blob: 1b850dff37573abd6cd49d4cc3229b3da8969a82 [file] [log] [blame] [raw]
/* vax_sysdev.c: VAX 3900 system-specific logic
Copyright (c) 1998-2005, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
This module contains the CVAX chip and VAX 3900 system-specific registers
and devices.
rom bootstrap ROM (no registers)
nvr non-volatile ROM (no registers)
csi console storage input
cso console storage output
sysd system devices (SSC miscellany)
25-Oct-05 RMS Automated CMCTL extended memory
16-Aug-05 RMS Fixed C++ declaration and cast problems
10-Mar-05 RMS Fixed bug in timer schedule routine (from Mark Hittinger)
30-Sep-04 RMS Moved CADR, MSER, CONPC, CONPSL, machine_check, cpu_boot,
con_halt here from vax_cpu.c
Moved model-specific IPR's here from vax_cpu1.c
09-Sep-04 RMS Integrated powerup into RESET (with -p)
Added model-specific registers and routines from CPU
23-Jan-04 MP Added extended physical memory support (Mark Pizzolato)
07-Jun-03 MP Added calibrated delay to ROM reads (Mark Pizzolato)
Fixed calibration problems interval timer (Mark Pizzolato)
12-May-03 RMS Fixed compilation warnings from VC.Net
23-Apr-03 RMS Revised for 32b/64b t_addr
19-Aug-02 RMS Removed unused variables (found by David Hittner)
Allowed NVR to be attached to file
30-May-02 RMS Widened POS to 32b
28-Feb-02 RMS Fixed bug, missing end of table (found by Lars Brinkhoff)
*/
#include "vax_defs.h"
#define UNIT_V_NODELAY (UNIT_V_UF + 0) /* ROM access equal to RAM access */
#define UNIT_NODELAY (1u << UNIT_V_NODELAY)
/* Console storage control/status */
#define CSICSR_IMP (CSR_DONE + CSR_IE) /* console input */
#define CSICSR_RW (CSR_IE)
#define CSOCSR_IMP (CSR_DONE + CSR_IE) /* console output */
#define CSOCSR_RW (CSR_IE)
/* CMCTL configuration registers */
#define CMCNF_VLD 0x80000000 /* addr valid */
#define CMCNF_BA 0x1FF00000 /* base addr */
#define CMCNF_LOCK 0x00000040 /* lock NI */
#define CMCNF_SRQ 0x00000020 /* sig req WO */
#define CMCNF_SIG 0x0000001F /* signature */
#define CMCNF_RW (CMCNF_VLD | CMCNF_BA) /* read/write */
#define CMCNF_MASK (CMCNF_RW | CMCNF_SIG)
#define MEM_BANK (1 << 22) /* bank size 4MB */
#define MEM_SIG (0x17) /* ECC, 4 x 4MB */
/* CMCTL error register */
#define CMERR_RDS 0x80000000 /* uncorr err NI */
#define CMERR_FRQ 0x40000000 /* 2nd RDS NI */
#define CMERR_CRD 0x20000000 /* CRD err NI */
#define CMERR_PAG 0x1FFFFC00 /* page addr NI */
#define CMERR_DMA 0x00000100 /* DMA err NI */
#define CMERR_BUS 0x00000080 /* bus err NI */
#define CMERR_SYN 0x0000007F /* syndrome NI */
#define CMERR_W1C (CMERR_RDS | CMERR_FRQ | CMERR_CRD | \
CMERR_DMA | CMERR_BUS)
/* CMCTL control/status register */
#define CMCSR_PMI 0x00002000 /* PMI speed NI */
#define CMCSR_CRD 0x00001000 /* enb CRD int NI */
#define CMCSR_FRF 0x00000800 /* force ref WONI */
#define CMCSR_DET 0x00000400 /* dis err NI */
#define CMCSR_FDT 0x00000200 /* fast diag NI */
#define CMCSR_DCM 0x00000080 /* diag mode NI */
#define CMCSR_SYN 0x0000007F /* syndrome NI */
#define CMCSR_MASK (CMCSR_PMI | CMCSR_CRD | CMCSR_DET | \
CMCSR_FDT | CMCSR_DCM | CMCSR_SYN)
/* KA655 boot/diagnostic register */
#define BDR_BRKENB 0x00000080 /* break enable */
/* KA655 cache control register */
#define CACR_DRO 0x00FFFF00 /* diag bits RO */
#define CACR_V_DPAR 24 /* data parity */
#define CACR_FIXED 0x00000040 /* fixed bits */
#define CACR_CPE 0x00000020 /* parity err W1C */
#define CACR_CEN 0x00000010 /* enable */
#define CACR_DPE 0x00000004 /* disable par NI */
#define CACR_WWP 0x00000002 /* write wrong par NI */
#define CACR_DIAG 0x00000001 /* diag mode */
#define CACR_W1C (CACR_CPE)
#define CACR_RW (CACR_CEN | CACR_DPE | CACR_WWP | CACR_DIAG)
/* SSC base register */
#define SSCBASE_MBO 0x20000000 /* must be one */
#define SSCBASE_RW 0x1FFFFC00 /* base address */
/* SSC configuration register */
#define SSCCNF_BLO 0x80000000 /* batt low W1C */
#define SSCCNF_IVD 0x08000000 /* int dsbl NI */
#define SSCCNF_IPL 0x03000000 /* int IPL NI */
#define SSCCNF_ROM 0x00F70000 /* ROM param NI */
#define SSCCNF_CTLP 0x00008000 /* ctrl P enb */
#define SSCCNF_BAUD 0x00007700 /* baud rates NI */
#define SSCCNF_ADS 0x00000077 /* addr strb NI */
#define SSCCNF_W1C SSCCNF_BLO
#define SSCCNF_RW 0x0BF7F777
/* SSC timeout register */
#define SSCBTO_BTO 0x80000000 /* timeout W1C */
#define SSCBTO_RWT 0x40000000 /* read/write W1C */
#define SSCBTO_INTV 0x00FFFFFF /* interval NI */
#define SSCBTO_W1C (SSCBTO_BTO | SSCBTO_RWT)
