/* vax780_stddev.c: VAX 11/780 standard I/O devices | |
Copyright (c) 1998-2004, Robert M Supnik | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name of Robert M Supnik shall not | |
be used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from Robert M Supnik. | |
tti console input | |
tto console output | |
rx console floppy | |
todr TODR clock | |
tmr interval timer | |
08-Sep-04 RMS Cloned from vax_stddev.c, vax_sysdev.c, and pdp11_rx.c | |
The console floppy protocol is based on the description in the 1982 VAX | |
Architecture Reference Manual: | |
TXDB<11:8> = 0 -> normal console output | |
TXDB<11:8> = 1 -> data output to floppy | |
TXDB<11:8> = 9 -> command output to floppy | |
TXDB<11:8> = F -> flag output (e.g., reboot) | |
RXDB<11:8> = 0 -> normal terminal input | |
RXDB<11:8> = 1 -> data input from floppy | |
RXDB<11:8> = 2 -> status input from floppy | |
RXDB<11:8> = 9 -> "command" input from floppy (protocol error) | |
*/ | |
#include "vax_defs.h" | |
#include <time.h> | |
/* Terminal definitions */ | |
#define RXCS_RD (CSR_DONE + CSR_IE) /* terminal input */ | |
#define RXCS_WR (CSR_IE) | |
#define RXDB_ERR 0x8000 /* error */ | |
#define RXDB_OVR 0x4000 /* overrun */ | |
#define RXDB_FRM 0x2000 /* framing error */ | |
#define RXDB_RBR 0x0400 /* receive break */ | |
#define TXCS_RD (CSR_DONE + CSR_IE) /* terminal output */ | |
#define TXCS_WR (CSR_IE) | |
#define TXDB_V_SEL 8 /* unit select */ | |
#define TXDB_M_SEL 0xF | |
#define TXDB_FDAT 0x1 /* floppy data */ | |
#define TXDB_FCMD 0x9 /* floppy cmd */ | |
#define TXDB_MISC 0xF /* console misc */ | |
#define TXDB_SEL (TXDB_M_SEL << TXDB_V_SEL) /* non-terminal */ | |
#define TXDB_GETSEL(x) (((x) >> TXDB_V_SEL) & TXDB_M_SEL) | |
#define UNIT_V_8B (UNIT_V_UF + 0) /* 8B mode */ | |
#define UNIT_8B (1 << UNIT_V_8B) | |
/* Clock definitions */ | |
#define TMR_CSR_ERR 0x80000000 /* error W1C */ | |
#define TMR_CSR_DON 0x00000080 /* done W1C */ | |
#define TMR_CSR_IE 0x00000040 /* int enb RW */ | |
#define TMR_CSR_SGL 0x00000020 /* single WO */ | |
#define TMR_CSR_XFR 0x00000010 /* xfer WO */ | |
#define TMR_CSR_RUN 0x00000001 /* run RW */ | |
#define TMR_CSR_RD (TMR_CSR_W1C | TMR_CSR_WR) | |
#define TMR_CSR_W1C (TMR_CSR_ERR | TMR_CSR_DON) | |
#define TMR_CSR_WR (TMR_CSR_IE | TMR_CSR_RUN) | |
#define TMR_INC 10000 /* usec/interval */ | |
#define CLK_DELAY 5000 /* 100 Hz */ | |
#define TMXR_MULT 2 /* 50 Hz */ | |
/* Floppy definitions */ | |
#define FL_NUMTR 77 /* tracks/disk */ | |
#define FL_M_TRACK 0377 | |
#define FL_NUMSC 26 /* sectors/track */ | |
#define FL_M_SECTOR 0177 | |
#define FL_NUMBY 128 /* bytes/sector */ | |
#define FL_SIZE (FL_NUMTR * FL_NUMSC * FL_NUMBY) /* bytes/disk */ | |
#define UNIT_V_WLK (UNIT_V_UF) /* write locked */ | |
#define UNIT_WLK (1u << UNIT_V_UF) | |
#define UNIT_WPRT (UNIT_WLK | UNIT_RO) /* write protect */ | |
#define FL_IDLE 0 /* idle state */ | |
#define FL_RWDS 1 /* rw, sect next */ | |
#define FL_RWDT 2 /* rw, track next */ | |
#define FL_READ 3 /* read */ | |
#define FL_READ1 4 | |
#define FL_WRITE 5 /* write */ | |
#define FL_WRITE1 6 | |
#define FL_FILL 7 /* fill buffer */ | |
#define FL_EMPTY 8 /* empty buffer */ | |
#define FL_READSTA 9 /* read status */ | |
