/* vax_octa.c - VAX octaword and h_floating instructions | |
Copyright (c) 2004-2005, Robert M Supnik | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name of Robert M Supnik shall not be | |
used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from Robert M Supnik. | |
This module simulates the VAX h_floating instruction set. | |
15-Jul-04 RMS Cloned from 32b VAX floating point implementation | |
*/ | |
#include "vax_defs.h" | |
#if defined (FULL_VAX) | |
extern int32 R[16]; | |
extern int32 PSL; | |
extern int32 trpirq; | |
extern int32 p1; | |
extern jmp_buf save_env; | |
extern int32 Read (uint32 va, int32 size, int32 acc); | |
extern void Write (uint32 va, int32 val, int32 lnt, int32 acc); | |
extern int32 Test (uint32 va, int32 acc, int32 *status); | |
#define WORDSWAP(x) ((((x) & WMASK) << 16) | (((x) >> 16) & WMASK)) | |
typedef struct { | |
uint32 f0; /* low */ | |
uint32 f1; | |
uint32 f2; | |
uint32 f3; /* high */ | |
} UQP; | |
typedef struct { | |
int32 sign; | |
int32 exp; | |
UQP frac; | |
} UFPH; | |
#define UH_NM_H 0x80000000 /* normalized */ | |
#define UH_FRND 0x00000080 /* F round */ | |
#define UH_DRND 0x00000080 /* D round */ | |
#define UH_GRND 0x00000400 /* G round */ | |
#define UH_HRND 0x00004000 /* H round */ | |
#define UH_V_NM 127 | |
int32 op_tsth (int32 val); | |
int32 op_cmph (int32 *hf1, int32 *hf2); | |
int32 op_cvtih (int32 val, int32 *hf); | |
int32 op_cvthi (int32 *hf, int32 *flg, int32 opc); | |
int32 op_cvtfdh (int32 vl, int32 vh, int32 *hf); | |
int32 op_cvtgh (int32 vl, int32 vh, int32 *hf); | |
int32 op_cvthfd (int32 *hf, int32 *vh); | |
int32 op_cvthg (int32 *hf, int32 *vh); | |
int32 op_addh (int32 *opnd, int32 *hf, t_bool sub); | |
int32 op_mulh (int32 *opnd, int32 *hf); | |
int32 op_divh (int32 *opnd, int32 *hf); | |
int32 op_emodh (int32 *opnd, int32 *hflt, int32 *intgr, int32 *flg); | |
void op_polyh (int32 *opnd, int32 acc); | |
void h_write_b (int32 spec, int32 va, int32 val, int32 acc); | |
void h_write_w (int32 spec, int32 va, int32 val, int32 acc); | |
void h_write_l (int32 spec, int32 va, int32 val, int32 acc); | |
void h_write_q (int32 spec, int32 va, int32 vl, int32 vh, int32 acc); | |
void h_write_o (int32 spec, int32 va, int32 *val, int32 acc); | |
void vax_hadd (UFPH *a, UFPH *b); | |
void vax_hmul (UFPH *a, UFPH *b); | |
void vax_hmod (UFPH *a, int32 *intgr, int32 *flg); | |
void vax_hdiv (UFPH *a, UFPH *b); | |
void qp_add (UQP *a, UQP *b); | |
void qp_inc (UQP *a); | |
void qp_lsh (UQP *a, uint32 sc); | |
void qp_rsh (UQP *a, uint32 sc); | |
void qp_rsh_s (UQP *a, uint32 sc, uint32 neg); | |
void qp_neg (UQP *a); | |
int32 qp_cmp (UQP *a, UQP *b); | |
void h_unpackfd (int32 hi, int32 lo, UFPH *a); | |
void h_unpackg (int32 hi, int32 lo, UFPH *a); | |
void h_unpackh (int32 *hflt, UFPH *a); | |
void h_normh (UFPH *a); | |
int32 h_rpackfd (UFPH *a, int32 *rl); | |
int32 h_rpackg (UFPH *a, int32 *rl); | |
int32 h_rpackh (UFPH *a, int32 *hflt); | |
static int32 z_octa[4] = { 0, 0, 0, 0 }; | |
/* Octaword instructions */ | |
int32 op_octa (int32 *opnd, int32 cc, int32 opc, int32 acc, int32 spec, int32 va) | |
{ | |
int32 r, rh, temp, flg; | |
int32 r_octa[4]; | |
switch (opc) { | |
/* PUSHAO | |
opnd[0] = src.ao | |
*/ | |
case PUSHAO: | |
Write (SP - 4, opnd[0], L_LONG, WA); /* push operand */ | |
SP = SP - 4; /* decr stack ptr */ | |
CC_IIZP_L (opnd[0]); /* set cc's */ | |
break; | |
/* MOVAO | |
opnd[0] = src.ro | |
opnd[1:2] = dst.wl | |
spec = last specifier | |
va = address if last specifier is memory | |
*/ | |
case MOVAO: | |
h_write_l (spec, va, opnd[0], acc); /* write operand */ | |
CC_IIZP_L (opnd[0]); /* set cc's */ | |
break; | |
/* CLRO | |
opnd[0:1] = dst.wl | |
spec = last specifier | |
va = address if last specifier is memory | |
*/ | |
case CLRO: | |
h_write_o (spec, va, z_octa, acc); /* write 0's */ | |
CC_ZZ1P; /* set cc's */ | |
break; | |
/* TSTH | |
opnd[0:3] = src.rh | |
*/ | |
case TSTH: | |