#define SSCBTO_RW SSCBTO_INTV
/* SSC output port */
#define SSCOTP_MASK 0x0000000F /* output port */
/* SSC timer control/status */
#define TMR_CSR_ERR 0x80000000 /* error W1C */
#define TMR_CSR_DON 0x00000080 /* done W1C */
#define TMR_CSR_IE 0x00000040 /* int enb */
#define TMR_CSR_SGL 0x00000020 /* single WO */
#define TMR_CSR_XFR 0x00000010 /* xfer WO */
#define TMR_CSR_STP 0x00000004 /* stop */
#define TMR_CSR_RUN 0x00000001 /* run */
#define TMR_CSR_W1C (TMR_CSR_ERR | TMR_CSR_DON)
#define TMR_CSR_RW (TMR_CSR_IE | TMR_CSR_STP | TMR_CSR_RUN)
/* SSC timer intervals */
#define TMR_INC 10000 /* usec/interval */
/* SSC timer vector */
#define TMR_VEC_MASK 0x000003FC /* vector */
/* SSC address strobes */
#define SSCADS_MASK 0x3FFFFFFC /* match or mask */
extern int32 R[16];
extern int32 STK[5];
extern int32 PSL;
extern int32 SISR;
extern int32 mapen;
extern int32 pcq[PCQ_SIZE];
extern int32 pcq_p;
extern int32 ibcnt, ppc;
extern int32 in_ie;
extern int32 mchk_va, mchk_ref;
extern int32 fault_PC;
extern int32 int_req[IPL_HLVL];
extern UNIT cpu_unit;
extern UNIT clk_unit;
extern jmp_buf save_env;
extern int32 p1;
extern int32 sim_switches;
extern int32 MSER;
extern int32 tmr_poll;
uint32 *rom = NULL; /* boot ROM */
uint32 *nvr = NULL; /* non-volatile mem */
int32 CADR = 0; /* cache disable reg */
int32 MSER = 0; /* mem sys error reg */
int32 conpc, conpsl; /* console reg */
int32 csi_csr = 0; /* control/status */
int32 cso_csr = 0; /* control/status */
int32 cmctl_reg[CMCTLSIZE >> 2] = { 0 }; /* CMCTL reg */
int32 ka_cacr = 0; /* KA655 cache ctl */
int32 ka_bdr = BDR_BRKENB; /* KA655 boot diag */
int32 ssc_base = SSCBASE; /* SSC base */
int32 ssc_cnf = 0; /* SSC conf */
int32 ssc_bto = 0; /* SSC timeout */
int32 ssc_otp = 0; /* SSC output port */
int32 tmr_csr[2] = { 0 }; /* SSC timers */
uint32 tmr_tir[2] = { 0 }; /* curr interval */
uint32 tmr_tnir[2] = { 0 }; /* next interval */
int32 tmr_tivr[2] = { 0 }; /* vector */
uint32 tmr_inc[2] = { 0 }; /* tir increment */
uint32 tmr_sav[2] = { 0 }; /* saved inst cnt */
int32 ssc_adsm[2] = { 0 }; /* addr strobes */
int32 ssc_adsk[2] = { 0 };
int32 cdg_dat[CDASIZE >> 2]; /* cache data */
static uint32 rom_delay = 0;
t_stat rom_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw);
t_stat rom_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw);
t_stat rom_reset (DEVICE *dptr);
t_stat nvr_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw);
t_stat nvr_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw);
t_stat nvr_reset (DEVICE *dptr);
t_stat nvr_attach (UNIT *uptr, char *cptr);
t_stat nvr_detach (UNIT *uptr);
t_stat csi_reset (DEVICE *dptr);
t_stat cso_reset (DEVICE *dptr);
t_stat cso_svc (UNIT *uptr);
t_stat tmr_svc (UNIT *uptr);
t_stat sysd_reset (DEVICE *dptr);
int32 rom_rd (int32 pa);
int32 nvr_rd (int32 pa);
void nvr_wr (int32 pa, int32 val, int32 lnt);
int32 csrs_rd (void);
int32 csrd_rd (void);
int32 csts_rd (void);
void csrs_wr (int32 dat);
void csts_wr (int32 dat);
void cstd_wr (int32 dat);
int32 cmctl_rd (int32 pa);
void cmctl_wr (int32 pa, int32 val, int32 lnt);
int32 ka_rd (int32 pa);
void ka_wr (int32 pa, int32 val, int32 lnt);
int32 cdg_rd (int32 pa);
void cdg_wr (int32 pa, int32 val, int32 lnt);
int32 ssc_rd (int32 pa);
void ssc_wr (int32 pa, int32 val, int32 lnt);
int32 tmr_tir_rd (int32 tmr, t_bool interp);
void tmr_csr_wr (int32 tmr, int32 val);
void tmr_sched (int32 tmr);
void tmr_incr (int32 tmr, uint32 inc);
int32 tmr0_inta (void);
int32 tmr1_inta (void);
int32 parity (int32 val, int32 odd);
t_stat sysd_powerup (void);
extern void Write (uint32 va, int32 val, int32 lnt, int32 acc);
extern int32 intexc (int32 vec, int32 cc, int32 ipl, int ei);
extern int32 cqmap_rd (int32 pa);
extern void cqmap_wr (int32 pa, int32 val, int32 lnt);
extern int32 cqipc_rd (int32 pa);
extern void cqipc_wr (int32 pa, int32 val, int32 lnt);
extern int32 cqbic_rd (int32 pa);
extern void cqbic_wr (int32 pa, int32 val, int32 lnt);
extern int32 cqmem_rd (int32 pa);
extern void cqmem_wr (int32 pa, int32 val, int32 lnt);
extern int32 iccs_rd (void);
extern int32 todr_rd (void);
extern int32 rxcs_rd (void);
extern int32 rxdb_rd (void);
extern int32 txcs_rd (void);
extern void iccs_wr (int32 dat);
extern void todr_wr (int32 dat);
extern void rxcs_wr (int32 dat);
extern void txcs_wr (int32 dat);
extern void txdb_wr (int32 dat);
extern void ioreset_wr (int32 dat);
extern uint32 sim_os_msec();