#define FL_DONE 10 /* cmd done */ | |
#define FL_V_FNC 0 /* floppy function */ | |
#define FL_M_FNC 0xFF | |
#define FL_FNCRD 0x0 /* read */ | |
#define FL_FNCWR 0x1 /* write */ | |
#define FL_FNCRS 0x2 /* read status */ | |
#define FL_FNCWD 0x3 /* write del data */ | |
#define FL_FNCCA 0x4 /* cancel */ | |
#define FL_CDATA 0x100 /* returned data */ | |
#define FL_CDONE 0x200 /* completion code */ | |
#define FL_STACRC 0x001 /* status bits */ | |
#define FL_STAPAR 0x002 | |
#define FL_STAINC 0x004 | |
#define FL_STADDA 0x040 | |
#define FL_STAERR 0x080 | |
#define FL_CPROT 0x905 /* protocol error */ | |
#define FL_MISC 0xF00 /* misc communications */ | |
#define FL_SWDN 0x1 /* software done */ | |
#define FL_BOOT 0x2 /* reboot */ | |
#define FL_CLWS 0x3 /* clear warm start */ | |
#define FL_CLCS 0x4 /* clear cold start */ | |
#define FL_GETFNC(x) (((x) >> FL_V_FNC) & FL_M_FNC) | |
#define TRACK u3 /* current track */ | |
#define CALC_DA(t,s) (((t) * FL_NUMSC) + ((s) - 1)) * FL_NUMBY | |
int32 tti_csr = 0; /* control/status */ | |
int32 tti_buf = 0; /* buffer */ | |
int32 tti_int = 0; /* interrupt */ | |
int32 tto_csr = 0; /* control/status */ | |
int32 tto_buf = 0; /* buffer */ | |
int32 tto_int = 0; /* interrupt */ | |
int32 tmr_iccs = 0; /* interval timer csr */ | |
uint32 tmr_icr = 0; /* curr interval */ | |
uint32 tmr_nicr = 0; /* next interval */ | |
uint32 tmr_inc = 0; /* timer increment */ | |
int32 tmr_sav = 0; /* timer save */ | |
int32 tmr_int = 0; /* interrupt */ | |
int32 clk_tps = 100; /* ticks/second */ | |
int32 tmxr_poll = CLK_DELAY * TMXR_MULT; /* term mux poll */ | |
int32 tmr_poll = CLK_DELAY; /* pgm timer poll */ | |
int32 todr_reg = 0; /* TODR register */ | |
int32 fl_fnc = 0; /* function */ | |
int32 fl_esr = 0; /* error status */ | |
int32 fl_ecode = 0; /* error code */ | |
int32 fl_track = 0; /* desired track */ | |
int32 fl_sector = 0; /* desired sector */ | |
int32 fl_state = FL_IDLE; /* controller state */ | |
int32 fl_stopioe = 1; /* stop on error */ | |
int32 fl_swait = 100; /* seek, per track */ | |
int32 fl_cwait = 50; /* command time */ | |
int32 fl_xwait = 20; /* tr set time */ | |
uint8 fl_buf[FL_NUMBY] = { 0 }; /* sector buffer */ | |
int32 fl_bptr = 0; /* buffer pointer */ | |
extern int32 sim_switches; | |
t_stat tti_svc (UNIT *uptr); | |
t_stat tto_svc (UNIT *uptr); | |
t_stat clk_svc (UNIT *uptr); | |
t_stat tmr_svc (UNIT *uptr); | |
t_stat tti_reset (DEVICE *dptr); | |
t_stat tto_reset (DEVICE *dptr); | |
t_stat clk_reset (DEVICE *dptr); | |
t_stat tmr_reset (DEVICE *dptr); | |
t_stat fl_svc (UNIT *uptr); | |
t_stat fl_reset (DEVICE *dptr); | |
int32 icr_rd (t_bool interp); | |
void tmr_incr (uint32 inc); | |
void tmr_sched (void); | |
t_stat todr_powerup (void); | |
t_stat fl_wr_txdb (int32 data); | |
t_bool fl_test_xfr (UNIT *uptr, t_bool wr); | |
void fl_protocol_error (void); | |
/* TTI data structures | |
tti_dev TTI device descriptor | |
tti_unit TTI unit descriptor | |
tti_reg TTI register list | |
*/ | |
UNIT tti_unit = { UDATA (&tti_svc, UNIT_8B, 0), KBD_POLL_WAIT }; | |
REG tti_reg[] = { | |
{ HRDATA (RXDB, tti_buf, 16) }, | |
{ HRDATA (RXCS, tti_csr, 16) }, | |
{ FLDATA (INT, tti_int, 0) }, | |