r = op_tsth (opnd[0]); /* test for 0 */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
break; | |
/* MOVO, MOVH, MNEGH | |
opnd[0:3] = src.ro | |
opnd[4:5] = dst.wo | |
spec = last specifier | |
va = address if last specifier is memory | |
*/ | |
case MOVO: | |
h_write_o (spec, va, opnd, acc); /* write src */ | |
CC_IIZP_O (opnd[0], opnd[1], opnd[2], opnd[3]); /* set cc's */ | |
break; | |
case MOVH: | |
if (r = op_tsth (opnd[0])) /* test for 0 */ | |
h_write_o (spec, va, opnd, acc); /* nz, write result */ | |
else h_write_o (spec, va, z_octa, acc); /* zero, write 0 */ | |
CC_IIZP_FP (r); /* set cc's */ | |
break; | |
case MNEGH: | |
if (r = op_tsth (opnd[0])) { /* test for 0 */ | |
opnd[0] = opnd[0] ^ FPSIGN; /* nz, invert sign */ | |
h_write_o (spec, va, opnd, acc); /* write result */ | |
} | |
else h_write_o (spec, va, z_octa, acc); /* zero, write 0 */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
break; | |
/* CMPH | |
opnd[0:3] = src1.rh | |
opnd[4:7] = src2.rh | |
*/ | |
case CMPH: | |
cc = op_cmph (opnd + 0, opnd + 4); /* set cc's */ | |
break; | |
/* CVTBH, CVTWH, CVTLH | |
opnd[0] = src.rx | |
opnd[1:2] = dst.wh | |
spec = last specifier | |
va = address if last specifier is memory | |
*/ | |
case CVTBH: | |
r = op_cvtih (SXTB (opnd[0]), r_octa); /* convert */ | |
h_write_o (spec, va, r_octa, acc); /* write reslt */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
break; | |
case CVTWH: | |
r = op_cvtih (SXTW (opnd[0]), r_octa); /* convert */ | |
h_write_o (spec, va, r_octa, acc); /* write result */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
break; | |
case CVTLH: | |
r = op_cvtih (opnd[0], r_octa); /* convert */ | |
h_write_o (spec, va, r_octa, acc); /* write result */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
break; | |
/* CVTHB, CVTHW, CVTHL, CVTRHL | |
opnd[0:3] = src.rh | |
opnd[4:5] = dst.wx | |
spec = last specifier | |
va = address if last specifier is memory | |
*/ | |
case CVTHB: | |
r = op_cvthi (opnd, &flg, opc) & BMASK; /* convert */ | |
h_write_b (spec, va, r, acc); /* write result */ | |
CC_IIZZ_B (r); /* set cc's */ | |
if (flg) { V_INTOV; } | |
break; | |
case CVTHW: | |
r = op_cvthi (opnd, &flg, opc) & WMASK; /* convert */ | |
h_write_w (spec, va, r, acc); /* write result */ | |
CC_IIZZ_W (r); /* set cc's */ | |
if (flg) { V_INTOV; } | |
break; | |
case CVTHL: case CVTRHL: | |
r = op_cvthi (opnd, &flg, opc) & LMASK; /* convert */ | |
h_write_l (spec, va, r, acc); /* write result */ | |
CC_IIZZ_L (r); /* set cc's */ | |
if (flg) { V_INTOV; } | |
break; | |
/* CVTFH | |
opnd[0] = src.rf | |
opnd[1:2] = dst.wh | |
spec = last specifier | |
va = address if last specifier is memory | |
*/ | |
case CVTFH: | |
r = op_cvtfdh (opnd[0], 0, r_octa); /* convert */ | |
h_write_o (spec, va, r_octa, acc); /* write result */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
break; | |
/* CVTDH, CVTGH | |
opnd[0:1] = src.rx | |
opnd[2:3] = dst.wh | |
spec = last specifier | |
va = address if last specifier is memory | |
*/ | |
case CVTDH: | |
r = op_cvtfdh (opnd[0], opnd[1], r_octa); /* convert */ | |
h_write_o (spec, va, r_octa, acc); /* write result */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
break; | |
case CVTGH: | |
r = op_cvtgh (opnd[0], opnd[1], r_octa); /* convert */ | |
h_write_o (spec, va, r_octa, acc); /* write result */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
break; | |
/* CVTHF, CVTHD, CVTHG | |
opnd[0:3] = src.rh | |
opnd[4:5] = dst.wx | |
spec = last specifier | |
va = address if last specifier is memory | |
*/ | |
case CVTHF: | |
r = op_cvthfd (opnd, NULL); /* convert */ | |
h_write_l (spec, va, r, acc); /* write result */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
break; | |
case CVTHD: | |
r = op_cvthfd (opnd, &rh); /* convert */ | |
h_write_q (spec, va, r, rh, acc); /* write result */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
break; | |
case CVTHG: | |