/* ROM data structures
rom_dev ROM device descriptor
rom_unit ROM units
rom_reg ROM register list
*/
UNIT rom_unit = { UDATA (NULL, UNIT_FIX+UNIT_BINK, ROMSIZE) };
REG rom_reg[] = {
{ NULL }
};
MTAB rom_mod[] = {
{ UNIT_NODELAY, UNIT_NODELAY, "fast access", "NODELAY", NULL },
{ UNIT_NODELAY, 0, "1usec calibrated access", "DELAY", NULL },
{ 0 }
};
DEVICE rom_dev = {
"ROM", &rom_unit, rom_reg, rom_mod,
1, 16, ROMAWIDTH, 4, 16, 32,
&rom_ex, &rom_dep, &rom_reset,
NULL, NULL, NULL,
NULL, 0
};
/* NVR data structures
nvr_dev NVR device descriptor
nvr_unit NVR units
nvr_reg NVR register list
*/
UNIT nvr_unit =
{ UDATA (NULL, UNIT_FIX+UNIT_BINK, NVRSIZE) };
REG nvr_reg[] = {
{ NULL }
};
DEVICE nvr_dev = {
"NVR", &nvr_unit, nvr_reg, NULL,
1, 16, NVRAWIDTH, 4, 16, 32,
&nvr_ex, &nvr_dep, &nvr_reset,
NULL, &nvr_attach, &nvr_detach,
NULL, 0
};
/* CSI data structures
csi_dev CSI device descriptor
csi_unit CSI unit descriptor
csi_reg CSI register list
*/
DIB csi_dib = { 0, 0, NULL, NULL, 1, IVCL (CSI), SCB_CSI, { NULL } };
UNIT csi_unit = { UDATA (NULL, 0, 0), KBD_POLL_WAIT };
REG csi_reg[] = {
{ ORDATA (BUF, csi_unit.buf, 8) },
{ ORDATA (CSR, csi_csr, 16) },
{ FLDATA (INT, int_req[IPL_CSI], INT_V_CSI) },
{ FLDATA (DONE, csi_csr, CSR_V_DONE) },
{ FLDATA (IE, csi_csr, CSR_V_IE) },
{ DRDATA (POS, csi_unit.pos, 32), PV_LEFT },
{ DRDATA (TIME, csi_unit.wait, 24), REG_NZ + PV_LEFT },
{ NULL }
};
MTAB csi_mod[] = {
{ MTAB_XTD|MTAB_VDV, 0, "VECTOR", NULL, NULL, &show_vec },
{ 0 }
};
DEVICE csi_dev = {
"CSI", &csi_unit, csi_reg, csi_mod,
1, 10, 31, 1, 8, 8,
NULL, NULL, &csi_reset,
NULL, NULL, NULL,
&csi_dib, 0
};
/* CSO data structures
cso_dev CSO device descriptor
cso_unit CSO unit descriptor
cso_reg CSO register list
*/
DIB cso_dib = { 0, 0, NULL, NULL, 1, IVCL (CSO), SCB_CSO, { NULL } };
UNIT cso_unit = { UDATA (&cso_svc, UNIT_SEQ+UNIT_ATTABLE, 0), SERIAL_OUT_WAIT };
REG cso_reg[] = {
{ ORDATA (BUF, cso_unit.buf, 8) },
{ ORDATA (CSR, cso_csr, 16) },
{ FLDATA (INT, int_req[IPL_CSO], INT_V_CSO) },
{ FLDATA (DONE, cso_csr, CSR_V_DONE) },
{ FLDATA (IE, cso_csr, CSR_V_IE) },
{ DRDATA (POS, cso_unit.pos, 32), PV_LEFT },
{ DRDATA (TIME, cso_unit.wait, 24), PV_LEFT },
{ NULL }
};
MTAB cso_mod[] = {
{ MTAB_XTD|MTAB_VDV, 0, "VECTOR", NULL, NULL, &show_vec },
{ 0 }
};
DEVICE cso_dev = {
"CSO", &cso_unit, cso_reg, cso_mod,
1, 10, 31, 1, 8, 8,
NULL, NULL, &cso_reset,
NULL, NULL, NULL,
&cso_dib, 0
};
/* SYSD data structures
sysd_dev SYSD device descriptor
sysd_unit SYSD units
sysd_reg SYSD register list
*/
DIB sysd_dib[] = {
0, 0, NULL, NULL,
2, IVCL (TMR0), 0, { &tmr0_inta, &tmr1_inta }
};
UNIT sysd_unit[] = {
{ UDATA (&tmr_svc, 0, 0) },
{ UDATA (&tmr_svc, 0, 0) }
};
REG sysd_reg[] = {
{ HRDATA (CADR, CADR, 8) },
{ HRDATA (MSER, MSER, 8) },
{ HRDATA (CONPC, conpc, 32) },
{ HRDATA (CONPSL, conpsl, 32) },
{ BRDATA (CMCSR, cmctl_reg, 16, 32, CMCTLSIZE >> 2) },
{ HRDATA (CACR, ka_cacr, 8) },
{ HRDATA (BDR, ka_bdr, 8) },
{ HRDATA (BASE, ssc_base, 29) },
{ HRDATA (CNF, ssc_cnf, 32) },
{ HRDATA (BTO, ssc_bto, 32) },
{ HRDATA (OTP, ssc_otp, 4) },
{ HRDATA (TCSR0, tmr_csr[0], 32) },
{ HRDATA (TIR0, tmr_tir[0], 32) },
{ HRDATA (TNIR0, tmr_tnir[0], 32) },
{ HRDATA (TIVEC0, tmr_tivr[0], 9) },
{ HRDATA (TINC0, tmr_inc[0], 32) },
{ HRDATA (TSAV0, tmr_sav[0], 32) },
{ HRDATA (TCSR1, tmr_csr[1], 32) },
{ HRDATA (TIR1, tmr_tir[1], 32) },
{ HRDATA (TNIR1, tmr_tnir[1], 32) },
{ HRDATA (TIVEC1, tmr_tivr[1], 9) },
{ HRDATA (TINC1, tmr_inc[1], 32) },
{ HRDATA (TSAV1, tmr_sav[1], 32) },
{ HRDATA (ADSM0, ssc_adsm[0], 32) },
{ HRDATA (ADSK0, ssc_adsk[0], 32) },
{ HRDATA (ADSM1, ssc_adsm[1], 32) },
{ HRDATA (ADSK1, ssc_adsk[1], 32) },
{ BRDATA (CDGDAT, cdg_dat, 16, 32, CDASIZE >> 2) },
{ NULL }
};
DEVICE sysd_dev = {
"SYSD", sysd_unit, sysd_reg, NULL,
2, 16, 16, 1, 16, 8,
NULL, NULL, &sysd_reset,
NULL, NULL, NULL,
&sysd_dib, 0
};
/* ROM: read only memory - stored in a buffered file
Register space access routines see ROM twice
ROM access has been 'regulated' to about 1Mhz to avoid issues
with testing the interval timers in self-test. Specifically,
the VAX boot ROM (ka655.bin) contains code which presumes that
the VAX runs at a particular slower speed when code is running
from ROM (which is not cached). These assumptions are built
into instruction based timing loops. As the host platform gets
much faster than the original VAX, the assumptions embedded in
these code loops are no longer valid.