{ FLDATA (DONE, tti_csr, CSR_V_DONE) }, | |
{ FLDATA (IE, tti_csr, CSR_V_IE) }, | |
{ DRDATA (POS, tti_unit.pos, T_ADDR_W), PV_LEFT }, | |
{ DRDATA (TIME, tti_unit.wait, 24), REG_NZ + PV_LEFT }, | |
{ NULL } }; | |
MTAB tti_mod[] = { | |
{ UNIT_8B, UNIT_8B, "8b", "8B", NULL }, | |
{ UNIT_8B, 0 , "7b", "7B", NULL }, | |
{ 0 } }; | |
DEVICE tti_dev = { | |
"TTI", &tti_unit, tti_reg, tti_mod, | |
1, 10, 31, 1, 16, 8, | |
NULL, NULL, &tti_reset, | |
NULL, NULL, NULL, | |
NULL, 0 }; | |
/* TTO data structures | |
tto_dev TTO device descriptor | |
tto_unit TTO unit descriptor | |
tto_reg TTO register list | |
*/ | |
UNIT tto_unit = { UDATA (&tto_svc, UNIT_8B, 0), SERIAL_OUT_WAIT }; | |
REG tto_reg[] = { | |
{ HRDATA (TXDB, tto_buf, 16) }, | |
{ HRDATA (TXCS, tto_csr, 16) }, | |
{ FLDATA (INT, tto_int, 0) }, | |
{ FLDATA (DONE, tto_csr, CSR_V_DONE) }, | |
{ FLDATA (IE, tto_csr, CSR_V_IE) }, | |
{ DRDATA (POS, tto_unit.pos, T_ADDR_W), PV_LEFT }, | |
{ DRDATA (TIME, tto_unit.wait, 24), PV_LEFT }, | |
{ NULL } }; | |
MTAB tto_mod[] = { | |
{ UNIT_8B, UNIT_8B, "8b", "8B", NULL }, | |
{ UNIT_8B, 0 , "7b", "7B", NULL }, | |
{ 0 } }; | |
DEVICE tto_dev = { | |
"TTO", &tto_unit, tto_reg, tto_mod, | |
1, 10, 31, 1, 16, 8, | |
NULL, NULL, &tto_reset, | |
NULL, NULL, NULL, | |
NULL, 0 }; | |
/* TODR and TMR data structures */ | |
UNIT clk_unit = { UDATA (&clk_svc, 0, 0), CLK_DELAY }; /* 100Hz */ | |
REG clk_reg[] = { | |
{ DRDATA (TODR, todr_reg, 32), PV_LEFT }, | |
{ DRDATA (TIME, clk_unit.wait, 24), REG_NZ + PV_LEFT }, | |
{ DRDATA (TPS, clk_tps, 8), REG_HIDDEN + REG_NZ + PV_LEFT }, | |
{ NULL } }; | |
DEVICE clk_dev = { | |
"TODR", &clk_unit, clk_reg, NULL, | |
1, 0, 0, 0, 0, 0, | |
NULL, NULL, &clk_reset, | |
NULL, NULL, NULL, | |
NULL, 0 }; | |
UNIT tmr_unit = { UDATA (&tmr_svc, 0, 0) }; /* timer */ | |
REG tmr_reg[] = { | |
{ HRDATA (ICCS, tmr_iccs, 32) }, | |
{ HRDATA (ICR, tmr_icr, 32) }, | |
{ HRDATA (NICR, tmr_nicr, 32) }, | |
{ HRDATA (INCR, tmr_inc, 32), REG_HIDDEN }, | |
{ HRDATA (SAVE, tmr_sav, 32), REG_HIDDEN }, | |
{ FLDATA (INT, tmr_int, 0) }, | |
{ NULL } }; | |
DEVICE tmr_dev = { | |
"TMR", &tmr_unit, tmr_reg, NULL, | |
1, 0, 0, 0, 0, 0, | |
NULL, NULL, &tmr_reset, | |
NULL, NULL, NULL, | |
NULL, 0 }; | |
/* RX01 data structures | |
fl_dev RX device descriptor | |
fl_unit RX unit list | |
fl_reg RX register list | |
fl_mod RX modifier list | |
*/ | |
UNIT fl_unit = { UDATA (&fl_svc, | |
UNIT_FIX+UNIT_ATTABLE+UNIT_BUFABLE+UNIT_MUSTBUF, FL_SIZE) }; | |
REG fl_reg[] = { | |
{ HRDATA (FNC, fl_fnc, 8) }, | |
{ HRDATA (ES, fl_esr, 8) }, | |
{ HRDATA (ECODE, fl_ecode, 8) }, | |
{ HRDATA (TA, fl_track, 8) }, | |
{ HRDATA (SA, fl_sector, 8) }, | |
{ DRDATA (STATE, fl_state, 4), REG_RO }, | |
{ DRDATA (BPTR, fl_bptr, 7) }, | |
{ DRDATA (CTIME, fl_cwait, 24), PV_LEFT }, | |
{ DRDATA (STIME, fl_swait, 24), PV_LEFT }, | |
{ DRDATA (XTIME, fl_xwait, 24), PV_LEFT }, | |
{ FLDATA (STOP_IOE, fl_stopioe, 0) }, | |
{ BRDATA (DBUF, fl_buf, 16, 8, FL_NUMBY) }, | |
{ NULL } }; | |
MTAB fl_mod[] = { | |
{ UNIT_WLK, 0, "write enabled", "WRITEENABLED", NULL }, | |
{ UNIT_WLK, UNIT_WLK, "write locked", "LOCKED", NULL }, | |
{ 0 } }; | |
DEVICE fl_dev = { | |
