, | |
0x1FFFFF, 0x3FFFFF, 0x7FFFFF, 0xFFFFFF, | |
0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF, | |
0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF, 0xFFFFFFFF }; | |
int32 backup_PC; | |
int32 fpnotrap (int32 code); | |
int32 GeteaFP (int32 spec, int32 len); | |
unsigned int32 ReadI (int32 addr, int32 spec, int32 len); | |
void ReadFP (fpac_t *fac, int32 addr, int32 spec, int32 len); | |
void WriteI (int32 data, int32 addr, int32 spec, int32 len); | |
void WriteFP (fpac_t *data, int32 addr, int32 spec, int32 len); | |
int32 setfcc (int32 old_status, int32 result_high, int32 newV); | |
int32 addfp11 (fpac_t *src1, fpac_t *src2); | |
int32 mulfp11 (fpac_t *src1, fpac_t *src2); | |
int32 divfp11 (fpac_t *src1, fpac_t *src2); | |
int32 modfp11 (fpac_t *src1, fpac_t *src2, fpac_t *frac); | |
void frac_mulfp11 (fpac_t *src1, fpac_t *src2); | |
int32 roundfp11 (fpac_t *src); | |
int32 round_and_pack (fpac_t *fac, int32 exp, fpac_t *frac, int r); | |
/* Set up for instruction decode and execution */ | |
void fp11 (int32 IR) | |
{ | |
int32 dst, ea, ac, dstspec; | |
int32 i, qdouble, lenf, leni; | |
int32 newV, exp, sign; | |
fpac_t fac, fsrc, modfrac; | |
static const unsigned int32 i_limit[2][2] = | |
{ { 0x80000000, 0x80010000 }, { 0x80000000, 0x80000001 } }; | |
backup_PC = PC; /* save PC for FEA */ | |
ac = (IR >> 6) & 03; /* fac is IR<7:6> */ | |
dstspec = IR & 077; | |
qdouble = FPS & FPS_D; | |
lenf = qdouble? QUAD: LONG; | |
switch ((IR >> 8) & 017) { /* decode IR<11:8> */ | |
case 0: | |
switch (ac) { /* decode IR<7:6> */ | |
case 0: /* specials */ | |
if (IR == 0170000) { /* CFCC */ | |
N = (FPS >> PSW_V_N) & 1; | |
Z = (FPS >> PSW_V_Z) & 1; | |
V = (FPS >> PSW_V_V) & 1; | |
C = (FPS >> PSW_V_C) & 1; } | |
else if (IR == 0170001) /* SETF */ | |
FPS = FPS & ~FPS_D; | |
else if (IR == 0170002) /* SETI */ | |
FPS = FPS & ~FPS_L; | |
else if (IR == 0170011) /* SETD */ | |
FPS = FPS | FPS_D; | |
else if (IR == 0170012) /* SETL */ | |
FPS = FPS | FPS_L; | |
else fpnotrap (FEC_OP); | |
break; | |
case 1: /* LDFPS */ | |
dst = (dstspec <= 07)? R[dstspec]: ReadW (GeteaW (dstspec)); | |
FPS = dst & FPS_RW; | |
break; | |
case 2: /* STFPS */ | |
FPS = FPS & FPS_RW; | |
if (dstspec <= 07) R[dstspec] = FPS; | |
else WriteW (FPS, GeteaW (dstspec)); | |
break; | |
case 3: /* STST */ | |
if (dstspec <= 07) R[dstspec] = FEC; | |
else WriteI ((FEC << 16) | FEA, GeteaFP (dstspec, LONG), | |
dstspec, LONG); | |
break; } /* end switch <7:6> */ | |
break; /* end case 0 */ | |
/* "Easy" instructions */ | |
case 1: | |
switch (ac) { /* decode IR<7:6> */ | |
case 0: /* CLRf */ | |
WriteFP (&zero_fac, GeteaFP (dstspec, lenf), dstspec, lenf); | |
FPS = (FPS & ~FPS_CC) | FPS_Z; | |
break; | |
case 1: /* TSTf */ | |
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf); | |
FPS = setfcc (FPS, fsrc.h, 0); | |
break; | |
case 2: /* ABSf */ | |
ReadFP (&fsrc, ea = GeteaFP (dstspec, lenf), dstspec, lenf); | |
if (GET_EXP (fsrc.h) == 0) fsrc = zero_fac; | |
else fsrc.h = fsrc.h & ~FP_SIGN; | |
WriteFP (&fsrc, ea, dstspec, lenf); | |
FPS = setfcc (FPS, fsrc.h, 0); | |
break; | |
case 3: /* NEGf */ | |
ReadFP (&fsrc, ea = GeteaFP (dstspec, lenf), dstspec, lenf); | |