Code has been added to the ROM implementation to limit CPU speed
to about 500K instructions per second. This heads off any future
issues with the embedded timing loops.
*/
int32 rom_swapb(int32 val)
{
return ((val << 24) & 0xff000000) | (( val << 8) & 0xff0000) |
((val >> 8) & 0xff00) | ((val >> 24) & 0xff);
}
int32 rom_read_delay (int32 val)
{
uint32 i, l = rom_delay;
int32 loopval = 0;
if (rom_unit.flags & UNIT_NODELAY) return val;
/* Calibrate the loop delay factor when first used.
Do this 4 times to and use the largest value computed. */
if (rom_delay == 0) {
uint32 ts, te, c = 10000, samples = 0;
while (1) {
c = c * 2;
te = sim_os_msec();
while (te == (ts = sim_os_msec ())); /* align on ms tick */
/* This is merely a busy wait with some "work" that won't get optimized
away by a good compiler. loopval always is zero. To avoid smart compilers,
the loopval variable is referenced in the function arguments so that the
function expression is not loop invariant. It also must be referenced
by subsequent code or to avoid the whole computation being eliminated. */
for (i = 0; i < c; i++)
loopval |= (loopval + ts) ^ rom_swapb (rom_swapb (loopval + ts));
te = sim_os_msec ();
if ((te - ts) < 50) continue; /* sample big enough? */
if (rom_delay < (loopval + (c / (te - ts) / 1000) + 1))
rom_delay = loopval + (c / (te - ts) / 1000) + 1;
if (++samples >= 4) break;
c = c / 2;
}
if (rom_delay < 5) rom_delay = 5;
}
for (i = 0; i < l; i++)
loopval |= (loopval + val) ^ rom_swapb (rom_swapb (loopval + val));
return val + loopval;
}
int32 rom_rd (int32 pa)
{
int32 rg = ((pa - ROMBASE) & ROMAMASK) >> 2;
return rom_read_delay (rom[rg]);
}
void rom_wr_B (int32 pa, int32 val)
{
int32 rg = ((pa - ROMBASE) & ROMAMASK) >> 2;
int32 sc = (pa & 3) << 3;
rom[rg] = ((val & 0xFF) << sc) | (rom[rg] & ~(0xFF << sc));
return;
}
/* ROM examine */
t_stat rom_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw)
{
uint32 addr = (uint32) exta;
if ((vptr == NULL) || (addr & 03)) return SCPE_ARG;
if (addr >= ROMSIZE) return SCPE_NXM;
*vptr = rom[addr >> 2];
return SCPE_OK;
}
/* ROM deposit */
t_stat rom_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw)
{
uint32 addr = (uint32) exta;
if (addr & 03) return SCPE_ARG;
if (addr >= ROMSIZE) return SCPE_NXM;
rom[addr >> 2] = (uint32) val;
return SCPE_OK;
}
/* ROM reset */
t_stat rom_reset (DEVICE *dptr)
{
if (rom == NULL) rom = (uint32 *) calloc (ROMSIZE >> 2, sizeof (uint32));
if (rom == NULL) return SCPE_MEM;
return SCPE_OK;
}
/* NVR: non-volatile RAM - stored in a buffered file */
int32 nvr_rd (int32 pa)
{
int32 rg = (pa - NVRBASE) >> 2;
return nvr[rg];
}
void nvr_wr (int32 pa, int32 val, int32 lnt)
{
int32 rg = (pa - NVRBASE) >> 2;
if (lnt < L_LONG) { /* byte or word? */
int32 sc = (pa & 3) << 3; /* merge */
int32 mask = (lnt == L_WORD)? 0xFFFF: 0xFF;
nvr[rg] = ((val & mask) << sc) | (nvr[rg] & ~(mask << sc));
}
else nvr[rg] = val;
return;
}
/* NVR examine */
t_stat nvr_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw)
{
uint32 addr = (uint32) exta;
if ((vptr == NULL) || (addr & 03)) return SCPE_ARG;
if (addr >= NVRSIZE) return SCPE_NXM;
*vptr = nvr[addr >> 2];
return SCPE_OK;
}
/* NVR deposit */
t_stat nvr_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw)
{
uint32 addr = (uint32) exta;
if (addr & 03) return SCPE_ARG;
if (addr >= NVRSIZE) return SCPE_NXM;
nvr[addr >> 2] = (uint32) val;
return SCPE_OK;
}
/* NVR reset */
t_stat nvr_reset (DEVICE *dptr)
{
if (nvr == NULL) {
nvr = (uint32 *) calloc (NVRSIZE >> 2, sizeof (uint32));
nvr_unit.filebuf = nvr;
ssc_cnf = ssc_cnf | SSCCNF_BLO;
}
if (nvr == NULL) return SCPE_MEM;
return SCPE_OK;
}
/* NVR attach */
t_stat nvr_attach (UNIT *uptr, char *cptr)
{
t_stat r;
uptr->flags = uptr->flags | (UNIT_ATTABLE | UNIT_BUFABLE);
r = attach_unit (uptr, cptr);
if (r != SCPE_OK)
uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE);
else {
uptr->hwmark = (uint32) uptr->capac;
ssc_cnf = ssc_cnf & ~SSCCNF_BLO;
}
return r;
}
/* NVR detach */
t_stat nvr_detach (UNIT *uptr)
{
t_stat r;
r = detach_unit (uptr);
if ((uptr->flags & UNIT_ATT) == 0)
uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE);
return r;
}
/* CSI: console storage input */
int32 csrs_rd (void)
{
return (csi_csr & CSICSR_IMP);
}
int32 csrd_rd (void)
{
csi_csr = csi_csr & ~CSR_DONE;
CLR_INT (CSI);
return (csi_unit.buf & 0377);
}
void csrs_wr (int32 data)
{
if ((data & CSR_IE) == 0) CLR_INT (CSI);
else if ((csi_csr & (CSR_DONE + CSR_IE)) == CSR_DONE)
SET_INT (CSI);
csi_csr = (csi_csr & ~CSICSR_RW) | (data & CSICSR_RW);
return;
}
t_stat csi_reset (DEVICE *dptr)
{
csi_unit.buf = 0;
csi_csr = 0;
CLR_INT (CSI);
return SCPE_OK;
}
/* CSO: console storage output */
int32 csts_rd (void)
{
return (cso_csr & CSOCSR_IMP);
}
void csts_wr (int32 data)
{
if ((data & CSR_IE) == 0) CLR_INT (CSO);
else if ((cso_csr & (CSR_DONE + CSR_IE)) == CSR_DONE)
SET_INT (CSO);
cso_csr = (cso_csr & ~CSOCSR_RW) | (data & CSOCSR_RW);
return;
}
void cstd_wr (int32 data)
{
cso_unit.buf = data & 0377;
cso_csr = cso_csr & ~CSR_DONE;
CLR_INT (CSO);
sim_activate (&cso_unit, cso_unit.wait);
return;
}
t_stat cso_svc (UNIT *uptr)
{
cso_csr = cso_csr | CSR_DONE;
if (cso_csr & CSR_IE) SET_INT (CSO);
if ((cso_unit.flags & UNIT_ATT) == 0) return SCPE_OK;
if (putc (cso_unit.buf, cso_unit.fileref) == EOF) {
perror ("CSO I/O error");
clearerr (cso_unit.fileref);
return SCPE_IOERR;
}
cso_unit.pos = cso_unit.pos + 1;
return SCPE_OK;
}
t_stat cso_reset (DEVICE *dptr)
{
cso_unit.buf = 0;
cso_csr = CSR_DONE;
CLR_INT (CSO);
sim_cancel (&cso_unit); /* deactivate unit */
return SCPE_OK;
}
/* SYSD: SSC access mechanisms and devices
- IPR space read/write routines
- register space read/write routines
- SSC local register read/write routines
- SSC console storage UART
- SSC timers
- CMCTL local register read/write routines
*/
/* Read/write IPR register space
These routines implement the SSC's response to IPR's which are
sent off the CPU chip for processing.
