/* pdp8_cpu.c: PDP-8 CPU simulator | |
Copyright (c) 1993-1999, Robert M Supnik | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name of Robert M Supnik shall not | |
be used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from Robert M Supnik. | |
14-Apr-99 RMS Changed t_addr to unsigned | |
The register state for the PDP-8 is: | |
AC<0:11> accumulator | |
MQ<0:11> multiplier-quotient | |
L link flag | |
PC<0:11> program counter | |
IF<0:2> instruction field | |
IB<0:2> instruction buffer | |
DF<0:2> data field | |
UF user flag | |
UB user buffer | |
SF<0:6> interrupt save field | |
The PDP-8 has three instruction formats: memory reference, I/O transfer, | |
and operate. The memory reference format is: | |
0 1 2 3 4 5 6 7 8 9 10 11 | |
+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| op |in|zr| page offset | memory reference | |
+--+--+--+--+--+--+--+--+--+--+--+--+ | |
<0:2> mnemonic action | |
000 AND AC = AC & M[MA] | |
001 TAD L'AC = AC + M[MA] | |
010 DCA M[MA] = AC, AC = 0 | |
011 ISZ M[MA] = M[MA] + 1, skip if M[MA] == 0 | |
100 JMS M[MA] = PC, PC = MA + 1 | |
101 JMP PC = MA | |
<3:4> mode action | |
00 page zero MA = IF'0'IR<5:11> | |
01 current page MA = IF'PC<0:4>'IR<5:11> | |
10 indirect page zero MA = xF'M[IF'0'IR<5:11>] | |
11 indirect current page MA = xF'M[IF'PC<0:4>'IR<5:11>] | |
where x is D for AND, TAD, ISZ, DCA, and I for JMS, JMP. | |
Memory reference instructions can access an address space of 32K words. | |
The address space is divided into eight 4K word fields; each field is | |
divided into thirty-two 128 word pages. An instruction can directly | |
address, via its 7b offset, locations 0-127 on page zero or on the current | |
page. All 32k words can be accessed via indirect addressing and the | |
instruction and data field registers. If an indirect address is in | |
locations 0010-0017 of any field, the indirect address is incremented | |
and rewritten to memory before use. | |
*/ | |
/* The I/O transfer format is as follows: | |
0 1 2 3 4 5 6 7 8 9 10 11 | |
+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| op | device | pulse | I/O transfer | |
+--+--+--+--+--+--+--+--+--+--+--+--+ | |
The IO transfer instruction sends the the specified pulse to the | |
specified I/O device. The I/O device may take data from the AC, | |
return data to the AC, initiate or cancel operations, or skip on | |
status. | |
The operate format is as follows: | |
+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| 1| 1| 1| 0| | | | | | | | | operate group 1 | |
+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| | | | | | | | | |
| | | | | | | +--- increment AC 3 | |
| | | | | | +--- rotate 1 or 2 4 | |
| | | | | +--- rotate left 4 | |
| | | | +--- rotate right 4 | |
| | | +--- complement L 2 | |
| | +--- complement AC 2 | |
| +--- clear L 1 | |
+-- clear AC 1 | |
+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| 1| 1| 1| 1| | | | | | | | 0| operate group 2 | |