if (GET_EXP (fsrc.h) == 0) fsrc = zero_fac; | |
else fsrc.h = fsrc.h ^ FP_SIGN; | |
WriteFP (&fsrc, ea, dstspec, lenf); | |
FPS = setfcc (FPS, fsrc.h, 0); | |
break; } /* end switch <7:6> */ | |
break; /* end case 1 */ | |
case 5: /* LDf */ | |
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf); | |
F_STORE (qdouble, fsrc, FR[ac]); | |
FPS = setfcc (FPS, fsrc.h, 0); | |
break; | |
case 010: /* STf */ | |
F_LOAD (qdouble, FR[ac], fac); | |
WriteFP (&fac, GeteaFP (dstspec, lenf), dstspec, lenf); | |
break; | |
case 017: /* LDCff' */ | |
ReadFP (&fsrc, GeteaFP (dstspec, 12 - lenf), dstspec, 12 - lenf); | |
if (GET_EXP (fsrc.h) == 0) fsrc = zero_fac; | |
if ((FPS & (FPS_D + FPS_T)) == 0) newV = roundfp11 (&fsrc); | |
else newV = 0; | |
F_STORE (qdouble, fsrc, FR[ac]); | |
FPS = setfcc (FPS, fsrc.h, newV); | |
break; | |
case 014: /* STCff' */ | |
F_LOAD (qdouble, FR[ac], fac); | |
if (GET_EXP (fac.h) == 0) fac = zero_fac; | |
if ((FPS & (FPS_D + FPS_T)) == FPS_D) newV = roundfp11 (&fac); | |
else newV = 0; | |
WriteFP (&fac, GeteaFP (dstspec, 12 - lenf), dstspec, 12 - lenf); | |
FPS = setfcc (FPS, fac.h, newV); | |
break; | |
/* Compare instruction */ | |
case 7: /* CMPf */ | |
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf); | |
F_LOAD (qdouble, FR[ac], fac); | |
if (GET_EXP (fsrc.h) == 0) fsrc = zero_fac; | |
if (GET_EXP (fac.h) == 0) fac = zero_fac; | |
if ((fsrc.h == fac.h) && (fsrc.l == fac.l)) { /* equal? */ | |
FPS = (FPS & ~FPS_CC) | FPS_Z; | |
if ((fsrc.h | fsrc.l) == 0) { /* zero? */ | |
F_STORE (qdouble, zero_fac, FR[ac]); } | |
break; } | |
FPS = (FPS & ~FPS_CC) | ((fsrc.h >> (FP_V_SIGN - PSW_V_N)) & FPS_N); | |
if ((GET_SIGN (fsrc.h ^ fac.h) == 0) && (fac.h != 0) && | |
F_LT (fsrc, fac)) FPS = FPS ^ FPS_N; | |
break; | |
/* Load and store exponent instructions */ | |
case 015: /* LDEXP */ | |
dst = (dstspec <= 07)? R[dstspec]: ReadW (GeteaW (dstspec)); | |
F_LOAD (qdouble, FR[ac], fac); | |
fac.h = (fac.h & ~FP_EXP) | (((dst + FP_BIAS) & FP_M_EXP) << FP_V_EXP); | |
newV = 0; | |
if ((dst > 0177) && (dst <= 0177600)) { | |
if (dst < 0100000) { | |
if (fpnotrap (FEC_OVFLO)) fac = zero_fac; | |
newV = FPS_V; } | |
else { if (fpnotrap (FEC_UNFLO)) fac = zero_fac; } } | |
F_STORE (qdouble, fac, FR[ac]); | |
FPS = setfcc (FPS, fac.h, newV); | |
break; | |
case 012: /* STEXP */ | |
dst = (GET_EXP (FR[ac].h) - FP_BIAS) & 0177777; | |
N = GET_SIGN_W (dst); | |
Z = (dst == 0); | |
V = 0; | |
C = 0; | |
FPS = (FPS & ~FPS_CC) | (N << PSW_V_N) | (Z << PSW_V_Z); | |
if (dstspec <= 07) R[dstspec] = dst; | |
else WriteW (dst, GeteaW (dstspec)); | |
break; | |
/* Integer convert instructions */ | |
case 016: /* LDCif */ | |
leni = FPS & FPS_L? LONG: WORD; | |
if (dstspec <= 07) fac.l = R[dstspec] << 16; | |
else fac.l = ReadI (GeteaFP (dstspec, leni), dstspec, leni); | |
fac.h = 0; | |
if (fac.l) { | |
if (sign = GET_SIGN_L (fac.l)) fac.l = (fac.l ^ 0xFFFFFFFF) + 1; | |
for (i = 0; GET_SIGN_L (fac.l) == 0; i++) fac.l = fac.l << 1; | |
exp = ((FPS & FPS_L)? FP_BIAS + 32: FP_BIAS + 16) - i; | |
fac.h = (sign << FP_V_SIGN) | (exp << FP_V_EXP) | | |
((fac.l >> (31 - FP_V_HB)) & FP_FRACH); | |
fac.l = (fac.l << (FP_V_HB + 1)) & FP_FRACL; | |