r = op_cvthg (opnd, &rh); /* convert */ | |
h_write_q (spec, va, r, rh, acc); /* write result */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
break; | |
/* ADDH2, SUBH2, MULH2, DIVH2 | |
op[0:3] = src.rh | |
op[4:7] = dst.mh | |
spec = last specifier | |
va = address if last specifier is memory | |
ADDH3, SUBH3, MULH3, DIVH3 | |
op[0:3] = src1.rh | |
op[4:7] = src2.rh | |
op[8:9] = dst.wh | |
spec = last specifier | |
va = address if last specifier is memory | |
*/ | |
case ADDH2: case ADDH3: | |
r = op_addh (opnd, r_octa, FALSE); /* add */ | |
h_write_o (spec, va, r_octa, acc); /* write result */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
break; | |
case SUBH2: case SUBH3: | |
r = op_addh (opnd, r_octa, TRUE); /* subtract */ | |
h_write_o (spec, va, r_octa, acc); /* write result */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
break; | |
case MULH2: case MULH3: | |
r = op_mulh (opnd, r_octa); /* multiply */ | |
h_write_o (spec, va, r_octa, acc); /* write result */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
break; | |
case DIVH2: case DIVH3: | |
r = op_divh (opnd, r_octa); /* divide */ | |
h_write_o (spec, va, r_octa, acc); /* write result */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
break; | |
/* ACBH | |
opnd[0:3] = limit.rh | |
opnd[4:7] = add.rh | |
opnd[8:11] = index.mh | |
spec = last specifier | |
va = last va | |
brdest = branch destination | |
*/ | |
case ACBH: | |
r = op_addh (opnd + 4, r_octa, FALSE); /* add + index */ | |
temp = op_cmph (r_octa, opnd); /* result : limit */ | |
h_write_o (spec, va, r_octa, acc); /* write 2nd */ | |
if ((temp & CC_Z) || ((opnd[4] & FPSIGN)? /* test br cond */ | |
!(temp & CC_N): (temp & CC_N))) | |
cc = cc | LSIGN; /* hack for branch */ | |
break; | |
/* POLYH | |
opnd[0:3] = arg.rh | |
opnd[4] = deg.rb | |
opnd[5] = table.ah | |
*/ | |
case POLYH: | |
op_polyh (opnd, acc); /* eval polynomial */ | |
CC_IIZZ_FP (R[0]); /* set cc's */ | |
break; | |
/* EMODH | |
opnd[0:3] = multiplier | |
opnd[4] = extension | |
opnd[5:8] = multiplicand | |
opnd[9:10] = integer destination (int.wl) | |
opnd[11:12] = floating destination (flt.wh) | |
spec = last specifier | |
va = address if last specifier is memory | |
*/ | |
case EMODH: | |
r = op_emodh (opnd, r_octa, &temp, &flg); /* extended mod */ | |
if (opnd[11] < 0) { /* 2nd memory? */ | |
Read (opnd[12], L_BYTE, WA); /* prove write */ | |
Read ((opnd[12] + 15) & LMASK, L_BYTE, WA); | |
} | |
if (opnd[9] >= 0) R[opnd[9]] = temp; /* store 1st */ | |
else Write (opnd[10], temp, L_LONG, WA); | |
h_write_o (spec, va, r_octa, acc); /* write 2nd */ | |
CC_IIZZ_FP (r); /* set cc's */ | |
if (flg) { V_INTOV; } /* int ovflo? */ | |
break; | |
default: | |
RSVD_INST_FAULT; | |
} | |
return cc; | |
} | |
/* Test h_floating | |
Note that only the high 32b is processed. | |
If the high 32b is not zero, the rest of the fraction is unchanged. */ | |
int32 op_tsth (int32 val) | |
{ | |
if (val & H_EXP) return val; /* non-zero? */ | |
if (val & FPSIGN) RSVD_OPND_FAULT; /* reserved? */ | |
return 0; /* clean 0 */ | |
} | |
/* Compare h_floating */ | |
int32 op_cmph (int32 *hf1, int32 *hf2) | |
{ | |
UFPH a, b; | |
int32 r; | |
h_unpackh (hf1, &a); /* unpack op1 */ | |
h_unpackh (hf2, &b); /* unpack op2 */ | |
if (a.sign != b.sign) return (a.sign? CC_N: 0); /* opp signs? */ | |
if (a.exp != b.exp) r = a.exp - b.exp; /* cmp exp */ | |
else r = qp_cmp (&a.frac, &b.frac); /* if =, cmp frac */ | |
if (r < 0) return (a.sign? 0: CC_N); /* !=, maybe set N */ | |
if (r > 0) return (a.sign? CC_N: 0); | |
return CC_Z; /* =, set Z */ | |
} | |
/* Integer to h_floating convert */ | |
int32 op_cvtih (int32 val, int32 *hf) | |
{ | |
UFPH a; | |
if (val == 0) { /* zero? */ | |
hf[0] = hf[1] = hf[2] = hf[3] = 0; /* result is 0 */ | |
return 0; | |
} | |
if (val < 0) { /* negative? */ | |
a.sign = FPSIGN; /* sign = - */ | |
val = -val; | |
} | |
else a.sign = 0; /* else sign = + */ | |