*/
int32 ReadIPR (int32 rg)
{
int32 val;
switch (rg) {
case MT_ICCS: /* ICCS */
val = iccs_rd ();
break;
case MT_CSRS: /* CSRS */
val = csrs_rd ();
break;
case MT_CSRD: /* CSRD */
val = csrd_rd ();
break;
case MT_CSTS: /* CSTS */
val = csts_rd ();
break;
case MT_CSTD: /* CSTD */
val = 0;
break;
case MT_RXCS: /* RXCS */
val = rxcs_rd ();
break;
case MT_RXDB: /* RXDB */
val = rxdb_rd ();
break;
case MT_TXCS: /* TXCS */
val = txcs_rd ();
break;
case MT_TXDB: /* TXDB */
val = 0;
break;
case MT_TODR: /* TODR */
val = todr_rd ();
break;
case MT_CADR: /* CADR */
val = CADR & 0xFF;
break;
case MT_MSER: /* MSER */
val = MSER & 0xFF;
break;
case MT_CONPC: /* console PC */
val = conpc;
break;
case MT_CONPSL: /* console PSL */
val = conpsl;
break;
case MT_SID: /* SID */
val = CVAX_SID | CVAX_UREV;
break;
default:
ssc_bto = ssc_bto | SSCBTO_BTO; /* set BTO */
val = 0;
break;
}
return val;
}
void WriteIPR (int32 rg, int32 val)
{
switch (rg) {
case MT_ICCS: /* ICCS */
iccs_wr (val);
break;
case MT_TODR: /* TODR */
todr_wr (val);
break;
case MT_CSRS: /* CSRS */
csrs_wr (val);
break;
case MT_CSRD: /* CSRD */
break;
case MT_CSTS: /* CSTS */
csts_wr (val);
break;
case MT_CSTD: /* CSTD */
cstd_wr (val);
break;
case MT_RXCS: /* RXCS */
rxcs_wr (val);
break;
case MT_RXDB: /* RXDB */
break;
case MT_TXCS: /* TXCS */
txcs_wr (val);
break;
case MT_TXDB: /* TXDB */
txdb_wr (val);
break;
case MT_CADR: /* CADR */
CADR = (val & CADR_RW) | CADR_MBO;
break;
case MT_MSER: /* MSER */
MSER = MSER & MSER_HM;
break;
case MT_IORESET: /* IORESET */
ioreset_wr (val);
break;
case MT_SID:
case MT_CONPC:
case MT_CONPSL: /* halt reg */
RSVD_OPND_FAULT;
default:
ssc_bto = ssc_bto | SSCBTO_BTO; /* set BTO */
break;
}
return;
}
/* Read/write I/O register space
These routines are the 'catch all' for address space map. Any
address that doesn't explicitly belong to memory, I/O, or ROM
is given to these routines for processing.
*/
struct reglink { /* register linkage */
uint32 low; /* low addr */
uint32 high; /* high addr */
t_stat (*read)(int32 pa); /* read routine */
void (*write)(int32 pa, int32 val, int32 lnt); /* write routine */
};
struct reglink regtable[] = {
{ CQMAPBASE, CQMAPBASE+CQMAPSIZE, &cqmap_rd, &cqmap_wr },
{ ROMBASE, ROMBASE+ROMSIZE+ROMSIZE, &rom_rd, NULL },
{ NVRBASE, NVRBASE+NVRSIZE, &nvr_rd, &nvr_wr },
{ CMCTLBASE, CMCTLBASE+CMCTLSIZE, &cmctl_rd, &cmctl_wr },
{ SSCBASE, SSCBASE+SSCSIZE, &ssc_rd, &ssc_wr },
{ KABASE, KABASE+KASIZE, &ka_rd, &ka_wr },
{ CQBICBASE, CQBICBASE+CQBICSIZE, &cqbic_rd, &cqbic_wr },
{ CQIPCBASE, CQIPCBASE+CQIPCSIZE, &cqipc_rd, &cqipc_wr },
{ CQMBASE, CQMBASE+CQMSIZE, &cqmem_rd, &cqmem_wr },
{ CDGBASE, CDGBASE+CDGSIZE, &cdg_rd, &cdg_wr },
{ 0, 0, NULL, NULL }
};
/* ReadReg - read register space
Inputs:
pa = physical address
lnt = length (BWLQ) - ignored
Output:
longword of data
*/
int32 ReadReg (uint32 pa, int32 lnt)
{
struct reglink *p;
for (p = &regtable[0]; p->low != 0; p++) {
if ((pa >= p->low) && (pa < p->high) && p->read)
return p->read (pa);
}
ssc_bto = ssc_bto | SSCBTO_BTO | SSCBTO_RWT;
MACH_CHECK (MCHK_READ);
return 0;
}
/* WriteReg - write register space
Inputs:
pa = physical address
val = data to write, right justified in 32b longword
lnt = length (BWLQ)
Outputs:
none
*/
void WriteReg (uint32 pa, int32 val, int32 lnt)
{
struct reglink *p;
for (p = &regtable[0]; p->low != 0; p++) {
if ((pa >= p->low) && (pa < p->high) && p->write) {
p->write (pa, val, lnt);
return;
}
}
ssc_bto = ssc_bto | SSCBTO_BTO | SSCBTO_RWT;
MACH_CHECK (MCHK_WRITE);
return;
}
/* CMCTL registers
CMCTL00 - 15 configure memory banks 00 - 15. Note that they are
here merely to entertain the firmware; the actual configuration
of memory is unaffected by the settings here.
