blob: c31c71c03c66eac3c31301acc6b2a845180c4ee7 [file] [log] [blame] [raw]
/* altair_sio: MITS Altair serial I/O card
These functions support a simulated MITS 2SIO interface card.
The card had two physical I/O ports which could be connected
to any serial I/O device that would connect to a current loop,
RS232, or TTY interface. Available baud rates were jumper
selectable for each port from 110 to 9600.
All I/O is via programmed I/O. Each each has a status port
and a data port. A write to the status port can select
some options for the device (0x03 will reset the port).
A read of the status port gets the port status:
+---+---+---+---+---+---+---+---+
| X X X X X X O I |
+---+---+---+---+---+---+---+---+
I - A 1 in this bit position means a character has been received
on the data port and is ready to be read.
O - A 1 in this bit means the port is ready to receive a character
on the data port and transmit it out over the serial line.
A read to the data port gets the buffered character, a write
to the data port writes the character to the device.
*/
#include <stdio.h>
#include "altair_defs.h"
#define UNIT_V_ANSI (UNIT_V_UF + 0) /* ANSI mode */
#define UNIT_ANSI (1 << UNIT_V_ANSI)
t_stat sio_svc (UNIT *uptr);
t_stat sio_reset (DEVICE *dptr);
t_stat ptr_svc (UNIT *uptr);
t_stat ptr_reset (DEVICE *dptr);
t_stat ptp_svc (UNIT *uptr);
t_stat ptp_reset (DEVICE *dptr);
int32 ptr_stopioe = 0, ptp_stopioe = 0; /* stop on error */
extern t_stat sim_activate (UNIT *uptr, int32 interval);
extern t_stat sim_cancel (UNIT *uptr);
extern t_stat sim_poll_kbd (void);
extern t_stat sim_putchar (int32 out);
/* 2SIO Standard I/O Data Structures */
UNIT sio_unit = { UDATA (&sio_svc, 0, 0),
KBD_POLL_WAIT };
REG sio_reg[] = {
{ ORDATA (DATA, sio_unit.buf, 8) },
{ ORDATA (STAT, sio_unit.u3, 8) },
{ NULL } };
MTAB sio_mod[] = {
{ UNIT_ANSI, 0, "TTY", "TTY", NULL },
{ UNIT_ANSI, UNIT_ANSI, "ANSI", "ANSI", NULL },
{ 0 } };
DEVICE sio_dev = {
"2SIO", &sio_unit, sio_reg, sio_mod,
1, 10, 31, 1, 8, 8,
NULL, NULL, &sio_reset,
NULL, NULL, NULL };
UNIT ptr_unit = { UDATA (&ptr_svc, UNIT_SEQ + UNIT_ATTABLE, 0),
KBD_POLL_WAIT };
REG ptr_reg[] = {
{ ORDATA (DATA, ptr_unit.buf, 8) },
{ ORDATA (STAT, ptr_unit.u3, 8) },
{ ORDATA (POS, ptr_unit.pos, 31) },
{ NULL } };
DEVICE ptr_dev = {
"PTR", &ptr_unit, ptr_reg, NULL,
1, 10, 31, 1, 8, 8,
NULL, NULL, &ptr_reset,
NULL, NULL, NULL };
UNIT ptp_unit = { UDATA (&ptp_svc, UNIT_SEQ + UNIT_ATTABLE, 0),
KBD_POLL_WAIT };
REG ptp_reg[] = {
{ ORDATA (DATA, ptp_unit.buf, 8) },
{ ORDATA (STAT, ptp_unit.u3, 8) },
{ ORDATA (POS, ptp_unit.pos, 31) },
{ NULL } };
DEVICE ptp_dev = {
"PTP", &ptp_unit, ptp_reg, NULL,
1, 10, 31, 1, 8, 8,
NULL, NULL, &ptp_reset,
NULL, NULL, NULL };
/* Service routines to handle simulator functions */
/* service routine - actually gets char & places in buffer */
int32 sio_svc (UNIT *uptr)
{
int32 temp;
sim_activate (&sio_unit, sio_unit.wait); /* continue poll */
if ((temp = sim_poll_kbd ()) < SCPE_KFLAG)
return temp; /* no char or error? */
sio_unit.buf = temp & 0377; /* Save char */
sio_unit.u3 |= 0x01; /* Set status */
/* Do any special character handling here */
sio_unit.pos++;
return SCPE_OK;
}
int32 ptr_svc (UNIT *uptr)
{
return SCPE_OK;
}
int32 ptp_svc (UNIT *uptr)
{
return SCPE_OK;
}
/* Reset routine */
int32 sio_reset (DEVICE *dptr)
{
sio_unit.buf = 0; /* Data */
sio_unit.u3 = 0x02; /* Status */
sim_activate (&sio_unit, sio_unit.wait); /* activate unit */
return SCPE_OK;
}
int32 ptr_reset (DEVICE *dptr)
{
ptr_unit.buf = 0;
ptr_unit.u3 = 0x02;
sim_cancel (&ptr_unit); /* deactivate unit */
return SCPE_OK;
}
int32 ptp_reset (DEVICE *dptr)
{
ptp_unit.buf = 0;
ptp_unit.u3 = 0x02;
sim_cancel (&ptp_unit); /* deactivate unit */
return SCPE_OK;
}
/* I/O instruction handlers, called from the CPU module when an
IN or OUT instruction is issued.
Each function is passed an 'io' flag, where 0 means a read from
the port, and 1 means a write to the port. On input, the actual
input is passed as the return value, on output, 'data' is written
to the device.
*/
int32 sio0s(int32 io, int32 data)
{
if (io == 0) {
return (sio_unit.u3);
} else {
if (data == 0x03) { /* reset port! */
sio_unit.u3 = 0x02;
sio_unit.buf = 0;
sio_unit.pos = 0;
}
return (0);
}
}
int32 sio0d(int32 io, int32 data)
{
if (io == 0) {
sio_unit.u3 = sio_unit.u3 & 0xFE;
return (sio_unit.buf);
} else {
sim_putchar(data);
}
}
/* Port 2 controls the PTR/PTP devices */
int32 sio1s(int32 io, int32 data)
{
if (io == 0) {
if ((ptr_unit.flags & UNIT_ATT) == 0) /* attached? */
return 0x02;
if (ptr_unit.u3 != 0) /* No more data? */
return 0x02;
return (0x03); /* ready to read/write */
} else {
if (data == 0x03) {
ptr_unit.u3 = 0;
ptr_unit.buf = 0;
ptr_unit.pos = 0;
ptp_unit.u3 = 0;
ptp_unit.buf = 0;
ptp_unit.pos = 0;
}
return (0);
}
}
int32 sio1d(int32 io, int32 data)
{
int32 temp;
UNIT *uptr;
if (io == 0) {
if ((ptr_unit.flags & UNIT_ATT) == 0) /* attached? */
return 0;
if (ptr_unit.u3 != 0)
return 0;
uptr = ptr_dev.units;
if ((temp = getc(uptr -> fileref)) == EOF) { /* end of file? */
ptr_unit.u3 = 0x01;
return 0;
}
ptr_unit.pos++;
return (temp & 0xFF);
} else {
uptr = ptp_dev.units;
putc(data, uptr -> fileref);
ptp_unit.pos++;
}
}