"RX", &fl_unit, fl_reg, fl_mod, | |
1, DEV_RDX, 20, 1, DEV_RDX, 8, | |
NULL, NULL, &fl_reset, | |
NULL, NULL, NULL, | |
NULL, 0 }; | |
/* Terminal MxPR routines | |
rxcs_rd/wr input control/status | |
rxdb_rd input buffer | |
txcs_rd/wr output control/status | |
txdb_wr output buffer | |
*/ | |
int32 rxcs_rd (void) | |
{ | |
return (tti_csr & RXCS_RD); | |
} | |
void rxcs_wr (int32 data) | |
{ | |
if ((data & CSR_IE) == 0) tto_int = 0; | |
else if ((tti_csr & (CSR_DONE + CSR_IE)) == CSR_DONE) | |
tti_int = 1; | |
tti_csr = (tti_csr & ~RXCS_WR) | (data & RXCS_WR); | |
return; | |
} | |
int32 rxdb_rd (void) | |
{ | |
int32 t = tti_buf; /* char + error */ | |
tti_csr = tti_csr & ~CSR_DONE; /* clr done */ | |
tti_buf = tti_buf & BMASK; /* clr errors */ | |
tti_int = 0; | |
return t; | |
} | |
int32 txcs_rd (void) | |
{ | |
return (tto_csr & TXCS_RD); | |
} | |
void txcs_wr (int32 data) | |
{ | |
if ((data & CSR_IE) == 0) tto_int = 0; | |
else if ((tto_csr & (CSR_DONE + CSR_IE)) == CSR_DONE) | |
tto_int = 1; | |
tto_csr = (tto_csr & ~TXCS_WR) | (data & TXCS_WR); | |
return; | |
} | |
void txdb_wr (int32 data) | |
{ | |
tto_buf = data & WMASK; /* save data */ | |
tto_csr = tto_csr & ~CSR_DONE; /* clear flag */ | |
tto_int = 0; /* clear int */ | |
if (tto_buf & TXDB_SEL) fl_wr_txdb (tto_buf); /* floppy? */ | |
else sim_activate (&tto_unit, tto_unit.wait); /* no, console */ | |
return; | |
} | |
/* Terminal input service (poll for character */ | |
t_stat tti_svc (UNIT *uptr) | |
{ | |
int32 c; | |
sim_activate (&tti_unit, tti_unit.wait); /* continue poll */ | |
if ((c = sim_poll_kbd ()) < SCPE_KFLAG) return c; /* no char or error? */ | |
if (c & SCPE_BREAK) /* break? */ | |
tti_buf = RXDB_ERR | RXDB_FRM | RXDB_RBR; | |
else tti_buf = c & ((tti_unit.flags & UNIT_8B)? 0377: 0177); | |
tti_unit.pos = tti_unit.pos + 1; | |
tti_csr = tti_csr | CSR_DONE; | |
if (tti_csr & CSR_IE) tti_int = 1; | |
return SCPE_OK; | |
} | |
/* Terminal input reset */ | |
t_stat tti_reset (DEVICE *dptr) | |
{ | |
tti_buf = 0; | |
tti_csr = 0; | |
tti_int = 0; | |
sim_activate (&tti_unit, tti_unit.wait); /* activate unit */ | |
return SCPE_OK; | |
} | |
/* Terminal output service (output character) */ | |
t_stat tto_svc (UNIT *uptr) | |
{ | |
int32 c; | |
t_stat r; | |
if ((tto_buf & TXDB_SEL) == 0) { /* for console? */ | |
c = tto_buf & ((tto_unit.flags & UNIT_8B)? 0377: 0177); | |
if ((r = sim_putchar_s (c)) != SCPE_OK) { /* output; error? */ | |
sim_activate (uptr, uptr->wait); /* retry */ | |
return ((r == SCPE_STALL)? SCPE_OK: r); } /* !stall? report */ | |
tto_unit.pos = tto_unit.pos + 1; } | |
tto_csr = tto_csr | CSR_DONE; | |
if (tto_csr & CSR_IE) tto_int = 1; | |
return SCPE_OK; | |
} | |
/* Terminal output reset */ | |
t_stat tto_reset (DEVICE *dptr) | |
{ | |
tto_buf = 0; | |
tto_csr = CSR_DONE; | |
tto_int = 0; | |
sim_cancel (&tto_unit); /* deactivate unit */ | |
return SCPE_OK; | |
} | |
/* Programmable timer | |
The architected VAX timer, which increments at 1Mhz, cannot be | |
accurately simulated due to the overhead that would be required | |
for 1M clock events per second. Instead, a hidden calibrated | |
100Hz timer is run (because that's what VMS expects), and a | |