CMCTL16 - error status register
CMCTL17 - control/diagnostic status register
The CMCTL registers are cleared at power up.
*/
int32 cmctl_rd (int32 pa)
{
int32 rg = (pa - CMCTLBASE) >> 2;
switch (rg) {
default: /* config reg */
return cmctl_reg[rg] & CMCNF_MASK;
case 16: /* err status */
return cmctl_reg[rg];
case 17: /* csr */
return cmctl_reg[rg] & CMCSR_MASK;
case 18: /* KA655X ext mem */
if (MEMSIZE > MAXMEMSIZE) /* more than 128MB? */
return ((int32) MEMSIZE);
MACH_CHECK (MCHK_READ);
}
return 0;
}
void cmctl_wr (int32 pa, int32 val, int32 lnt)
{
int32 i, rg = (pa - CMCTLBASE) >> 2;
if (lnt < L_LONG) { /* LW write only */
int32 sc = (pa & 3) << 3; /* shift data to */
val = val << sc; /* proper location */
}
switch (rg) {
default: /* config reg */
if (val & CMCNF_SRQ) { /* sig request? */
int32 rg_g = rg & ~3; /* group of 4 */
for (i = rg_g; i < (rg_g + 4); i++) {
cmctl_reg[i] = cmctl_reg[i] & ~CMCNF_SIG;
if (ADDR_IS_MEM (i * MEM_BANK))
cmctl_reg[i] = cmctl_reg[i] | MEM_SIG;
}
}
cmctl_reg[rg] = (cmctl_reg[rg] & ~CMCNF_RW) | (val & CMCNF_RW);
break;
case 16: /* err status */
cmctl_reg[rg] = cmctl_reg[rg] & ~(val & CMERR_W1C);
break;
case 17: /* csr */
cmctl_reg[rg] = val & CMCSR_MASK;
break;
case 18:
MACH_CHECK (MCHK_WRITE);
}
return;
}
/* KA655 registers */
int32 ka_rd (int32 pa)
{
int32 rg = (pa - KABASE) >> 2;
switch (rg) {
case 0: /* CACR */
return ka_cacr;
case 1: /* BDR */
return ka_bdr;
}
return 0;
}
void ka_wr (int32 pa, int32 val, int32 lnt)
{
int32 rg = (pa - KABASE) >> 2;
if ((rg == 0) && ((pa & 3) == 0)) { /* lo byte only */
ka_cacr = (ka_cacr & ~(val & CACR_W1C)) | CACR_FIXED;
ka_cacr = (ka_cacr & ~CACR_RW) | (val & CACR_RW);
}
return;
}
int32 sysd_hlt_enb (void)
{
return ka_bdr & BDR_BRKENB;
}
/* Cache diagnostic space */
int32 cdg_rd (int32 pa)
{
int32 t, row = CDG_GETROW (pa);
t = cdg_dat[row];
ka_cacr = ka_cacr & ~CACR_DRO; /* clear diag */
ka_cacr = ka_cacr |
(parity ((t >> 24) & 0xFF, 1) << (CACR_V_DPAR + 3)) |
(parity ((t >> 16) & 0xFF, 0) << (CACR_V_DPAR + 2)) |
(parity ((t >> 8) & 0xFF, 1) << (CACR_V_DPAR + 1)) |
(parity (t & 0xFF, 0) << CACR_V_DPAR);
return t;
}
void cdg_wr (int32 pa, int32 val, int32 lnt)
{
int32 row = CDG_GETROW (pa);
if (lnt < L_LONG) { /* byte or word? */
int32 sc = (pa & 3) << 3; /* merge */
int32 mask = (lnt == L_WORD)? 0xFFFF: 0xFF;
int32 t = cdg_dat[row];
val = ((val & mask) << sc) | (t & ~(mask << sc));
}
cdg_dat[row] = val; /* store data */
return;
}
int32 parity (int32 val, int32 odd)
{
for ( ; val != 0; val = val >> 1) {
if (val & 1) odd = odd ^ 1;
}
return odd;
}
/* SSC registers - byte/word merges done in WriteReg */
int32 ssc_rd (int32 pa)
{
int32 rg = (pa - SSCBASE) >> 2;
switch (rg) {
case 0x00: /* base reg */
return ssc_base;
case 0x04: /* conf reg */
return ssc_cnf;
case 0x08: /* bus timeout */
return ssc_bto;
case 0x0C: /* output port */
return ssc_otp & SSCOTP_MASK;
case 0x1B: /* TODR */
return todr_rd ();
case 0x1C: /* CSRS */
return csrs_rd ();
case 0x1D: /* CSRD */
return csrd_rd ();
case 0x1E: /* CSTS */
return csts_rd ();
case 0x20: /* RXCS */
return rxcs_rd ();
case 0x21: /* RXDB */
return rxdb_rd ();
case 0x22: /* TXCS */
return txcs_rd ();
case 0x40: /* T0CSR */
return tmr_csr[0];
case 0x41: /* T0INT */
return tmr_tir_rd (0, FALSE);
case 0x42: /* T0NI */
return tmr_tnir[0];
case 0x43: /* T0VEC */
return tmr_tivr[0];
case 0x44: /* T1CSR */
return tmr_csr[1];
case 0x45: /* T1INT */
return tmr_tir_rd (1, FALSE);
case 0x46: /* T1NI */
return tmr_tnir[1];
case 0x47: /* T1VEC */
return tmr_tivr[1];
case 0x4C: /* ADS0M */
return ssc_adsm[0];
case 0x4D: /* ADS0K */
return ssc_adsk[0];
case 0x50: /* ADS1M */
return ssc_adsm[1];
case 0x51: /* ADS1K */
return ssc_adsk[1];
}
return 0;
}
void ssc_wr (int32 pa, int32 val, int32 lnt)
{
int32 rg = (pa - SSCBASE) >> 2;
if (lnt < L_LONG) { /* byte or word? */
int32 sc = (pa & 3) << 3; /* merge */
int32 mask = (lnt == L_WORD)? 0xFFFF: 0xFF;
int32 t = ssc_rd (pa);
val = ((val & mask) << sc) | (t & ~(mask << sc));
}
switch (rg) {
case 0x00: /* base reg */
ssc_base = (val & SSCBASE_RW) | SSCBASE_MBO;
break;
case 0x04: /* conf reg */
ssc_cnf = ssc_cnf & ~(val & SSCCNF_W1C);
ssc_cnf = (ssc_cnf & ~SSCCNF_RW) | (val & SSCCNF_RW);
break;
case 0x08: /* bus timeout */
ssc_bto = ssc_bto & ~(val & SSCBTO_W1C);
ssc_bto = (ssc_bto & ~SSCBTO_RW) | (val & SSCBTO_RW);
break;