a.exp = 32 + H_BIAS; /* initial exp */ | |
a.frac.f3 = val & LMASK; /* fraction hi */ | |
a.frac.f2 = a.frac.f1 = a.frac.f0 = 0; | |
h_normh (&a); /* normalize */ | |
return h_rpackh (&a, hf); /* round and pack */ | |
} | |
/* H_floating to integer convert */ | |
int32 op_cvthi (int32 *hf, int32 *flg, int32 opc) | |
{ | |
UFPH a; | |
int32 lnt = opc & 03; | |
int32 ubexp; | |
static uint32 maxv[4] = { 0x7F, 0x7FFF, 0x7FFFFFFF, 0x7FFFFFFF }; | |
*flg = 0; /* clear ovflo */ | |
h_unpackh (hf, &a); /* unpack */ | |
ubexp = a.exp - H_BIAS; /* unbiased exp */ | |
if ((a.exp == 0) || (ubexp < 0)) return 0; /* true zero or frac? */ | |
if (ubexp <= UH_V_NM) { /* exp in range? */ | |
qp_rsh (&a.frac, UH_V_NM - ubexp); /* leave rnd bit */ | |
if (lnt == 03) qp_inc (&a.frac); /* if CVTR, round */ | |
qp_rsh (&a.frac, 1); /* now justified */ | |
if (a.frac.f3 || a.frac.f2 || a.frac.f1 || | |
(a.frac.f0 > (maxv[lnt] + (a.sign? 1: 0)))) *flg = CC_V; | |
} | |
else { | |
*flg = CC_V; /* always ovflo */ | |
if (ubexp > (UH_V_NM + 32)) return 0; /* in ext range? */ | |
qp_lsh (&a.frac, ubexp - UH_V_NM - 1); /* no rnd bit */ | |
} | |
return (a.sign? NEG (a.frac.f0): a.frac.f0); /* return lo frac */ | |
} | |
/* Floating to floating convert - F/D to H, G to H, H to F/D, H to G */ | |
int32 op_cvtfdh (int32 vl, int32 vh, int32 *hflt) | |
{ | |
UFPH a; | |
h_unpackfd (vl, vh, &a); /* unpack f/d */ | |
a.exp = a.exp - FD_BIAS + H_BIAS; /* adjust exp */ | |
return h_rpackh (&a, hflt); /* round and pack */ | |
} | |
int32 op_cvtgh (int32 vl, int32 vh, int32 *hflt) | |
{ | |
UFPH a; | |
h_unpackg (vl, vh, &a); /* unpack g */ | |
a.exp = a.exp - G_BIAS + H_BIAS; /* adjust exp */ | |
return h_rpackh (&a, hflt); /* round and pack */ | |
} | |
int32 op_cvthfd (int32 *hflt, int32 *rh) | |
{ | |
UFPH a; | |
h_unpackh (hflt, &a); /* unpack h */ | |
a.exp = a.exp - H_BIAS + FD_BIAS; /* adjust exp */ | |
return h_rpackfd (&a, rh); /* round and pack */ | |
} | |
int32 op_cvthg (int32 *hflt, int32 *rh) | |
{ | |
UFPH a; | |
h_unpackh (hflt, &a); /* unpack h */ | |
a.exp = a.exp - H_BIAS + G_BIAS; /* adjust exp */ | |
return h_rpackg (&a, rh); /* round and pack */ | |
} | |
/* Floating add and subtract */ | |
int32 op_addh (int32 *opnd, int32 *hflt, t_bool sub) | |
{ | |
UFPH a, b; | |
h_unpackh (&opnd[0], &a); /* unpack s1, s2 */ | |
h_unpackh (&opnd[4], &b); | |
if (sub) a.sign = a.sign ^ FPSIGN; /* sub? -s1 */ | |
vax_hadd (&a, &b); /* do add */ | |
return h_rpackh (&a, hflt); /* round and pack */ | |
} | |
/* Floating multiply */ | |
int32 op_mulh (int32 *opnd, int32 *hflt) | |
{ | |
UFPH a, b; | |
h_unpackh (&opnd[0], &a); /* unpack s1, s2 */ | |
h_unpackh (&opnd[4], &b); | |
vax_hmul (&a, &b); /* do multiply */ | |
return h_rpackh (&a, hflt); /* round and pack */ | |
} | |
/* Floating divide */ | |
int32 op_divh (int32 *opnd, int32 *hflt) | |
{ | |
UFPH a, b; | |
h_unpackh (&opnd[0], &a); /* unpack s1, s2 */ | |
h_unpackh (&opnd[4], &b); | |
vax_hdiv (&a, &b); /* do divide */ | |
return h_rpackh (&a, hflt); /* round and pack */ | |
} | |
/* Polynomial evaluation | |
The most mis-implemented instruction in the VAX (probably here too). | |
POLY requires a precise combination of masking versus normalizing | |
to achieve the desired answer. In particular, both the multiply | |
and add steps are masked prior to normalization. In addition, | |
negative small fractions must not be treated as 0 during denorm. */ | |
void op_polyh (int32 *opnd, int32 acc) | |
{ | |
UFPH r, a, c; | |
int32 deg = opnd[4]; | |
int32 ptr = opnd[5]; | |
int32 i, wd[4], res[4]; | |
if (deg > 31) RSVD_OPND_FAULT; /* deg > 31? fault */ | |
h_unpackh (&opnd[0], &a); /* unpack arg */ | |
wd[0] = Read (ptr, L_LONG, RD); /* get C0 */ | |
wd[1] = Read (ptr + 4, L_LONG, RD); | |
wd[2] = Read (ptr + 8, L_LONG, RD); | |
wd[3] = Read (ptr + 12, L_LONG, RD); | |
ptr = ptr + 16; /* adv ptr */ | |
h_unpackh (wd, &r); /* unpack C0 */ | |