if ((FPS & (FPS_D + FPS_T)) == 0) roundfp11 (&fac); } | |
F_STORE (qdouble, fac, FR[ac]); | |
FPS = setfcc (FPS, fac.h, 0); | |
break; | |
case 013: /* STCfi */ | |
sign = GET_SIGN (FR[ac].h); /* get sign, */ | |
exp = GET_EXP (FR[ac].h); /* exponent, */ | |
F_LOAD_FRAC (qdouble, FR[ac], fac); /* fraction */ | |
if (FPS & FPS_L) { | |
leni = LONG; | |
i = FP_BIAS + 32; } | |
else { leni = WORD; | |
i = FP_BIAS + 16; } | |
C = 0; | |
if (exp <= FP_BIAS) dst = 0; | |
else if (exp > i) { | |
dst = 0; | |
C = 1; } | |
else { F_RSH_V (fac, FP_V_HB + 1 + i - exp, fsrc); | |
if (leni == WORD) fsrc.l = fsrc.l & ~0177777; | |
if (fsrc.l >= i_limit[leni == LONG][sign]) { | |
dst = 0; | |
C = 1; } | |
else { dst = fsrc.l; | |
if (sign) dst = -dst; } } | |
N = GET_SIGN_L (dst); | |
Z = (dst == 0); | |
V = 0; | |
if (C) fpnotrap (FEC_ICVT); | |
FPS = (FPS & ~FPS_CC) | (N << PSW_V_N) | | |
(Z << PSW_V_Z) | (C << PSW_V_C); | |
if (dstspec <= 07) R[dstspec] = (dst >> 16) & 0177777; | |
else WriteI (dst, GeteaFP (dstspec, leni), dstspec, leni); | |
break; | |
/* Calculation instructions */ | |
case 2: /* MULf */ | |
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf); | |
F_LOAD (qdouble, FR[ac], fac); | |
newV = mulfp11 (&fac, &fsrc); | |
F_STORE (qdouble, fac, FR[ac]); | |
FPS = setfcc (FPS, fac.h, newV); | |
break; | |
case 3: /* MODf */ | |
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf); | |
F_LOAD (qdouble, FR[ac], fac); | |
newV = modfp11 (&fac, &fsrc, &modfrac); | |
F_STORE (qdouble, fac, FR[ac | 1]); | |
F_STORE (qdouble, modfrac, FR[ac]); | |
FPS = setfcc (FPS, modfrac.h, newV); | |
break; | |
case 4: /* ADDf */ | |
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf); | |
F_LOAD (qdouble, FR[ac], fac); | |
newV = addfp11 (&fac, &fsrc); | |
F_STORE (qdouble, fac, FR[ac]); | |
FPS = setfcc (FPS, fac.h, newV); | |
break; | |
case 6: /* SUBf */ | |
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf); | |
F_LOAD (qdouble, FR[ac], fac); | |
if (GET_EXP (fsrc.h) != 0) fsrc.h = fsrc.h ^ FP_SIGN; | |
newV = addfp11 (&fac, &fsrc); | |
F_STORE (qdouble, fac, FR[ac]); | |
FPS = setfcc (FPS, fac.h, newV); | |
break; | |
case 011: /* DIVf */ | |
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf); | |
F_LOAD (qdouble, FR[ac], fac); | |
newV = divfp11 (&fac, &fsrc); | |
F_STORE (qdouble, fac, FR[ac]); | |
FPS = setfcc (FPS, fac.h, newV); | |
break; } /* end switch fop */ | |
return; | |
} | |
/* Effective address calculation for fp operands | |
Inputs: | |
spec = specifier | |
len = length | |
Outputs: | |
VA = virtual address | |
Warnings: | |
- Do not call this routine for integer mode 0 operands | |
- Do not call this routine more than once per instruction | |
*/ | |
int32 GeteaFP (int32 spec, int32 len) | |
{ | |
int32 adr, reg, ds; | |
extern int32 cm, isenable, dsenable, MMR0, MMR1; | |
reg = spec & 07; /* reg number */ | |
ds = (reg == 7)? isenable: dsenable; /* dspace if not PC */ | |
switch (spec >> 3) { /* case on spec */ | |
case 0: /* floating AC */ | |
if (reg >= 06) { fpnotrap (FEC_OP); ABORT (TRAP_INT); } | |
return 0; | |
case 1: /* (R) */ | |
return (R[reg] | ds); | |
case 2: /* (R)+ */ | |
if (reg == 7) len = 2; | |