+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| | | | | | | | |
| | | | | | +--- halt 3 | |
| | | | | +--- or switch register 3 | |
| | | | +--- reverse skip sense 1 | |
| | | +--- skip on L != 0 1 | |
| | +--- skip on AC == 0 1 | |
| +--- skip on AC < 0 1 | |
+-- clear AC 2 | |
+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| 1| 1| 1| 1| | | | | | | | 1| operate group 3 | |
+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| | | | \______/ | |
| | | | | | |
| | +--|-----+--- EAE command 3 | |
| | +--- AC -> MQ, 0 -> AC 2 | |
| +--- MQ v AC --> AC 2 | |
+-- clear AC 1 | |
The operate instruction can be microprogrammed to perform operations | |
on the AC, MQ, and link. | |
*/ | |
/* This routine is the instruction decode routine for the PDP-8. | |
It is called from the simulator control program to execute | |
instructions in simulated memory, starting at the simulated PC. | |
It runs until 'reason' is set non-zero. | |
General notes: | |
1. Reasons to stop. The simulator can be stopped by: | |
HALT instruction | |
breakpoint encountered | |
unimplemented instruction and stop_inst flag set | |
I/O error in I/O simulator | |
2. Interrupts. Interrupts are maintained by three parallel variables: | |
dev_done device done flags | |
dev_enable device interrupt enable flags | |
int_req interrupt requests | |
In addition, int_req contains the interrupt enable flag, the | |
CIF not pending flag, and the ION not pending flag. If all | |
three of these flags are set, and at least one interrupt request | |
is set, then an interrupt occurs. | |
3. Non-existent memory. On the PDP-8, reads to non-existent memory | |
return zero, and writes are ignored. In the simulator, the | |
largest possible memory is instantiated and initialized to zero. | |
Thus, only writes outside the current field (indirect writes) need | |
be checked against actual memory size. | |
3. Adding I/O devices. Three modules must be modified: | |
pdp8_defs.h add interrupt request definition | |
pdp8_cpu.c add IOT dispatch | |
pdp8_sys.c add pointer to data structures to sim_devices | |
*/ | |
#include "pdp8_defs.h" | |
#define ILL_ADR_FLAG 0100000 /* invalid addr flag */ | |
#define save_ibkpt (cpu_unit.u3) /* saved bkpt addr */ | |
#define UNIT_V_NOEAE (UNIT_V_UF) /* EAE absent */ | |
#define UNIT_NOEAE (1 << UNIT_V_NOEAE) | |
#define UNIT_V_MSIZE (UNIT_V_UF+1) /* dummy mask */ | |
#define UNIT_MSIZE (1 << UNIT_V_MSIZE) | |
unsigned int16 M[MAXMEMSIZE] = { 0 }; /* main memory */ | |
int32 saved_LAC = 0; /* saved L'AC */ | |
int32 saved_MQ = 0; /* saved MQ */ | |
int32 saved_PC = 0; /* saved IF'PC */ | |
int32 saved_DF = 0; /* saved Data Field */ | |
int32 IB = 0; /* Instruction Buffer */ | |
int32 SF = 0; /* Save Field */ | |
int32 emode = 0; /* EAE mode */ | |
int32 gtf = 0; /* EAE gtf flag */ | |
int32 SC = 0; /* EAE shift count */ | |
int32 UB = 0; /* User mode Buffer */ | |
int32 UF = 0; /* User mode Flag */ | |
int32 OSR = 0; /* Switch Register */ | |