h_rpackh (&r, res); /* first result */ | |
for (i = 0; (i < deg) && a.exp; i++) { /* loop */ | |
h_unpackh (res, &r); /* unpack result */ | |
vax_hmul (&r, &a); /* r = r * arg */ | |
wd[0] = Read (ptr, L_LONG, RD); /* get Cn */ | |
wd[1] = Read (ptr + 4, L_LONG, RD); | |
wd[2] = Read (ptr + 8, L_LONG, RD); | |
wd[3] = Read (ptr + 12, L_LONG, RD); | |
ptr = ptr + 16; | |
h_unpackh (wd, &c); /* unpack Cnext */ | |
vax_hadd (&r, &c); /* r = r + Cnext */ | |
h_rpackh (&r, res); /* round and pack */ | |
} | |
R[0] = res[0]; /* result */ | |
R[1] = res[1]; | |
R[2] = res[2]; | |
R[3] = res[3]; | |
R[4] = 0; | |
R[5] = opnd[5] + 4 + (opnd[4] << 2); | |
return; | |
} | |
/* Extended modularize | |
EMOD presents two sets of complications. First, it requires an extended | |
fraction multiply, with precise (and unusual) truncation conditions. | |
Second, it has two write operands, a dubious distinction it shares | |
with EDIV. */ | |
int32 op_emodh (int32 *opnd, int32 *hflt, int32 *intgr, int32 *flg) | |
{ | |
UFPH a, b; | |
h_unpackh (&opnd[0], &a); /* unpack operands */ | |
h_unpackh (&opnd[5], &b); | |
a.frac.f0 = a.frac.f0 | opnd[4]; /* extend src1 */ | |
vax_hmul (&a, &b); /* multiply */ | |
vax_hmod (&a, intgr, flg); /* sep int & frac */ | |
return h_rpackh (&a, hflt); /* round and pack frac */ | |
} | |
/* Unpacked floating point routines */ | |
/* Floating add */ | |
void vax_hadd (UFPH *a, UFPH *b) | |
{ | |
int32 ediff; | |
UFPH t; | |
if (a->exp == 0) { /* s1 = 0? */ | |
*a = *b; /* result is s2 */ | |
return; | |
} | |
if (b->exp == 0) return; /* s2 = 0? */ | |
if ((a->exp < b->exp) || /* |s1| < |s2|? */ | |
((a->exp == b->exp) && (qp_cmp (&a->frac, &b->frac) < 0))) { | |
t = *a; /* swap */ | |
*a = *b; | |
*b = t; | |
} | |
ediff = a->exp - b->exp; /* exp diff */ | |
if (a->sign ^ b->sign) { /* eff sub? */ | |
qp_neg (&b->frac); /* negate fraction */ | |
if (ediff) qp_rsh_s (&b->frac, ediff, 1); /* denormalize */ | |
qp_add (&a->frac, &b->frac); /* "add" frac */ | |
h_normh (a); /* normalize */ | |
} | |
else { | |
if (ediff) qp_rsh (&b->frac, ediff); /* add, denormalize */ | |
qp_add (&a->frac, &b->frac); /* add frac */ | |
if (qp_cmp (&a->frac, &b->frac) < 0) { /* chk for carry */ | |
qp_rsh (&a->frac, 1); /* renormalize */ | |
a->frac.f3 = a->frac.f3 | UH_NM_H; /* add norm bit */ | |
a->exp = a->exp + 1; /* incr exp */ | |
} | |
} | |
return; | |
} | |
/* Floating multiply - 128b * 128b */ | |
void vax_hmul (UFPH *a, UFPH *b) | |
{ | |
int32 i; | |
UQP accum = { 0, 0, 0, 0 }; | |
if ((a->exp == 0) || (b->exp == 0)) { /* zero argument? */ | |
a->frac.f0 = a->frac.f1 = 0; /* result is zero */ | |
a->frac.f2 = a->frac.f3 = 0; | |
a->sign = a->exp = 0; | |
return; | |
} | |
a->sign = a->sign ^ b->sign; /* sign of result */ | |
a->exp = a->exp + b->exp - H_BIAS; /* add exponents */ | |
for (i = 0; i < 128; i++) { /* quad precision */ | |
qp_rsh (&accum, 1); /* shift result */ | |
if (a->frac.f0 & 1) qp_add (&accum, &b->frac); /* mplr low? add */ | |
qp_rsh (&a->frac, 1); /* shift mplr */ | |
} | |
a->frac = accum; /* result */ | |
h_normh (a); /* normalize */ | |
return; | |
} | |
/* Floating modulus - there are three cases | |
exp <= bias - integer is 0, fraction is input, | |
no overflow | |
bias < exp <= bias+128 - separate integer and fraction, | |
integer overflow may occur | |
bias+128 < exp - result is integer, fraction is 0 | |
integer overflow | |
*/ | |
void vax_hmod (UFPH *a, int32 *intgr, int32 *flg) | |
{ | |
UQP ifr; | |
if (a->exp <= H_BIAS) *intgr = *flg = 0; /* 0 or <1? int = 0 */ | |
else if (a->exp <= (H_BIAS + 128)) { /* in range? */ | |
ifr = a->frac; | |
qp_rsh (&ifr, 128 - (a->exp - H_BIAS)); /* separate integer */ | |
if ((a->exp > (H_BIAS + 32)) || /* test ovflo */ | |
((a->exp == (H_BIAS + 32)) && | |
(ifr.f0 > (a->sign? 0x80000000: 0x7FFFFFFF)))) | |
*flg = CC_V; | |
else *flg = 0; | |
*intgr = ifr.f0; | |
if (a->sign) *intgr = -*intgr; /* -? comp int */ | |