R[reg] = ((adr = R[reg]) + len) & 0177777; | |
if (update_MM) MMR1 = (len << 3) | reg; | |
return (adr | ds); | |
case 3: /* @(R)+ */ | |
R[reg] = ((adr = R[reg]) + 2) & 0177777; | |
if (update_MM) MMR1 = 020 | reg; | |
adr = ReadW (adr | ds); | |
return (adr | dsenable); | |
case 4: /* -(R) */ | |
adr = R[reg] = (R[reg] - len) & 0177777; | |
if (update_MM) MMR1 = (((-len) & 037) << 3) | reg; | |
if ((adr < STKLIM) && (reg == 6) && (cm == KERNEL)) { | |
setTRAP (TRAP_YEL); | |
setCPUERR (CPUE_YEL); } | |
return (adr | ds); | |
case 5: /* @-(R) */ | |
adr = R[reg] = (R[reg] - 2) & 0177777; | |
if (update_MM) MMR1 = 0360 | reg; | |
if ((adr < STKLIM) && (reg == 6) && (cm == KERNEL)) { | |
setTRAP (TRAP_YEL); | |
setCPUERR (CPUE_YEL); } | |
adr = ReadW (adr | ds); | |
return (adr | dsenable); | |
case 6: /* d(r) */ | |
adr = ReadW (PC | isenable); | |
PC = (PC + 2) & 0177777; | |
return (((R[reg] + adr) & 0177777) | dsenable); | |
case 7: /* @d(R) */ | |
adr = ReadW (PC | isenable); | |
PC = (PC + 2) & 0177777; | |
adr = ReadW (((R[reg] + adr) & 0177777) | dsenable); | |
return (adr | dsenable); } /* end switch */ | |
} | |
/* Read integer operand | |
Inputs: | |
VA = virtual address, VA<18:16> = mode, I/D space | |
spec = specifier | |
len = length (2/4 bytes) | |
Outputs: | |
data = data read from memory or I/O space | |
*/ | |
unsigned int32 ReadI (int32 VA, int32 spec, int32 len) | |
{ | |
if ((len == WORD) || (spec == 027)) return (ReadW (VA) << 16); | |
return ((ReadW (VA) << 16) | ReadW ((VA & ~0177777) | ((VA + 2) & 0177777))); | |
} | |
/* Read floating operand | |
Inputs: | |
fptr = pointer to output | |
VA = virtual address, VA<18:16> = mode, I/D space | |
spec = specifier | |
len = length (4/8 bytes) | |
*/ | |
void ReadFP (fpac_t *fptr, int32 VA, int32 spec, int32 len) | |
{ | |
int32 exta; | |
if (spec <= 07) { | |
F_LOAD_P (len == QUAD, FR[spec], fptr); | |
return; } | |
if (spec == 027) { | |
fptr -> h = (ReadW (VA) << FP_V_F0); | |
fptr -> l = 0; } | |
else { exta = VA & ~0177777; | |
fptr -> h = (ReadW (VA) << FP_V_F0) | | |
(ReadW (exta | ((VA + 2) & 0177777)) << FP_V_F1); | |
if (len == QUAD) fptr -> l = | |
(ReadW (exta | ((VA + 4) & 0177777)) << FP_V_F2) | | |
(ReadW (exta | ((VA + 6) & 0177777)) << FP_V_F3); | |
else fptr -> l = 0; } | |
if ((GET_SIGN (fptr -> h) != 0) && (GET_EXP (fptr -> h) == 0) && | |
(fpnotrap (FEC_UNDFV) == 0)) ABORT (TRAP_INT); | |
return; | |
} | |
/* Write integer result | |
Inputs: | |
data = data to be written | |
VA = virtual address, VA<18:16> = mode, I/D space | |
spec = specifier | |
len = length | |
Outputs: none | |
*/ | |
void WriteI (int32 data, int32 VA, int32 spec, int32 len) | |
{ | |
WriteW ((data >> 16) & 0177777, VA); | |
if ((len == WORD) || (spec == 027)) return; | |
WriteW (data & 0177777, (VA & ~0177777) | ((VA + 2) & 0177777)); | |
return; | |
} | |
/* Write floating result | |
Inputs: | |
fptr = pointer to data to be written | |
VA = virtual address, VA<18:16> = mode, I/D space | |
spec = specifier | |
len = length | |
Outputs: none | |
*/ | |
void WriteFP (fpac_t *fptr, int32 VA, int32 spec, int32 len) | |
{ | |
int32 exta; | |
if (spec <= 07) { | |
F_STORE_P (len == QUAD, fptr, FR[spec]); | |