case 0x0C: /* output port */
ssc_otp = val & SSCOTP_MASK;
break;
case 0x1B: /* TODR */
todr_wr (val);
break;
case 0x1C: /* CSRS */
csrs_wr (val);
break;
case 0x1E: /* CSTS */
csts_wr (val);
break;
case 0x1F: /* CSTD */
cstd_wr (val);
break;
case 0x20: /* RXCS */
rxcs_wr (val);
break;
case 0x22: /* TXCS */
txcs_wr (val);
break;
case 0x23: /* TXDB */
txdb_wr (val);
break;
case 0x40: /* T0CSR */
tmr_csr_wr (0, val);
break;
case 0x42: /* T0NI */
tmr_tnir[0] = val;
break;
case 0x43: /* T0VEC */
tmr_tivr[0] = val & TMR_VEC_MASK;
break;
case 0x44: /* T1CSR */
tmr_csr_wr (1, val);
break;
case 0x46: /* T1NI */
tmr_tnir[1] = val;
break;
case 0x47: /* T1VEC */
tmr_tivr[1] = val & TMR_VEC_MASK;
break;
case 0x4C: /* ADS0M */
ssc_adsm[0] = val & SSCADS_MASK;
break;
case 0x4D: /* ADS0K */
ssc_adsk[0] = val & SSCADS_MASK;
break;
case 0x50: /* ADS1M */
ssc_adsm[1] = val & SSCADS_MASK;
break;
case 0x51: /* ADS1K */
ssc_adsk[1] = val & SSCADS_MASK;
break;
}
return;
}
/* Programmable timers
The SSC timers, which increment at 1Mhz, cannot be accurately
simulated due to the overhead that would be required for 1M
clock events per second. Instead, a gross hack is used. When
a timer is started, the clock interval is inspected.
if (int < 0 and small) then testing timer, count instructions.
Small is determined by when the requested interval is less
than the size of a 100hz system clock tick.
if (int >= 0 or large) then counting a real interval, schedule
clock events at 100Hz using calibrated line clock delay
and when the remaining time value gets small enough, behave
like the small case above.
If the interval register is read, then its value between events
is interpolated using the current instruction count versus the
count when the most recent event started, the result is scaled
to the calibrated system clock, unless the interval being timed
is less than a calibrated system clock tick (or the calibrated
clock is running very slowly) at which time the result will be
the elapsed instruction count.
The powerup TOY Test sometimes fails its tolerance test. This was
due to varying system load causing varying calibration values to be
used at different times while referencing the TIR. While timing long
intervals, we now synchronize the stepping (and calibration) of the
system tick with the opportunity to reference the value. This gives
precise tolerance measurement values (when interval timers are used
to measure the system clock), regardless of other load issues on the
host system which might cause varying values of the system clock's
calibration factor.
*/
int32 tmr_tir_rd (int32 tmr, t_bool interp)
{
uint32 delta;
if (interp || (tmr_csr[tmr] & TMR_CSR_RUN)) { /* interp, running? */
delta = sim_grtime () - tmr_sav[tmr]; /* delta inst */
if ((tmr_inc[tmr] == TMR_INC) && /* scale large int */
(tmr_poll > TMR_INC))
delta = (uint32) ((((double) delta) * TMR_INC) / tmr_poll);
if (delta >= tmr_inc[tmr]) delta = tmr_inc[tmr] - 1;
return tmr_tir[tmr] + delta;
}
return tmr_tir[tmr];
}
void tmr_csr_wr (int32 tmr, int32 val)
{
if ((tmr < 0) || (tmr > 1)) return;
if ((val & TMR_CSR_RUN) == 0) { /* clearing run? */
sim_cancel (&sysd_unit[tmr]); /* cancel timer */
if (tmr_csr[tmr] & TMR_CSR_RUN) /* run 1 -> 0? */
tmr_tir[tmr] = tmr_tir_rd (tmr, TRUE); /* update itr */
}
tmr_csr[tmr] = tmr_csr[tmr] & ~(val & TMR_CSR_W1C); /* W1C csr */
tmr_csr[tmr] = (tmr_csr[tmr] & ~TMR_CSR_RW) | /* new r/w */
(val & TMR_CSR_RW);
if (val & TMR_CSR_XFR) tmr_tir[tmr] = tmr_tnir[tmr]; /* xfr set? */
if (val & TMR_CSR_RUN) { /* run? */
if (val & TMR_CSR_XFR) /* new tir? */
sim_cancel (&sysd_unit[tmr]); /* stop prev */
if (!sim_is_active (&sysd_unit[tmr])) /* not running? */
tmr_sched (tmr); /* activate */
}
else if (val & TMR_CSR_SGL) { /* single step? */
tmr_incr (tmr, 1); /* incr tmr */
if (tmr_tir[tmr] == 0) /* if ovflo, */
tmr_tir[tmr] = tmr_tnir[tmr]; /* reload tir */
}
if ((tmr_csr[tmr] & (TMR_CSR_DON | TMR_CSR_IE)) != /* update int */
(TMR_CSR_DON | TMR_CSR_IE)) {
if (tmr) CLR_INT (TMR1);
else CLR_INT (TMR0);
}
return;
}
/* Unit service */
t_stat tmr_svc (UNIT *uptr)
{
int32 tmr = uptr - sysd_dev.units; /* get timer # */
tmr_incr (tmr, tmr_inc[tmr]); /* incr timer */
return SCPE_OK;
}
/* Timer increment */
void tmr_incr (int32 tmr, uint32 inc)
{
uint32 new_tir = tmr_tir[tmr] + inc; /* add incr */