qp_lsh (&a->frac, a->exp - H_BIAS); /* excise integer */ | |
a->exp = H_BIAS; | |
} | |
else { | |
*intgr = 0; /* out of range */ | |
a->frac.f0 = a->frac.f1 = 0; /* result 0 */ | |
a->frac.f2 = a->frac.f3 = 0; | |
a->sign = a->exp = 0; | |
*flg = CC_V; /* overflow */ | |
} | |
h_normh (a); /* normalize */ | |
return; | |
} | |
/* Floating divide | |
Carried out to 128 bits, although fewer are required */ | |
void vax_hdiv (UFPH *a, UFPH *b) | |
{ | |
int32 i; | |
UQP ndvr, quo = { 0, 0, 0, 0 }; | |
if (a->exp == 0) FLT_DZRO_FAULT; /* divr = 0? */ | |
if (b->exp == 0) return; /* divd = 0? */ | |
b->sign = b->sign ^ a->sign; /* result sign */ | |
b->exp = b->exp - a->exp + H_BIAS + 1; /* unbiased exp */ | |
qp_rsh (&a->frac, 1); /* allow 1 bit left */ | |
qp_rsh (&b->frac, 1); | |
ndvr = a->frac; /* copy divisor */ | |
qp_neg (&ndvr); /* and negate */ | |
for (i = 0; i < 128; i++) { /* divide loop */ | |
qp_lsh (&quo, 1); /* shift quo */ | |
if (qp_cmp (&b->frac, &a->frac) >= 0) { /* div step ok? */ | |
qp_add (&b->frac, &ndvr); /* "subtract" */ | |
quo.f0 = quo.f0 + 1; /* quo bit = 1 */ | |
} | |
qp_lsh (&b->frac, 1); /* shift divd */ | |
} | |
b->frac = quo; | |
h_normh (b); /* normalize */ | |
return; | |
} | |
/* Quad precision integer routines */ | |
int32 qp_cmp (UQP *a, UQP *b) | |
{ | |
if (a->f3 < b->f3) return -1; /* compare hi */ | |
if (a->f3 > b->f3) return +1; | |
if (a->f2 < b->f2) return -1; /* hi =, compare mid1 */ | |
if (a->f2 > b->f2) return +1; | |
if (a->f1 < b->f1) return -1; /* mid1 =, compare mid2 */ | |
if (a->f1 > b->f1) return +1; | |
if (a->f0 < b->f0) return -1; /* mid2 =, compare lo */ | |
if (a->f0 > b->f0) return +1; | |
return 0; /* all equal */ | |
} | |
void qp_add (UQP *a, UQP *b) | |
{ | |
a->f0 = (a->f0 + b->f0) & LMASK; /* add lo */ | |
if (a->f0 < b->f0) a->f1 = a->f1 + 1; /* carry? */ | |
a->f1 = (a->f1 + b->f1) & LMASK; /* add mid2 */ | |
if (a->f1 < b->f1) a->f2 = a->f2 + 1; /* carry? */ | |
a->f2 = (a->f2 + b->f2) & LMASK; /* add mid1 */ | |
if (a->f2 < b->f2) a->f3 = a->f3 + 1; /* carry? */ | |
a->f3 = (a->f3 + b->f3) & LMASK; /* add hi */ | |
return; | |
} | |
void qp_inc (UQP *a) | |
{ | |
a->f0 = (a->f0 + 1) & LMASK; /* inc lo */ | |
if (a->f0 == 0) a->f1 = (a->f1 + 1) & LMASK; /* propagate carry */ | |
if (a->f1 == 0) a->f2 = (a->f2 + 1) & LMASK; | |
if (a->f2 == 0) a->f3 = (a->f3 + 1) & LMASK; | |
return; | |
} | |
void qp_neg (UQP *r) | |
{ | |
r->f0 = NEG (r->f0); /* neg lo */ | |
r->f1 = (~r->f1 + (r->f0 == 0)) & LMASK; /* complement rest */ | |
r->f2 = (~r->f2 + (r->f1 == 0)) & LMASK; /* propagate carry */ | |
r->f3 = (~r->f3 + (r->f2 == 0)) & LMASK; | |
return; | |
} | |
void qp_lsh (UQP *r, uint32 sc) | |
{ | |
if (sc >= 128) r->f3 = r->f2 = r->f1 = r->f0 = 0; /* > 127? result 0 */ | |
else if (sc >= 96) { /* [96,127]? */ | |
r->f3 = (r->f0 << (sc - 96)) & LMASK; | |
r->f2 = r->f1 = r->f0 = 0; | |
} | |
else if (sc > 64) { /* [65,95]? */ | |
r->f3 = ((r->f1 << (sc - 64)) | (r->f0 >> (96 - sc))) & LMASK; | |
r->f2 = (r->f0 << (sc - 64)) & LMASK; | |
r->f1 = r->f0 = 0; | |
} | |
else if (sc == 64) { /* [64]? */ | |
r->f3 = r->f1; | |
r->f2 = r->f0; | |
r->f1 = r->f0 = 0; | |
} | |
else if (sc > 32) { /* [33,63]? */ | |
r->f3 = ((r->f2 << (sc - 32)) | (r->f1 >> (64 - sc))) & LMASK; | |
r->f2 = ((r->f1 << (sc - 32)) | (r->f0 >> (64 - sc))) & LMASK; | |
r->f1 = (r->f0 << (sc - 32)) & LMASK; | |
r->f0 = 0; | |
} | |
else if (sc == 32) { /* [32]? */ | |
r->f3 = r->f2; | |
r->f2 = r->f1; | |
r->f1 = r->f0; | |
r->f0 = 0; | |
} | |
else if (sc != 0) { /* [31,1]? */ | |
r->f3 = ((r->f3 << sc) | (r->f2 >> (32 - sc))) & LMASK; | |
r->f2 = ((r->f2 << sc) | (r->f1 >> (32 - sc))) & LMASK; | |
r->f1 = ((r->f1 << sc) | (r->f0 >> (32 - sc))) & LMASK; | |
r->f0 = (r->f0 << sc) & LMASK; | |
} | |
return; | |
} | |
void qp_rsh (UQP *r, uint32 sc) | |
{ | |
if (sc >= 128) r->f3 = r->f2 = r->f1 = r->f0 = 0; /* > 127? result 0 */ | |