gross hack is used for the interval timer. | |
When the timer is started, the timer interval is inspected. | |
if (int < 0 and small) then testing timer, count instructions. | |
Small is determined by when the requested interval is less | |
than the size of a 100Hz system clock tick. | |
if (int >= 0 or large) then counting a real interval, schedule | |
clock events at 100Hz using calibrated clock delay. When | |
the remaining time value gets small enough, behave like | |
the small case above. | |
If the interval register is read, then its value between events | |
is interpolated using the current instruction count versus the | |
count when the most recent event started, the result is scaled | |
to the calibrated system clock, unless the interval being timed | |
is less than a calibrated system clock tick (or the calibrated | |
clock is running very slowly) at which time the result will be | |
the elapsed instruction count. | |
*/ | |
int32 iccs_rd (void) | |
{ | |
return tmr_iccs & TMR_CSR_RD; | |
} | |
void iccs_wr (int32 val) | |
{ | |
if ((val & TMR_CSR_RUN) == 0) { /* clearing run? */ | |
sim_cancel (&tmr_unit); /* cancel timer */ | |
if (tmr_iccs & TMR_CSR_RUN) /* run 1 -> 0? */ | |
tmr_icr = icr_rd (TRUE); } /* update itr */ | |
tmr_iccs = tmr_iccs & ~(val & TMR_CSR_W1C); /* W1C csr */ | |
tmr_iccs = (tmr_iccs & ~TMR_CSR_WR) | /* new r/w */ | |
(val & TMR_CSR_WR); | |
if (val & TMR_CSR_XFR) tmr_icr = tmr_nicr; /* xfr set? */ | |
if (val & TMR_CSR_RUN) { /* run? */ | |
if (val & TMR_CSR_XFR) /* new tir? */ | |
sim_cancel (&tmr_unit); /* stop prev */ | |
if (!sim_is_active (&tmr_unit)) /* not running? */ | |
tmr_sched (); } /* activate */ | |
else if (val & TMR_CSR_SGL) { /* single step? */ | |
tmr_incr (1); /* incr tmr */ | |
if (tmr_icr == 0) /* if ovflo, */ | |
tmr_icr = tmr_nicr; } /* reload tir */ | |
if ((tmr_iccs & (TMR_CSR_DON | TMR_CSR_IE)) != /* update int */ | |
(TMR_CSR_DON | TMR_CSR_IE)) tmr_int = 0; | |
return; | |
} | |
int32 icr_rd (t_bool interp) | |
{ | |
uint32 delta; | |
if (interp || (tmr_iccs & TMR_CSR_RUN)) { /* interp, running? */ | |
delta = sim_grtime () - tmr_sav; /* delta inst */ | |
if ((tmr_inc == TMR_INC) && /* scale large int */ | |
(tmr_poll > TMR_INC)) | |
delta = (uint32) ((((double) delta) * TMR_INC) / tmr_poll); | |
if (delta >= tmr_inc) delta = tmr_inc - 1; | |
return tmr_icr + delta; } | |
return tmr_icr; | |
} | |
int32 nicr_rd () | |
{ | |
return tmr_nicr; | |
} | |
void nicr_wr (int32 val) | |
{ | |
tmr_nicr = val; | |
} | |
/* 100Hz base clock unit service */ | |
t_stat clk_svc (UNIT *uptr) | |
{ | |
int32 t; | |
t = sim_rtcn_calb (clk_tps, TMR_CLK); /* calibrate clock */ | |
sim_activate (&clk_unit, t); /* reactivate unit */ | |
tmr_poll = t; /* set tmr poll */ | |
tmxr_poll = t * TMXR_MULT; /* set mux poll */ | |
todr_reg = todr_reg + 1; /* incr TODR */ | |
return SCPE_OK; | |
} | |
/* Interval timer unit service */ | |
t_stat tmr_svc (UNIT *uptr) | |
{ | |
tmr_incr (tmr_inc); /* incr timer */ | |
return SCPE_OK; | |
} | |
/* Timer increment */ | |
void tmr_incr (uint32 inc) | |
{ | |
uint32 new_icr = (tmr_icr + inc) & LMASK; /* add incr */ | |
if (new_icr < tmr_icr) { /* ovflo? */ | |
tmr_icr = 0; /* now 0 */ | |