return; } | |
WriteW ((fptr -> h >> FP_V_F0) & 0177777, VA); | |
if (spec == 027) return; | |
exta = VA & ~0177777; | |
WriteW ((fptr -> h >> FP_V_F1) & 0177777, exta | ((VA + 2) & 0177777)); | |
if (len == LONG) return; | |
WriteW ((fptr -> l >> FP_V_F2) & 0177777, exta | ((VA + 4) & 0177777)); | |
WriteW ((fptr -> l >> FP_V_F3) & 0177777, exta | ((VA + 6) & 0177777)); | |
return; | |
} | |
/* Floating point add | |
Inputs: | |
facp = pointer to src1 (output) | |
fsrcp = pointer to src2 | |
Outputs: | |
ovflo = overflow variable | |
*/ | |
int32 addfp11 (fpac_t *facp, fpac_t *fsrcp) | |
{ | |
int32 facexp, fsrcexp, ediff; | |
fpac_t facfrac, fsrcfrac; | |
if (F_LT_AP (facp, fsrcp)) { /* if !fac! < !fsrc! */ | |
facfrac = *facp; | |
*facp = *fsrcp; /* swap operands */ | |
*fsrcp = facfrac; } | |
facexp = GET_EXP (facp -> h); /* get exponents */ | |
fsrcexp = GET_EXP (fsrcp -> h); | |
if (facexp == 0) { /* fac = 0? */ | |
*facp = fsrcexp? *fsrcp: zero_fac; /* result fsrc or 0 */ | |
return 0; } | |
if (fsrcexp == 0) return 0; /* fsrc = 0? no op */ | |
ediff = facexp - fsrcexp; /* exponent diff */ | |
if (ediff >= 60) return 0; /* too big? no op */ | |
F_GET_FRAC_P (facp, facfrac); /* get fractions */ | |
F_GET_FRAC_P (fsrcp, fsrcfrac); | |
F_LSH_GUARD (facfrac); /* guard fractions */ | |
F_LSH_GUARD (fsrcfrac); | |
if (GET_SIGN (facp -> h) != GET_SIGN (fsrcp -> h)) { /* signs different? */ | |
if (ediff) { F_RSH_V (fsrcfrac, ediff, fsrcfrac); } /* sub, shf fsrc */ | |
F_SUB (fsrcfrac, facfrac, facfrac); /* sub fsrc from fac */ | |
if ((facfrac.h | facfrac.l) == 0) { /* result zero? */ | |
*facp = zero_fac; /* no overflow */ | |
return 0; } | |
if (ediff <= 1) { /* big normalize? */ | |
if ((facfrac.h & (0x00FFFFFF << FP_GUARD)) == 0) { | |
F_LSH_K (facfrac, 24, facfrac); | |
facexp = facexp - 24; } | |
if ((facfrac.h & (0x00FFF000 << FP_GUARD)) == 0) { | |
F_LSH_K (facfrac, 12, facfrac); | |
facexp = facexp - 12; } | |
if ((facfrac.h & (0x00FC0000 << FP_GUARD)) == 0) { | |
F_LSH_K (facfrac, 6, facfrac); | |
facexp = facexp - 6; } } | |
while (GET_BIT (facfrac.h, FP_V_HB + FP_GUARD) == 0) { | |
F_LSH_1 (facfrac); | |
facexp = facexp - 1; } } | |
else { if (ediff) { F_RSH_V (fsrcfrac, ediff, fsrcfrac); } /* add, shf fsrc */ | |
F_ADD (fsrcfrac, facfrac, facfrac); /* add fsrc to fac */ | |
if (GET_BIT (facfrac.h, FP_V_HB + FP_GUARD + 1)) { | |
F_RSH_1 (facfrac); /* carry out, shift */ | |
facexp = facexp + 1; } } | |
return round_and_pack (facp, facexp, &facfrac, 1); | |
} | |
/* Floating point multiply | |
Inputs: | |
facp = pointer to src1 (output) | |
fsrcp = pointer to src2 | |
Outputs: | |
ovflo = overflow indicator | |
*/ | |
int32 mulfp11 (fpac_t *facp, fpac_t *fsrcp) | |
{ | |
int32 facexp, fsrcexp; | |
fpac_t facfrac, fsrcfrac; | |
facexp = GET_EXP (facp -> h); /* get exponents */ | |
fsrcexp = GET_EXP (fsrcp -> h); | |
if ((facexp == 0) || (fsrcexp == 0)) { /* test for zero */ | |
*facp = zero_fac; | |
return 0; } | |
F_GET_FRAC_P (facp, facfrac); /* get fractions */ | |
F_GET_FRAC_P (fsrcp, fsrcfrac); | |
facexp = facexp + fsrcexp - FP_BIAS; /* calculate exp */ | |
facp -> h = facp -> h ^ fsrcp -> h; /* calculate sign */ | |