else if (sc >= 96) { /* [96,127]? */ | |
r->f0 = (r->f3 >> (sc - 96)) & LMASK; | |
r->f1 = r->f2 = r->f3 = 0; | |
} | |
else if (sc > 64) { /* [65,95]? */ | |
r->f0 = ((r->f2 >> (sc - 64)) | (r->f3 << (96 - sc))) & LMASK; | |
r->f1 = (r->f3 >> (sc - 64)) & LMASK; | |
r->f2 = r->f3 = 0; | |
} | |
else if (sc == 64) { /* [64]? */ | |
r->f0 = r->f2; | |
r->f1 = r->f3; | |
r->f2 = r->f3 = 0; | |
} | |
else if (sc > 32) { /* [33,63]? */ | |
r->f0 = ((r->f1 >> (sc - 32)) | (r->f2 << (64 - sc))) & LMASK; | |
r->f1 = ((r->f2 >> (sc - 32)) | (r->f3 << (64 - sc))) & LMASK; | |
r->f2 = (r->f3 >> (sc - 32)) & LMASK; | |
r->f3 = 0; | |
} | |
else if (sc == 32) { /* [32]? */ | |
r->f0 = r->f1; | |
r->f1 = r->f2; | |
r->f2 = r->f3; | |
r->f3 = 0; | |
} | |
else if (sc != 0) { /* [31,1]? */ | |
r->f0 = ((r->f0 >> sc) | (r->f1 << (32 - sc))) & LMASK; | |
r->f1 = ((r->f1 >> sc) | (r->f2 << (32 - sc))) & LMASK; | |
r->f2 = ((r->f2 >> sc) | (r->f3 << (32 - sc))) & LMASK; | |
r->f3 = (r->f3 >> sc) & LMASK; | |
} | |
return; | |
} | |
void qp_rsh_s (UQP *r, uint32 sc, uint32 neg) | |
{ | |
qp_rsh (r, sc); /* do unsigned right */ | |
if (neg && sc) { /* negative? */ | |
if (sc >= 128) | |
r->f0 = r->f1 = r->f2 = r->f3 = LMASK; /* > 127? result -1 */ | |
else { | |
UQP ones = { LMASK, LMASK, LMASK, LMASK }; | |
qp_lsh (&ones, 128 - sc); /* shift ones */ | |
r->f0 = r->f0 | ones.f0; /* or into result */ | |
r->f1 = r->f1 | ones.f1; | |
r->f2 = r->f2 | ones.f2; | |
r->f3 = r->f3 | ones.f3; | |
} | |
} | |
return; | |
} | |
/* Support routines */ | |
void h_unpackfd (int32 hi, int32 lo, UFPH *r) | |
{ | |
r->sign = hi & FPSIGN; /* get sign */ | |
r->exp = FD_GETEXP (hi); /* get exponent */ | |
r->frac.f0 = r->frac.f1 = 0; /* low bits 0 */ | |
if (r->exp == 0) { /* exp = 0? */ | |
if (r->sign) RSVD_OPND_FAULT; /* if -, rsvd op */ | |
r->frac.f2 = r->frac.f3 = 0; /* else 0 */ | |
return; | |
} | |
r->frac.f3 = WORDSWAP ((hi & ~(FPSIGN | FD_EXP)) | FD_HB); | |
r->frac.f2 = WORDSWAP (lo); | |
qp_lsh (&r->frac, FD_GUARD); | |
return; | |
} | |
void h_unpackg (int32 hi, int32 lo, UFPH *r) | |
{ | |
r->sign = hi & FPSIGN; /* get sign */ | |
r->exp = G_GETEXP (hi); /* get exponent */ | |
r->frac.f0 = r->frac.f1 = 0; /* low bits 0 */ | |
if (r->exp == 0) { /* exp = 0? */ | |
if (r->sign) RSVD_OPND_FAULT; /* if -, rsvd op */ | |
r->frac.f2 = r->frac.f3 = 0; /* else 0 */ | |
return; | |
} | |
r->frac.f3 = WORDSWAP ((hi & ~(FPSIGN | G_EXP)) | G_HB); | |
r->frac.f2 = WORDSWAP (lo); | |
qp_lsh (&r->frac, G_GUARD); | |
return; | |
} | |
void h_unpackh (int32 *hflt, UFPH *r) | |
{ | |
r->sign = hflt[0] & FPSIGN; /* get sign */ | |
r->exp = H_GETEXP (hflt[0]); /* get exponent */ | |
if (r->exp == 0) { /* exp = 0? */ | |
if (r->sign) RSVD_OPND_FAULT; /* if -, rsvd op */ | |
r->frac.f0 = r->frac.f1 = 0; /* else 0 */ | |
r->frac.f2 = r->frac.f3 = 0; | |
return; | |
} | |
r->frac.f3 = WORDSWAP ((hflt[0] & ~(FPSIGN | H_EXP)) | H_HB); | |
r->frac.f2 = WORDSWAP (hflt[1]); | |
r->frac.f1 = WORDSWAP (hflt[2]); | |
r->frac.f0 = WORDSWAP (hflt[3]); | |
qp_lsh (&r->frac, H_GUARD); | |
return; | |
} | |
void h_normh (UFPH *r) | |
{ | |
int32 i; | |
static uint32 normmask[5] = { | |
0xc0000000, 0xf0000000, 0xff000000, 0xffff0000, 0xffffffff }; | |
static int32 normtab[6] = { 1, 2, 4, 8, 16, 32}; | |
if ((r->frac.f0 == 0) && (r->frac.f1 == 0) && | |
(r->frac.f2 == 0) && (r->frac.f3 == 0)) { /* if fraction = 0 */ | |
r->sign = r->exp = 0; /* result is 0 */ | |
return; | |
} | |
while ((r->frac.f3 & UH_NM_H) == 0) { /* normalized? */ | |
for (i = 0; i < 5; i++) { /* find first 1 */ | |
if (r->frac.f3 & normmask[i]) break; | |
} | |
qp_lsh (&r->frac, normtab[i]); /* shift frac */ | |
r->exp = r->exp - normtab[i]; /* decr exp */ | |
} | |
return; | |
} | |
int32 h_rpackfd (UFPH *r, int32 *rh) | |
{ | |
static UQP f_round = { 0, 0, 0, UH_FRND }; | |
static UQP d_round = { 0, 0, UH_DRND, 0 }; | |
if (rh) *rh = 0; /* assume 0 */ | |