if (tmr_iccs & TMR_CSR_DON) /* done? set err */ | |
tmr_iccs = tmr_iccs | TMR_CSR_ERR; | |
else tmr_iccs = tmr_iccs | TMR_CSR_DON; /* set done */ | |
if (tmr_iccs & TMR_CSR_RUN) { /* run? */ | |
tmr_icr = tmr_nicr; /* reload */ | |
tmr_sched (); } /* reactivate */ | |
if (tmr_iccs & TMR_CSR_IE) tmr_int = 1; /* ie? set int req */ | |
else tmr_int = 0; } | |
else { tmr_icr = new_icr; /* no, update icr */ | |
if (tmr_iccs & TMR_CSR_RUN) /* still running? */ | |
tmr_sched (); } /* reactivate */ | |
return; | |
} | |
/* Timer scheduling */ | |
void tmr_sched (void) | |
{ | |
int32 clk_time = sim_is_active (&clk_unit) - 1; | |
int32 tmr_time; | |
tmr_sav = sim_grtime (); /* save intvl base */ | |
if (tmr_icr > (0xFFFFFFFFu - TMR_INC)) { /* short interval? */ | |
tmr_inc = (~tmr_icr + 1); /* inc = interval */ | |
tmr_time = tmr_inc; } | |
else { tmr_inc = TMR_INC; /* usec/interval */ | |
tmr_time = tmr_poll; } | |
if (tmr_time == 0) tmr_time = 1; | |
if ((tmr_inc = TMR_INC) && (tmr_time > clk_time)) { | |
/* Align scheduled event to be identical to the event for the next clock | |
tick. This lets us always see a consistent calibrated value, both for | |
this scheduling, AND for any query of the current timer register that | |
may happen in tmr_icr_rd (). This presumes that sim_activate will | |
queue the interval timer behind the event for the 100Hz clock tick. */ | |
tmr_inc = (uint32) (((double) clk_time * TMR_INC) / tmr_poll); | |
tmr_time = clk_time; } | |
sim_activate (&tmr_unit, tmr_time); | |
return; | |
} | |
/* 100Hz clock reset */ | |
t_stat clk_reset (DEVICE *dptr) | |
{ | |
int32 t; | |
t = sim_rtcn_init (clk_unit.wait, TMR_CLK); /* init 100Hz timer */ | |
sim_activate (&clk_unit, t); /* activate 100Hz unit */ | |
tmr_poll = t; /* set tmr poll */ | |
tmxr_poll = t * TMXR_MULT; /* set mux poll */ | |
return SCPE_OK; | |
} | |
/* Interval timer reset */ | |
t_stat tmr_reset (DEVICE *dptr) | |
{ | |
tmr_iccs = 0; | |
tmr_icr = 0; | |
tmr_nicr = 0; | |
tmr_int = 0; | |
sim_cancel (&tmr_unit); /* cancel timer */ | |
if (sim_switches & SWMASK ('P')) todr_powerup (); /* powerup? set TODR */ | |
return SCPE_OK; | |
} | |
/* TODR routines */ | |
int32 todr_rd (void) | |
{ | |
return todr_reg; | |
} | |
void todr_wr (int32 data) | |
{ | |
todr_reg = data; | |
return; | |
} | |
t_stat todr_powerup (void) | |
{ | |
uint32 base; | |
time_t curr; | |
struct tm *ctm; | |
curr = time (NULL); /* get curr time */ | |
if (curr == (time_t) -1) return SCPE_NOFNC; /* error? */ | |
ctm = localtime (&curr); /* decompose */ | |
if (ctm == NULL) return SCPE_NOFNC; /* error? */ | |
base = (((((ctm->tm_yday * 24) + /* sec since 1-Jan */ | |
ctm->tm_hour) * 60) + | |
ctm->tm_min) * 60) + | |
ctm->tm_sec; | |
todr_reg = (base * 100) + 0x10000000; /* cvt to VAX form */ | |
return SCPE_OK; | |
} | |
/* Console write, txdb<11:8> != 0 (console unit) */ | |
t_stat fl_wr_txdb (int32 data) | |
{ | |
int32 sel = TXDB_GETSEL (data); /* get selection */ | |
if (sel == TXDB_FCMD) { /* floppy command? */ | |
fl_fnc = FL_GETFNC (data); /* get function */ | |
if (fl_state != FL_IDLE) switch (fl_fnc) { /* cmd in prog? */ | |
case FL_FNCCA: /* cancel? */ | |
sim_cancel (&fl_unit); /* stop op */ | |