frac_mulfp11 (&facfrac, &fsrcfrac); /* multiply fracs */ | |
/* Multiplying two numbers in the range [.5,1) produces a result in the | |
range [.25,1). Therefore, at most one bit of normalization is required | |
to bring the result back to the range [.5,1). | |
*/ | |
if (GET_BIT (facfrac.h, FP_V_HB + FP_GUARD) == 0) { | |
F_LSH_1 (facfrac); | |
facexp = facexp - 1; } | |
return round_and_pack (facp, facexp, &facfrac, 1); | |
} | |
/* Floating point mod | |
Inputs: | |
facp = pointer to src1 (integer result) | |
fsrcp = pointer to src2 | |
fracp = pointer to fractional result | |
Outputs: | |
ovflo = overflow indicator | |
See notes on multiply for initial operation | |
*/ | |
int32 modfp11 (fpac_t *facp, fpac_t *fsrcp, fpac_t *fracp) | |
{ | |
int32 facexp, fsrcexp; | |
fpac_t facfrac, fsrcfrac, fmask; | |
facexp = GET_EXP (facp -> h); /* get exponents */ | |
fsrcexp = GET_EXP (fsrcp -> h); | |
if ((facexp == 0) || (fsrcexp == 0)) { /* test for zero */ | |
*fracp = zero_fac; | |
*facp = zero_fac; | |
return 0; } | |
F_GET_FRAC_P (facp, facfrac); /* get fractions */ | |
F_GET_FRAC_P (fsrcp, fsrcfrac); | |
facexp = facexp + fsrcexp - FP_BIAS; /* calculate exp */ | |
fracp -> h = facp -> h = facp -> h ^ fsrcp -> h; /* calculate sign */ | |
frac_mulfp11 (&facfrac, &fsrcfrac); /* multiply fracs */ | |
/* Multiplying two numbers in the range [.5,1) produces a result in the | |
range [.25,1). Therefore, at most one bit of normalization is required | |
to bring the result back to the range [.5,1). | |
*/ | |
if (GET_BIT (facfrac.h, FP_V_HB + FP_GUARD) == 0) { | |
F_LSH_1 (facfrac); | |
facexp = facexp - 1; } | |
/* There are three major cases of MODf: | |
1. Exp <= FP_BIAS (all fraction). Return 0 as integer, product as | |
fraction. Underflow can occur. | |
2. Exp > FP_BIAS + #fraction bits (all integer). Return product as | |
integer, 0 as fraction. Overflow can occur. | |
3. FP_BIAS < exp <= FP_BIAS + #fraction bits. Separate integer and | |
fraction and return both. Neither overflow nor underflow can occur. | |
*/ | |
if (facexp <= FP_BIAS) { /* case 1 */ | |
*facp = zero_fac; | |
return round_and_pack (fracp, facexp, &facfrac, 1); } | |
if (facexp > ((FPS & FPS_D)? FP_BIAS + 56: FP_BIAS + 24)) { | |
*fracp = zero_fac; /* case 2 */ | |
return round_and_pack (facp, facexp, &facfrac, 0); } | |
F_RSH_V (fmask_fac, facexp - FP_BIAS, fmask); /* shift mask */ | |
fsrcfrac.l = facfrac.l & fmask.l; /* extract fraction */ | |
fsrcfrac.h = facfrac.h & fmask.h; | |
if ((fsrcfrac.h | fsrcfrac.l) == 0) *fracp = zero_fac; | |
else { F_LSH_V (fsrcfrac, facexp - FP_BIAS, fsrcfrac); | |
fsrcexp = FP_BIAS; | |
if ((fsrcfrac.h & (0x00FFFFFF << FP_GUARD)) == 0) { | |
F_LSH_K (fsrcfrac, 24, fsrcfrac); | |
fsrcexp = fsrcexp - 24; } | |
if ((fsrcfrac.h & (0x00FFF000 << FP_GUARD)) == 0) { | |
F_LSH_K (fsrcfrac, 12, fsrcfrac); | |
fsrcexp = fsrcexp - 12; } | |
if ((fsrcfrac.h & (0x00FC0000 << FP_GUARD)) == 0) { | |
F_LSH_K (fsrcfrac, 6, fsrcfrac); | |
fsrcexp = fsrcexp - 6; } | |
while (GET_BIT (fsrcfrac.h, FP_V_HB + FP_GUARD) == 0) { | |
F_LSH_1 (fsrcfrac); | |
fsrcexp = fsrcexp - 1; } | |
round_and_pack (fracp, fsrcexp, &fsrcfrac, 1); } | |
facfrac.l = facfrac.l & ~fmask.l; | |