if (r->exp == 0) return 0; /* exp = 0? done */ | |
qp_add (&r->frac, rh? &d_round: &f_round); | |
if ((r->frac.f3 & UH_NM_H) == 0) { /* carry out? */ | |
qp_rsh (&r->frac, 1); /* renormalize */ | |
r->exp = r->exp + 1; | |
} | |
if (r->exp > (int32) FD_M_EXP) FLT_OVFL_FAULT; /* ovflo? fault */ | |
if (r->exp <= 0) { /* underflow? */ | |
if (PSL & PSW_FU) FLT_UNFL_FAULT; /* fault if fu */ | |
return 0; /* else 0 */ | |
} | |
qp_rsh (&r->frac, FD_GUARD); /* remove guard */ | |
if (rh) *rh = WORDSWAP (r->frac.f2); | |
return r->sign | (r->exp << FD_V_EXP) | | |
(WORDSWAP (r->frac.f3) & ~(FD_HB | FPSIGN | FD_EXP)); | |
} | |
int32 h_rpackg (UFPH *r, int32 *rh) | |
{ | |
static UQP g_round = { 0, 0, UH_GRND, 0 }; | |
*rh = 0; /* assume 0 */ | |
if (r->exp == 0) return 0; /* exp = 0? done */ | |
qp_add (&r->frac, &g_round); /* round */ | |
if ((r->frac.f3 & UH_NM_H) == 0) { /* carry out? */ | |
qp_rsh (&r->frac, 1); /* renormalize */ | |
r->exp = r->exp + 1; | |
} | |
if (r->exp > (int32) G_M_EXP) FLT_OVFL_FAULT; /* ovflo? fault */ | |
if (r->exp <= 0) { /* underflow? */ | |
if (PSL & PSW_FU) FLT_UNFL_FAULT; /* fault if fu */ | |
return 0; /* else 0 */ | |
} | |
qp_rsh (&r->frac, G_GUARD); /* remove guard */ | |
*rh = WORDSWAP (r->frac.f2); /* get low */ | |
return r->sign | (r->exp << G_V_EXP) | | |
(WORDSWAP (r->frac.f3) & ~(G_HB | FPSIGN | G_EXP)); | |
} | |
int32 h_rpackh (UFPH *r, int32 *hflt) | |
{ | |
static UQP h_round = { UH_HRND, 0, 0, 0 }; | |
hflt[0] = hflt[1] = hflt[2] = hflt[3] = 0; /* assume 0 */ | |
if (r->exp == 0) return 0; /* exp = 0? done */ | |
qp_add (&r->frac, &h_round); /* round */ | |
if ((r->frac.f3 & UH_NM_H) == 0) { /* carry out? */ | |
qp_rsh (&r->frac, 1); /* renormalize */ | |
r->exp = r->exp + 1; | |
} | |
if (r->exp > (int32) H_M_EXP) FLT_OVFL_FAULT; /* ovflo? fault */ | |
if (r->exp <= 0) { /* underflow? */ | |
if (PSL & PSW_FU) FLT_UNFL_FAULT; /* fault if fu */ | |
return 0; /* else 0 */ | |
} | |
qp_rsh (&r->frac, H_GUARD); /* remove guard */ | |
hflt[0] = r->sign | (r->exp << H_V_EXP) | | |
(WORDSWAP (r->frac.f3) & ~(H_HB | FPSIGN | H_EXP)); | |
hflt[1] = WORDSWAP (r->frac.f2); | |
hflt[2] = WORDSWAP (r->frac.f1); | |
hflt[3] = WORDSWAP (r->frac.f0); | |
return hflt[0]; | |
} | |
void h_write_b (int32 spec, int32 va, int32 val, int32 acc) | |
{ | |
int32 rn; | |
if (spec > (GRN | nPC)) Write (va, val, L_BYTE, WA); | |
else { | |
rn = spec & 0xF; | |
R[rn] = (R[rn] & ~BMASK) | val; | |
} | |
return; | |
} | |
void h_write_w (int32 spec, int32 va, int32 val, int32 acc) | |
{ | |
int32 rn; | |
if (spec > (GRN | nPC)) Write (va, val, L_WORD, WA); | |
else { | |
rn = spec & 0xF; | |
R[rn] = (R[rn] & ~WMASK) | val; | |
} | |
return; | |
} | |
void h_write_l (int32 spec, int32 va, int32 val, int32 acc) | |
{ | |
if (spec > (GRN | nPC)) Write (va, val, L_LONG, WA); | |
else R[spec & 0xF] = val; | |
return; | |
} | |
void h_write_q (int32 spec, int32 va, int32 vl, int32 vh, int32 acc) | |
{ | |
int32 rn, mstat; | |
if (spec > (GRN | nPC)) { | |
if (Test (va + 7, WA, &mstat) >= 0) | |
Write (va, vl, L_LONG, WA); | |
Write (va + 4, vh, L_LONG, WA); | |
} | |
else { | |
rn = spec & 0xF; | |
if (rn >= nSP) RSVD_ADDR_FAULT; | |
R[rn] = vl; | |
R[rn + 1] = vh; | |
} | |
return; | |
} | |
void h_write_o (int32 spec, int32 va, int32 *val, int32 acc) | |
{ | |
int32 rn, mstat; | |
if (spec > (GRN | nPC)) { | |
if (Test (va + 15, WA, &mstat) >= 0) | |
Write (va, val[0], L_LONG, WA); | |
Write (va + 4, val[1], L_LONG, WA); | |
Write (va + 8, val[2], L_LONG, WA); | |
Write (va + 12, val[3], L_LONG, WA); | |
} | |
else { | |
rn = spec & 0xF; | |
if (rn >= nAP) RSVD_ADDR_FAULT; | |
R[rn] = val[0]; | |
R[rn + 1] = val[1]; | |
R[rn + 2] = val[2]; | |
R[rn + 3] = val[3]; | |
} | |
return; | |
} | |
#else | |
extern jmp_buf save_env; | |
int32 op_octa (int32 *opnd, int32 cc, int32 opc, int32 acc, int32 spec, int32 va) | |
{ | |
RSVD_INST_FAULT; | |
return cc; | |
} | |
#endif |