int32 old_PC = 0; /* old PC */ | |
int32 dev_enable = INT_INIT_ENABLE; /* dev intr enables */ | |
int32 dev_done = 0; /* dev done flags */ | |
int32 int_req = 0; /* intr requests */ | |
int32 ibkpt_addr = ILL_ADR_FLAG | ADDRMASK; /* breakpoint addr */ | |
int32 stop_inst = 0; /* trap on ill inst */ | |
extern int32 sim_int_char; | |
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw); | |
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw); | |
t_stat cpu_reset (DEVICE *dptr); | |
t_stat cpu_svc (UNIT *uptr); | |
t_stat cpu_set_size (UNIT *uptr, int32 value); | |
extern t_stat sim_activate (UNIT *uptr, int32 delay); | |
/* CPU data structures | |
cpu_dev CPU device descriptor | |
cpu_unit CPU unit descriptor | |
cpu_reg CPU register list | |
cpu_mod CPU modifier list | |
*/ | |
UNIT cpu_unit = { UDATA (&cpu_svc, UNIT_FIX + UNIT_BINK, MAXMEMSIZE) }; | |
REG cpu_reg[] = { | |
{ ORDATA (PC, saved_PC, 15) }, | |
{ ORDATA (AC, saved_LAC, 12) }, | |
{ FLDATA (L, saved_LAC, 12) }, | |
{ ORDATA (MQ, saved_MQ, 12) }, | |
{ ORDATA (SR, OSR, 12) }, | |
{ GRDATA (IF, saved_PC, 8, 3, 12) }, | |
{ GRDATA (DF, saved_DF, 8, 3, 12) }, | |
{ GRDATA (IB, IB, 8, 3, 12) }, | |
{ ORDATA (SF, SF, 7) }, | |
{ FLDATA (UB, UB, 0) }, | |
{ FLDATA (UF, UF, 0) }, | |
{ ORDATA (SC, SC, 5) }, | |
{ FLDATA (GTF, gtf, 0) }, | |
{ FLDATA (EMODE, emode, 0) }, | |
{ FLDATA (ION, int_req, INT_V_ION) }, | |
{ FLDATA (ION_DELAY, int_req, INT_V_NO_ION_PENDING) }, | |
{ FLDATA (CIF_DELAY, int_req, INT_V_NO_CIF_PENDING) }, | |
{ FLDATA (PWR_INT, int_req, INT_V_PWR) }, | |
{ FLDATA (UF_INT, int_req, INT_V_UF) }, | |
{ ORDATA (INT, int_req, INT_V_ION+1), REG_RO }, | |
{ ORDATA (DONE, dev_done, INT_V_DIRECT), REG_RO }, | |
{ ORDATA (ENABLE, dev_enable, INT_V_DIRECT), REG_RO }, | |
{ FLDATA (NOEAE, cpu_unit.flags, UNIT_V_NOEAE), REG_HRO }, | |
{ ORDATA (OLDPC, old_PC, 15), REG_RO }, | |
{ FLDATA (STOP_INST, stop_inst, 0) }, | |
{ ORDATA (BREAK, ibkpt_addr, 16) }, | |
{ ORDATA (WRU, sim_int_char, 8) }, | |
{ NULL } }; | |
MTAB cpu_mod[] = { | |
{ UNIT_NOEAE, UNIT_NOEAE, "no EAE", "NOEAE", NULL }, | |
{ UNIT_NOEAE, 0, "EAE", "EAE", NULL }, | |
{ UNIT_MSIZE, 4096, NULL, "4K", &cpu_set_size }, | |
{ UNIT_MSIZE, 8192, NULL, "8K", &cpu_set_size }, | |
{ UNIT_MSIZE, 12288, NULL, "12K", &cpu_set_size }, | |
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size }, | |
{ UNIT_MSIZE, 20480, NULL, "20K", &cpu_set_size }, | |
{ UNIT_MSIZE, 24576, NULL, "24K", &cpu_set_size }, | |
{ UNIT_MSIZE, 28672, NULL, "28K", &cpu_set_size }, | |
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size }, | |
{ 0 } }; | |
DEVICE cpu_dev = { | |
"CPU", &cpu_unit, cpu_reg, cpu_mod, | |
1, 8, 15, 1, 8, 12, | |
&cpu_ex, &cpu_dep, &cpu_reset, | |
NULL, NULL, NULL }; | |
t_stat sim_instr (void) | |
{ | |
extern int32 sim_interval; | |
register int32 IR, MB, IF, DF, LAC, MQ; | |
register t_addr PC, MA; | |
int32 device, pulse, temp, iot_data; | |
t_stat reason; | |
extern int32 tti (int32 pulse, int32 AC); | |