facfrac.h = facfrac.h & ~fmask.h; | |
return round_and_pack (facp, facexp, &facfrac, 0); | |
} | |
/* Fraction multiply | |
Inputs: | |
f1p = pointer to multiplier (output) | |
f2p = pointer to multiplicand fraction | |
Note: the inputs are unguarded; the output is guarded. | |
This routine performs a classic shift-and-add multiply. The low | |
order bit of the multiplier is tested; if 1, the multiplicand is | |
added into the high part of the double precision result. The | |
result and the multiplier are both shifted right 1. | |
For the 24b x 24b case, this routine develops 48b of result. | |
For the 56b x 56b case, this routine only develops the top 64b | |
of the the result. Because the inputs are normalized fractions, | |
the interesting part of the result is the high 56+guard bits. | |
Everything shifted off to the right, beyond 64b, plays no part | |
in rounding or the result. | |
There are many possible optimizations in this routine: scanning | |
for groups of zeroes, particularly in the 56b x 56b case; using | |
"extended multiply" capability if available in the hardware. | |
*/ | |
void frac_mulfp11 (fpac_t *f1p, fpac_t *f2p) | |
{ | |
fpac_t result, mpy, mpc; | |
int32 i; | |
result = zero_fac; /* clear result */ | |
mpy = *f1p; /* get operands */ | |
mpc = *f2p; | |
F_LSH_GUARD (mpc); /* guard multipicand */ | |
if ((mpy.l | mpc.l) == 0) { /* 24b x 24b? */ | |
for (i = 0; i < 24; i++) { | |
if (mpy.h & 1) result.h = result.h + mpc.h; | |
F_RSH_1 (result); | |
mpy.h = mpy.h >> 1; } } | |
else { if (mpy.l != 0) { /* 24b x 56b? */ | |
for (i = 0; i < 32; i++) { | |
if (mpy.l & 1) { F_ADD (mpc, result, result); } | |
F_RSH_1 (result); | |
mpy.l = mpy.l >> 1; } } | |
for (i = 0; i < 24; i++) { | |
if (mpy.h & 1) { F_ADD (mpc, result, result); } | |
F_RSH_1 (result); | |
mpy.h = mpy.h >> 1; } } | |
*f1p = result; | |
return; | |
} | |
/* Floating point divide | |
Inputs: | |
facp = pointer to dividend (output) | |
fsrcp = pointer to divisor | |
Outputs: | |
ovflo = overflow indicator | |
*/ | |
int32 divfp11 (fpac_t *facp, fpac_t *fsrcp) | |
{ | |
int32 facexp, fsrcexp, i, count, qd; | |
fpac_t facfrac, fsrcfrac, quo; | |
fsrcexp = GET_EXP (fsrcp -> h); /* get divisor exp */ | |
if (fsrcexp == 0) { /* divide by zero? */ | |
fpnotrap (FEC_DZRO); | |
ABORT (TRAP_INT); } | |
facexp = GET_EXP (facp -> h); /* get dividend exp */ | |
if (facexp == 0) { /* test for zero */ | |
*facp = zero_fac; /* result zero */ | |
return 0; } | |
F_GET_FRAC_P (facp, facfrac); /* get fractions */ | |
F_GET_FRAC_P (fsrcp, fsrcfrac); | |
F_LSH_GUARD (facfrac); /* guard fractions */ | |
F_LSH_GUARD (fsrcfrac); | |
facexp = facexp - fsrcexp + FP_BIAS + 1; /* calculate exp */ | |
facp -> h = facp -> h ^ fsrcp -> h; /* calculate sign */ | |
qd = FPS & FPS_D; | |
count = FP_V_HB + FP_GUARD + (qd? 33: 1); /* count = 56b/24b */ | |
quo = zero_fac; | |
for (i = count; (i > 0) && ((facfrac.h | facfrac.l) != 0); i--) { | |
F_LSH_1 (quo); /* shift quotient */ | |
if (!F_LT (facfrac, fsrcfrac)) { /* divd >= divr? */ | |
F_SUB (fsrcfrac, facfrac, facfrac); /* divd - divr */ | |
if (qd) quo.l = quo.l | 1; /* double or single? */ | |
else quo.h = quo.h | 1; } | |