fl_state = FL_DONE; | |
break; | |
default: /* all others */ | |
fl_protocol_error (); | |
return SCPE_OK; | |
} | |
else switch (fl_fnc) { /* idle, case */ | |
case FL_FNCRS: /* read status */ | |
fl_state = FL_READSTA; | |
break; | |
case FL_FNCCA: /* cancel, nop */ | |
fl_state = FL_DONE; | |
break; | |
case FL_FNCRD: case FL_FNCWR: /* data xfer */ | |
case FL_FNCWD: | |
fl_esr = 0; /* clear errors */ | |
fl_ecode = 0; | |
fl_bptr = 0; /* init buffer */ | |
fl_state = FL_RWDS; /* sector next */ | |
break; | |
default: /* all others */ | |
fl_protocol_error (); | |
return SCPE_OK; | |
} | |
sim_activate (&fl_unit, fl_cwait); /* sched command */ | |
} /* end command */ | |
else if (sel == TXDB_FDAT) { /* floppy data? */ | |
switch (fl_state) { /* data */ | |
case FL_RWDS: /* expecting sector */ | |
fl_sector = data & FL_M_SECTOR; | |
fl_state = FL_RWDT; | |
break; | |
case FL_RWDT: /* expecting track */ | |
fl_track = data & FL_M_TRACK; | |
if (fl_fnc == FL_FNCRD) fl_state = FL_READ; | |
else fl_state = FL_FILL; | |
break; | |
case FL_FILL: /* expecting wr data */ | |
fl_buf[fl_bptr++] = data & BMASK; | |
if (fl_bptr >= FL_NUMBY) fl_state = FL_WRITE; | |
break; | |
default: | |
fl_protocol_error (); | |
return SCPE_OK; | |
} | |
sim_activate (&fl_unit, fl_xwait); /* schedule xfer */ | |
} /* end else data */ | |
else sim_activate (&tto_unit, tto_unit.wait); /* discard for now */ | |
return SCPE_OK; | |
} | |
/* Unit service; the action to be taken depends on the transfer state: | |
FL_IDLE Should never get here | |
FL_RWDS Set TXCS<done> (driver sends sector, sets FL_RWDT) | |
FL_RWDT Set TXCS<done> (driver sends track, sets FL_READ/FL_FILL) | |
FL_READ Set TXCS<done>, schedule FL_READ1 | |
FL_READ1 Read sector, schedule FL_EMPTY | |
FL_EMPTY Copy data to RXDB, set RXCS<done> | |
if fl_bptr >= max, schedule completion, else continue | |
FL_FILL Set TXCS<done> (driver sends next byte, sets FL_WRITE) | |
FL_WRITE Set TXCS<done>, schedule FL_WRITE1 | |
FL_WRITE1 Write sector, schedule FL_DONE | |
FL_DONE Copy requested data to TXDB, set FL_IDLE | |
*/ | |
t_stat fl_svc (UNIT *uptr) | |
{ | |
int32 i, t; | |
uint32 da; | |
int8 *fbuf = uptr->filebuf; | |
switch (fl_state) { /* case on state */ | |
case FL_IDLE: /* idle */ | |
return SCPE_IERR; /* done */ | |
case FL_READ: case FL_WRITE: /* read, write */ | |
fl_state = fl_state + 1; /* set next state */ | |
t = abs (fl_track - uptr->TRACK); /* # tracks to seek */ | |
if (t == 0) t = 1; /* minimum 1 */ | |
sim_activate (uptr, fl_swait * t); /* schedule seek */ | |
/* fall thru, set flag */ | |
case FL_RWDS: case FL_RWDT: case FL_FILL: /* rwds, rwdt, fill */ | |
tto_csr = tto_csr | CSR_DONE; /* set output done */ | |
if (tto_csr & CSR_IE) tto_int = 1; | |
break; | |
case FL_READ1: /* read, seek done */ | |
if (fl_test_xfr (uptr, FALSE)) { /* transfer ok? */ | |
da = CALC_DA (fl_track, fl_sector); /* get disk address */ | |
for (i = 0; i < FL_NUMBY; i++) /* copy sector to buf */ | |
fl_buf[i] = fbuf[da + i]; | |
tti_buf = fl_esr | FL_CDONE; /* completion code */ | |
tti_csr = tti_csr | CSR_DONE; /* set input flag */ | |
if (tti_csr & CSR_IE) tti_int = 1; | |
fl_state = FL_EMPTY; } /* go empty */ | |