extern int32 tto (int32 pulse, int32 AC); | |
extern int32 ptr (int32 pulse, int32 AC); | |
extern int32 ptp (int32 pulse, int32 AC); | |
extern int32 clk (int32 pulse, int32 AC); | |
extern int32 lpt (int32 pulse, int32 AC); | |
extern int32 rk (int32 pulse, int32 AC); | |
extern int32 rx (int32 pulse, int32 AC); | |
extern int32 rf60 (int32 pulse, int32 AC); | |
extern int32 rf61 (int32 pulse, int32 AC); | |
extern int32 rf62 (int32 pulse, int32 AC); | |
extern int32 rf64 (int32 pulse, int32 AC); | |
extern int32 mt70 (int32 pulse, int32 AC); | |
extern int32 mt71 (int32 pulse, int32 AC); | |
extern int32 mt72 (int32 pulse, int32 AC); | |
/* Restore register state */ | |
PC = saved_PC & 007777; /* load local copies */ | |
IF = saved_PC & 070000; | |
DF = saved_DF & 070000; | |
LAC = saved_LAC & 017777; | |
MQ = saved_MQ & 07777; | |
int_req = INT_UPDATE; | |
reason = 0; | |
/* Main instruction fetch/decode loop */ | |
while (reason == 0) { /* loop until halted */ | |
if (sim_interval <= 0) { /* check clock queue */ | |
if (reason = sim_process_event ()) break; } | |
if (int_req > INT_PENDING) { /* interrupt? */ | |
int_req = int_req & ~INT_ION; /* interrupts off */ | |
SF = (UF << 6) | (IF >> 9) | (DF >> 12); /* form save field */ | |
IF = IB = DF = UF = UB = 0; /* clear mem ext */ | |
old_PC = M[0] = PC; /* save PC in 0 */ | |
PC = 1; } /* fetch next from 1 */ | |
MA = IF | PC; /* form PC */ | |
if (MA == ((t_addr) ibkpt_addr)) { /* breakpoint? */ | |
save_ibkpt = ibkpt_addr; /* save ibkpt */ | |
ibkpt_addr = ibkpt_addr | ILL_ADR_FLAG; /* disable */ | |
sim_activate (&cpu_unit, 1); /* sched re-enable */ | |
reason = STOP_IBKPT; /* stop simulation */ | |
break; } | |
IR = M[MA]; /* fetch instruction */ | |
PC = (PC + 1) & 07777; /* increment PC */ | |
int_req = int_req | INT_NO_ION_PENDING; /* clear ION delay */ | |
sim_interval = sim_interval - 1; | |
/* Instruction decoding. | |
The opcode (IR<0:2>), indirect flag (IR<3>), and page flag (IR<4>) | |
are decoded together. This produces 32 decode points, four per | |
major opcode. For IOT, the extra decode points are not useful; | |
for OPR, only the group flag (IR<3>) is used. | |
The following macros define the address calculations for data and | |
jump calculations. Data calculations return a full 15b extended | |
address, jump calculations a 12b field-relative address. | |
Note that MA contains IF'PC. | |
*/ | |
#define ZERO_PAGE MA = IF | (IR & 0177) | |
#define CURR_PAGE MA = (MA & 077600) | (IR & 0177) | |
#define INDIRECT if ((MA & 07770) != 00010) MA = DF | M[MA]; \ | |
else MA = DF | (M[MA] = (M[MA] + 1) & 07777) | |
#define ZERO_PAGE_J MA = IR & 0177 | |
#define CURR_PAGE_J MA = (MA & 007600) | (IR & 0177) | |
#define INDIRECT_J if ((MA & 07770) != 00010) MA = M[MA]; \ | |
else MA = (M[MA] = (M[MA] + 1) & 07777) | |
#define CHANGE_FIELD IF = IB; UF = UB; \ | |
int_req = int_req | INT_NO_CIF_PENDING | |
switch ((IR >> 7) & 037) { /* decode IR<0:4> */ | |