if (new_tir < tmr_tir[tmr]) { /* ovflo? */
tmr_tir[tmr] = 0; /* now 0 */
if (tmr_csr[tmr] & TMR_CSR_DON) /* done? set err */
tmr_csr[tmr] = tmr_csr[tmr] | TMR_CSR_ERR;
else tmr_csr[tmr] = tmr_csr[tmr] | TMR_CSR_DON; /* set done */
if (tmr_csr[tmr] & TMR_CSR_STP) /* stop? */
tmr_csr[tmr] = tmr_csr[tmr] & ~TMR_CSR_RUN; /* clr run */
if (tmr_csr[tmr] & TMR_CSR_RUN) { /* run? */
tmr_tir[tmr] = tmr_tnir[tmr]; /* reload */
tmr_sched (tmr); /* reactivate */
}
if (tmr_csr[tmr] & TMR_CSR_IE) { /* set int req */
if (tmr) SET_INT (TMR1);
else SET_INT (TMR0);
}
}
else {
tmr_tir[tmr] = new_tir; /* no, upd tir */
if (tmr_csr[tmr] & TMR_CSR_RUN) /* still running? */
tmr_sched (tmr); /* reactivate */
}
return;
}
/* Timer scheduling */
void tmr_sched (int32 tmr)
{
int32 clk_time = sim_is_active (&clk_unit) - 1;
int32 tmr_time;
tmr_sav[tmr] = sim_grtime (); /* save intvl base */
if (tmr_tir[tmr] > (0xFFFFFFFFu - TMR_INC)) { /* short interval? */
tmr_inc[tmr] = (~tmr_tir[tmr] + 1); /* inc = interval */
tmr_time = tmr_inc[tmr];
}
else {
tmr_inc[tmr] = TMR_INC; /* usec/interval */
tmr_time = tmr_poll;
}
if (tmr_time == 0) tmr_time = 1;
if ((tmr_inc[tmr] == TMR_INC) && (tmr_time > clk_time)) {
/* Align scheduled event to be identical to the event for the next clock
tick. This lets us always see a consistent calibrated value, both for
this scheduling, AND for any query of the current timer register that
may happen in tmr_tir_rd (). This presumes that sim_activate will
queue the interval timer behind the event for the clock tick. */
tmr_inc[tmr] = (uint32) (((double) clk_time * TMR_INC) / tmr_poll);
tmr_time = clk_time;
}
sim_activate (&sysd_unit[tmr], tmr_time);
return;
}
int32 tmr0_inta (void)
{
return tmr_tivr[0];
}
int32 tmr1_inta (void)
{
return tmr_tivr[1];
}
/* Machine check */
int32 machine_check (int32 p1, int32 opc, int32 cc, int32 delta)
{
int32 i, st1, st2, p2, hsir, acc;
if (p1 & 0x80) p1 = p1 + mchk_ref; /* mref? set v/p */
p2 = mchk_va + 4; /* save vap */
for (i = hsir = 0; i < 16; i++) { /* find hsir */
if ((SISR >> i) & 1) hsir = i;
}
st1 = ((((uint32) opc) & 0xFF) << 24) |
(hsir << 16) |
((CADR & 0xFF) << 8) |
(MSER & 0xFF);
st2 = 0x00C07000 + (delta & 0xFF);
cc = intexc (SCB_MCHK, cc, 0, IE_SVE); /* take exception */
acc = ACC_MASK (KERN); /* in kernel mode */
in_ie = 1;
SP = SP - 20; /* push 5 words */
Write (SP, 16, L_LONG, WA); /* # bytes */
Write (SP + 4, p1, L_LONG, WA); /* mcheck type */
Write (SP + 8, p2, L_LONG, WA); /* address */
Write (SP + 12, st1, L_LONG, WA); /* state 1 */
Write (SP + 16, st2, L_LONG, WA); /* state 2 */
in_ie = 0;
return cc;
}
/* Console entry */
int32 con_halt (int32 code, int32 cc)
{
int32 temp;
conpc = PC; /* save PC */
conpsl = ((PSL | cc) & 0xFFFF00FF) | CON_HLTINS; /* PSL, param */
temp = (PSL >> PSL_V_CUR) & 0x7; /* get is'cur */
if (temp > 4) conpsl = conpsl | CON_BADPSL; /* invalid? */
else STK[temp] = SP; /* save stack */
if (mapen) conpsl = conpsl | CON_MAPON; /* mapping on? */
mapen = 0; /* turn off map */
SP = IS; /* set SP from IS */
PSL = PSL_IS | PSL_IPL1F; /* PSL = 41F0000 */
JUMP (ROMBASE); /* PC = 20040000 */
return 0; /* new cc = 0 */
}
/* Bootstrap */
t_stat cpu_boot (int32 unitno, DEVICE *dptr)
{
extern t_stat load_cmd (int32 flag, char *cptr);
extern FILE *sim_log;
t_stat r;
PC = ROMBASE;
PSL = PSL_IS | PSL_IPL1F;
conpc = 0;
conpsl = PSL_IS | PSL_IPL1F | CON_PWRUP;
if (rom == NULL) return SCPE_IERR;
if (*rom == 0) { /* no boot? */
printf ("Loading boot code from ka655x.bin\n");
if (sim_log) fprintf (sim_log,
"Loading boot code from ka655x.bin\n");
r = load_cmd (0, "-R ka655x.bin");
if (r != SCPE_OK) return r;
}
return SCPE_OK;
}
/* SYSD reset */
t_stat sysd_reset (DEVICE *dptr)
{
int32 i;
if (sim_switches & SWMASK ('P')) sysd_powerup (); /* powerup? */
for (i = 0; i < 2; i++) {
tmr_csr[i] = tmr_tnir[i] = tmr_tir[i] = 0;
tmr_inc[i] = tmr_sav[i] = 0;
sim_cancel (&sysd_unit[i]);
}
csi_csr = 0;
csi_unit.buf = 0;
sim_cancel (&csi_unit);
CLR_INT (CSI);
cso_csr = CSR_DONE;
cso_unit.buf = 0;
sim_cancel (&cso_unit);
CLR_INT (CSO);
return SCPE_OK;
}
/* SYSD powerup */
t_stat sysd_powerup (void)
{
int32 i;
for (i = 0; i < (CMCTLSIZE >> 2); i++) cmctl_reg[i] = 0;
for (i = 0; i < 2; i++) {
tmr_tivr[i] = 0;
ssc_adsm[i] = ssc_adsk[i] = 0;
}
ka_cacr = 0;
ssc_base = SSCBASE;
ssc_cnf = ssc_cnf & SSCCNF_BLO;
ssc_bto = 0;
ssc_otp = 0;
return SCPE_OK;
}