else fl_state = FL_DONE; /* error? cmd done */ | |
sim_activate (uptr, fl_xwait); /* schedule next */ | |
break; | |
case FL_EMPTY: /* empty buffer */ | |
if ((tti_csr & CSR_DONE) == 0) { /* prev data taken? */ | |
tti_buf = FL_CDATA | fl_buf[fl_bptr++]; /* get next byte */ | |
tti_csr = tti_csr | CSR_DONE; /* set input flag */ | |
if (tti_csr & CSR_IE) tti_int = 1; | |
if (fl_bptr >= FL_NUMBY) { /* buffer empty? */ | |
fl_state = FL_IDLE; /* cmd done */ | |
break; | |
} | |
} | |
sim_activate (uptr, fl_xwait); /* schedule next */ | |
break; | |
case FL_WRITE1: /* write, seek done */ | |
if (fl_test_xfr (uptr, TRUE)) { /* transfer ok? */ | |
da = CALC_DA (fl_track, fl_sector); /* get disk address */ | |
for (i = 0; i < FL_NUMBY; i++) /* copy buf to sector */ | |
fbuf[da + i] = fl_buf[i]; | |
da = da + FL_NUMBY; | |
if (da > uptr->hwmark) uptr->hwmark = da; /* update hwmark */ | |
} | |
if (fl_fnc == FL_FNCWD) fl_esr |= FL_STADDA; /* wrdel? set status*/ | |
fl_state = FL_DONE; /* command done */ | |
sim_activate (uptr, fl_xwait); /* schedule */ | |
break; | |
case FL_DONE: /* command done */ | |
if (tti_csr & CSR_DONE) /* input buf empty? */ | |
sim_activate (uptr, fl_xwait); /* no, wait */ | |
else { /* yes */ | |
tti_buf = fl_esr | FL_CDONE; /* completion code */ | |
tti_csr = tti_csr | CSR_DONE; /* set input flag */ | |
if (tti_csr & CSR_IE) tti_int = 1; | |
fl_state = FL_IDLE; /* floppy idle */ | |
} | |
break; | |
case FL_READSTA: /* read status */ | |
if ((tti_csr & CSR_DONE) == 0) { /* input buf empty? */ | |
tti_buf = fl_ecode; /* return err code */ | |
tti_csr = tti_csr | CSR_DONE; /* set input flag */ | |
if (tti_csr & CSR_IE) tti_int = 1; | |
fl_state = FL_DONE; /* command done */ | |
} | |
sim_activate (uptr, fl_xwait); | |
break; | |
} | |
return SCPE_OK; | |
} | |
/* Test for data transfer okay */ | |
t_bool fl_test_xfr (UNIT *uptr, t_bool wr) | |
{ | |
if ((uptr->flags & UNIT_BUF) == 0) /* not buffered? */ | |
fl_ecode = 0110; | |
else if (fl_track >= FL_NUMTR) /* bad track? */ | |
fl_ecode = 0040; /* done, error */ | |
else if ((fl_sector == 0) || (fl_sector > FL_NUMSC)) /* bad sect? */ | |
fl_ecode = 0070; /* done, error */ | |
else if (wr && (uptr->flags & UNIT_WPRT)) /* write and locked? */ | |
fl_ecode = 0100; /* done, error */ | |
else { uptr->TRACK = fl_track; /* now on track */ | |
return TRUE; } | |
fl_esr = fl_esr | FL_STAERR; /* set error */ | |
return FALSE; | |
} | |
/* Set protocol error */ | |
void fl_protocol_error (void) | |
{ | |
if ((tto_csr & CSR_DONE) == 0) { /* output busy? */ | |
tto_csr = tto_csr | CSR_DONE; /* set done */ | |
if (tto_csr & CSR_IE) tto_int = 1; } | |
if ((tti_csr & CSR_DONE) == 0) { /* input idle? */ | |
tti_csr = tti_csr | CSR_DONE; /* set done */ | |
if (tti_csr & CSR_IE) tti_int = 1; } | |
tti_buf = FL_CPROT; /* status */ | |
fl_state = FL_IDLE; /* floppy idle */ | |
return; | |
} | |
/* Reset */ | |
t_stat fl_reset (DEVICE *dptr) | |
{ | |
fl_esr = FL_STAINC; | |
fl_ecode = 0; /* clear error */ | |
fl_sector = 0; /* clear addr */ | |
fl_track = 0; | |
fl_state = FL_IDLE; /* ctrl idle */ | |
fl_bptr = 0; | |
sim_cancel (&fl_unit); /* cancel drive */ | |
fl_unit.TRACK = 0; | |
return SCPE_OK; | |
} |