/* Opcode 0, AND */ | |
case 000: /* AND, dir, zero */ | |
ZERO_PAGE; | |
LAC = LAC & (M[MA] | 010000); | |
break; | |
case 001: /* AND, dir, curr */ | |
CURR_PAGE; | |
LAC = LAC & (M[MA] | 010000); | |
break; | |
case 002: /* AND, indir, zero */ | |
ZERO_PAGE; | |
INDIRECT; | |
LAC = LAC & (M[MA] | 010000); | |
break; | |
case 003: /* AND, indir, curr */ | |
CURR_PAGE; | |
INDIRECT; | |
LAC = LAC & (M[MA] | 010000); | |
break; | |
/* Opcode 1, TAD */ | |
case 004: /* TAD, dir, zero */ | |
ZERO_PAGE; | |
LAC = (LAC + M[MA]) & 017777; | |
break; | |
case 005: /* TAD, dir, curr */ | |
CURR_PAGE; | |
LAC = (LAC + M[MA]) & 017777; | |
break; | |
case 006: /* TAD, indir, zero */ | |
ZERO_PAGE; | |
INDIRECT; | |
LAC = (LAC + M[MA]) & 017777; | |
break; | |
case 007: /* TAD, indir, curr */ | |
CURR_PAGE; | |
INDIRECT; | |
LAC = (LAC + M[MA]) & 017777; | |
break; | |
/* Opcode 2, ISZ */ | |
case 010: /* ISZ, dir, zero */ | |
ZERO_PAGE; | |
M[MA] = MB = (M[MA] + 1) & 07777; | |
if (MB == 0) PC = (PC + 1) & 07777; | |
break; | |
case 011: /* ISZ, dir, curr */ | |
CURR_PAGE; | |
M[MA] = MB = (M[MA] + 1) & 07777; | |
if (MB == 0) PC = (PC + 1) & 07777; | |
break; | |
case 012: /* ISZ, indir, zero */ | |
ZERO_PAGE; | |
INDIRECT; | |
MB = (M[MA] + 1) & 07777; | |
if (MEM_ADDR_OK (MA)) M[MA] = MB; | |
if (MB == 0) PC = (PC + 1) & 07777; | |
break; | |
case 013: /* ISZ, indir, curr */ | |
CURR_PAGE; | |
INDIRECT; | |
MB = (M[MA] + 1) & 07777; | |
if (MEM_ADDR_OK (MA)) M[MA] = MB; | |
if (MB == 0) PC = (PC + 1) & 07777; | |
break; | |
/* Opcode 3, DCA */ | |
case 014: /* DCA, dir, zero */ | |
ZERO_PAGE; | |
M[MA] = LAC & 07777; | |
LAC = LAC & 010000; | |
break; | |
case 015: /* DCA, dir, curr */ | |
CURR_PAGE; | |
M[MA] = LAC & 07777; | |
LAC = LAC & 010000; | |
break; | |
case 016: /* DCA, indir, zero */ | |
ZERO_PAGE; | |
INDIRECT; | |
if (MEM_ADDR_OK (MA)) M[MA] = LAC & 07777; | |
LAC = LAC & 010000; | |
break; | |
case 017: /* DCA, indir, curr */ | |
CURR_PAGE; | |
INDIRECT; | |
if (MEM_ADDR_OK (MA)) M[MA] = LAC & 07777; | |
LAC = LAC & 010000; | |
break; | |
/* Opcode 4, JMS */ | |
case 020: /* JMS, dir, zero */ | |
ZERO_PAGE_J; | |
CHANGE_FIELD; | |
M[IF | MA] = old_PC = PC; | |
PC = (MA + 1) & 07777; | |
break; | |
case 021: /* JMS, dir, curr */ | |
CURR_PAGE_J; | |
CHANGE_FIELD; | |
M[IF | MA] = old_PC = PC; | |
PC = (MA + 1) & 07777; | |
break; | |
case 022: /* JMS, indir, zero */ | |
ZERO_PAGE; | |
INDIRECT_J; | |
CHANGE_FIELD; | |
MA = IF | MA; | |
old_PC = PC; | |
if (MEM_ADDR_OK (MA)) M[MA] = PC; | |
PC = (MA + 1) & 07777; | |
break; | |
case 023: /* JMS, indir, curr */ | |
CURR_PAGE; | |
INDIRECT_J; | |
CHANGE_FIELD; | |
MA = IF | MA; | |
old_PC = PC; | |
if (MEM_ADDR_OK (MA)) M[MA] = PC; | |
PC = (MA + 1) & 07777; | |
break; | |
/* Opcode 5, JMP */ | |
case 024: /* JMP, dir, zero */ | |
ZERO_PAGE_J; | |
CHANGE_FIELD; | |
old_PC = PC; | |
PC = MA; | |
break; | |
case 025: /* JMP, dir, curr */ | |