F_LSH_1 (facfrac); } /* shift divd */ | |
if (i > 0) { F_LSH_V (quo, i, quo); } /* early exit? */ | |
/* Dividing two numbers in the range [.5,1) produces a result in the | |
range [.5,2). Therefore, at most one bit of normalization is required | |
to bring the result back to the range [.5,1). The choice of counts | |
and quotient bit positions makes this work correctly. | |
*/ | |
if (GET_BIT (quo.h, FP_V_HB + FP_GUARD) == 0) { | |
F_LSH_1 (quo); | |
facexp = facexp - 1; } | |
return round_and_pack (facp, facexp, &quo, 1); | |
} | |
/* Update floating condition codes | |
Note that FC is only set by STCfi via the integer condition codes | |
Inputs: | |
oldst = current status | |
result = high result | |
newV = new V | |
Outputs: | |
newst = new status | |
*/ | |
int32 setfcc (int32 oldst, int32 result, int32 newV) | |
{ | |
oldst = (oldst & ~FPS_CC) | newV; | |
if (GET_SIGN (result)) oldst = oldst | FPS_N; | |
if (GET_EXP (result) == 0) oldst = oldst | FPS_Z; | |
return oldst; | |
} | |
/* Round (in place) floating point number to f_floating | |
Inputs: | |
fptr = pointer to floating number | |
Outputs: | |
ovflow = overflow | |
*/ | |
int32 roundfp11 (fpac_t *fptr) | |
{ | |
fpac_t outf; | |
outf = *fptr; /* get argument */ | |
F_ADD (fround_fac, outf, outf); /* round */ | |
if (GET_SIGN (outf.h ^ fptr -> h)) { /* flipped sign? */ | |
outf.h = (outf.h ^ FP_SIGN) & 0xFFFFFFFF; /* restore sign */ | |
if (fpnotrap (FEC_OVFLO)) *fptr = zero_fac; /* if no int, clear */ | |
else *fptr = outf; /* return rounded */ | |
return FPS_V; } /* overflow */ | |
else { *fptr = outf; /* round was ok */ | |
return 0; } /* no overflow */ | |
} | |
/* Round result of calculation, test overflow, pack | |
Input: | |
facp = pointer to result, sign in place | |
exp = result exponent, right justified | |
fracp = pointer to result fraction, right justified with | |
guard bits | |
r = round (1) or truncate (0) | |
Outputs: | |
ovflo = overflow indicator | |
*/ | |
int32 round_and_pack (fpac_t *facp, int32 exp, fpac_t *fracp, int r) | |
{ | |
fpac_t frac; | |
frac = *fracp; /* get fraction */ | |
if (r && ((FPS & FPS_T) == 0)) { | |
if (FPS & FPS_D) { F_ADD (dround_guard_fac, frac, frac); } | |
else { F_ADD (fround_guard_fac, frac, frac); } | |
if (GET_BIT (frac.h, FP_V_HB + FP_GUARD + 1)) { | |
F_RSH_1 (frac); | |
exp = exp + 1; } } | |
F_RSH_GUARD (frac); | |
facp -> l = frac.l & FP_FRACL; | |
facp -> h = (facp -> h & FP_SIGN) | ((exp & FP_M_EXP) << FP_V_EXP) | | |
(frac.h & FP_FRACH); | |
if (exp > 0377) { | |
if (fpnotrap (FEC_OVFLO)) *facp = zero_fac; | |
return FPS_V; } | |
if ((exp <= 0) && (fpnotrap (FEC_UNFLO))) *facp = zero_fac; | |
return 0; | |
} | |
/* Process floating point exception | |
Inputs: | |
code = exception code | |
Outputs: | |
int = FALSE if interrupt enabled, TRUE if disabled | |
*/ | |
int32 fpnotrap (int32 code) | |
{ | |
static const int32 test_code[] = { 0, 0, 0, FPS_IC, FPS_IV, FPS_IU, FPS_IUV }; | |
if ((code >= FEC_ICVT) && (code <= FEC_UNDFV) && | |
((FPS & test_code[code >> 1]) == 0)) return TRUE; | |
FPS = FPS | FPS_ER; | |
FEC = code; | |
FEA = (backup_PC - 2) & 0177777; | |
if ((FPS & FPS_ID) == 0) setTRAP (TRAP_FPE); | |
return FALSE; | |
} |