CURR_PAGE_J; | |
CHANGE_FIELD; | |
old_PC = PC; | |
PC = MA; | |
break; | |
case 026: /* JMP, indir, zero */ | |
ZERO_PAGE; | |
INDIRECT_J; | |
CHANGE_FIELD; | |
old_PC = PC; | |
PC = MA; | |
break; | |
case 027: /* JMP, indir, curr */ | |
CURR_PAGE; | |
INDIRECT_J; | |
CHANGE_FIELD; | |
old_PC = PC; | |
PC = MA; | |
break; | |
/* Opcode 7, OPR group 1 */ | |
case 034:case 035: /* OPR, group 1 */ | |
switch ((IR >> 4) & 017) { /* decode IR<4:7> */ | |
case 0: /* nop */ | |
break; | |
case 1: /* CML */ | |
LAC = LAC ^ 010000; | |
break; | |
case 2: /* CMA */ | |
LAC = LAC ^ 07777; | |
break; | |
case 3: /* CMA CML */ | |
LAC = LAC ^ 017777; | |
break; | |
case 4: /* CLL */ | |
LAC = LAC & 07777; | |
break; | |
case 5: /* CLL CML = STL */ | |
LAC = LAC | 010000; | |
break; | |
case 6: /* CLL CMA */ | |
LAC = (LAC ^ 07777) & 07777; | |
break; | |
case 7: /* CLL CMA CML */ | |
LAC = (LAC ^ 07777) | 010000; | |
break; | |
case 010: /* CLA */ | |
LAC = LAC & 010000; | |
break; | |
case 011: /* CLA CML */ | |
LAC = (LAC & 010000) ^ 010000; | |
break; | |
case 012: /* CLA CMA = STA */ | |
LAC = LAC | 07777; | |
break; | |
case 013: /* CLA CMA CML */ | |
LAC = (LAC | 07777) ^ 010000; | |
break; | |
case 014: /* CLA CLL */ | |
LAC = 0; | |
break; | |
case 015: /* CLA CLL CML */ | |
LAC = 010000; | |
break; | |
case 016: /* CLA CLL CMA */ | |
LAC = 07777; | |
break; | |
case 017: /* CLA CLL CMA CML */ | |
LAC = 017777; | |
break; } /* end switch opers */ | |
/* OPR group 1, continued */ | |
if (IR & 01) LAC = (LAC + 1) & 017777; /* IAC */ | |
switch ((IR >> 1) & 07) { /* decode IR<8:10> */ | |
case 0: /* nop */ | |
break; | |
case 1: /* BSW */ | |
LAC = (LAC & 010000) | ((LAC >> 6) & 077) | ((LAC & 077) << 6); | |
break; | |
case 2: /* RAL */ | |
LAC = ((LAC << 1) | (LAC >> 12)) & 017777; | |
break; | |
case 3: /* RTL */ | |
LAC = ((LAC << 2) | (LAC >> 11)) & 017777; | |
break; | |
case 4: /* RAR */ | |
LAC = ((LAC >> 1) | (LAC << 12)) & 017777; | |
break; | |
case 5: /* RTR */ | |
LAC = ((LAC >> 2) | (LAC << 11)) & 017777; | |
break; | |
case 6: /* RAL RAR - undef */ | |
LAC = LAC & (IR | 010000); /* uses AND path */ | |
break; | |
case 7: /* RTL RTR - undef */ | |
LAC = (LAC & 010000) | (MA & 07600) | (IR & 0177); | |
break; } /* uses address path */ | |
break; /* end group 1 */ | |
/* OPR group 2 */ | |
case 036:case 037: /* OPR, groups 2, 3 */ | |
if ((IR & 01) == 0) { /* group 2 */ | |
switch ((IR >> 3) & 017) { /* decode IR<6:8> */ | |
case 0: /* nop */ | |
break; | |
case 1: /* SKP */ | |
PC = (PC + 1) & 07777; | |
break; | |
case 2: /* SNL */ | |
if (LAC >= 010000) PC = (PC + 1) & 07777; | |
break; | |
case 3: /* SZL */ | |
if (LAC < 010000) PC = (PC + 1) & 07777; | |
break; | |
case 4: /* SZA */ | |
if ((LAC & 07777) == 0) PC = (PC + 1) & 07777; | |
break; | |
case 5: /* SNA */ | |
if ((LAC & 07777) != 0) PC = (PC + 1) & 07777; | |
break; | |
case 6: /* SZA | SNL */ | |
if ((LAC == 0) || (LAC >= 010000)) | |
PC = (PC + 1) & 07777; | |
break; | |
case 7: /* SNA & SZL */ | |
if ((LAC != 0) && (LAC < 010000)) PC = (PC + 1) & 07777; | |
break; | |
case 010: /* SMA */ | |
if ((LAC & 04000) != 0) PC = (PC + 1) & 07777; | |
break; | |
case 011: /* SPA */ | |
if ((LAC & 04000) == 0) PC = (PC + 1) & 07777; | |
break; | |
case 012: /* SMA | SNL */ | |
if (LAC >= 04000) PC = (PC + 1) & 07777; | |
break; | |
case 013: /* SPA & SZL */ | |
if (LAC < 04000) PC = (PC + 1) & 07777; | |
break; | |
case 014: /* SMA | SZA */ | |
if (((LAC & 04000) != 0) || ((LAC & 07777) == 0)) | |
PC = (PC + 1) & 07777; | |
break; | |
case 015: /* SPA & SNA */ | |
if (((LAC & 04000) == 0) && ((LAC & 07777) != 0)) | |
PC = (PC + 1) & 07777; | |
break; | |
case 016: /* SMA | SZA | SNL */ | |
if ((LAC >= 04000) || (LAC == 0)) PC = (PC + 1) & 07777; | |
break; | |
case 017: /* SPA & SNA & SZL */ | |
if ((LAC < 04000) && (LAC != 0)) PC = (PC + 1) & 07777; | |
break; } /* end switch skips */ | |
if (IR & 0200) LAC = LAC & 010000; /* CLA */ | |
if ((IR & 06) && UF) int_req = int_req | INT_UF; | |
else { if (IR & 04) LAC = LAC | OSR; /* OSR */ | |
if (IR & 02) reason = STOP_HALT; } /* HLT */ | |
break; } /* end group 2 */ | |
/* OPR group 3 standard | |
MQA!MQL exchanges AC and MQ, as follows: | |
temp = MQ; | |
MQ = LAC & 07777; | |
LAC = LAC & 010000 | temp; | |
*/ | |
temp = MQ; /* group 3 */ | |
if (IR & 0200) LAC = LAC & 010000; /* CLA */ | |
if (IR & 0020) { /* MQL */ | |
MQ = LAC & 07777; | |
LAC = LAC & 010000; } | |
if (IR & 0100) LAC = LAC | temp; /* MQA */ | |
if ((IR & 0056) && (cpu_unit.flags & UNIT_NOEAE)) { | |
reason = stop_inst; /* EAE not present */ | |
break; } | |
/* OPR group 3 EAE | |
The EAE operates in two modes: | |
Mode A, PDP-8/I compatible | |
Mode B, extended capability | |
Mode B provides eight additional subfunctions; in addition, some | |
of the Mode A functions operate differently in Mode B. | |
The mode switch instructions are decoded explicitly and cannot be | |
microprogrammed with other EAE functions (SWAB performs an MQL as | |
part of standard group 3 decoding). If mode switching is decoded, | |
all other EAE timing is suppressed. | |
*/ | |
if (IR == 07431) { /* SWAB */ | |
emode = 1; /* set mode flag */ | |
break; } | |
if (IR == 07447) { /* SWBA */ | |
emode = gtf = 0; /* clear mode, gtf */ | |
break; } | |
/* If not switching modes, the EAE operation is determined by the mode | |
and IR<6,8:10>: | |
<6:10> mode A mode B comments | |
0x000 NOP NOP | |
0x001 SCL ACS | |
0x010 MUY MUY if mode B, next = address | |
0x011 DVI DVI if mode B, next = address | |
0x100 NMI NMI if mode B, clear AC if | |
result = 4000'0000 | |
0x101 SHL SHL if mode A, extra shift | |
0x110 ASR ASR if mode A, extra shift | |
0x111 LSR LSR if mode A, extra shift | |
1x000 SCA SCA | |
1x001 SCA + SCL DAD | |
1x010 SCA + MUY DST | |
1x011 SCA + DVI SWBA NOP if not detected earlier | |
1x100 SCA + NMI DPSZ | |
1x101 SCA + SHL DPIC must be combined with MQA!MQL | |
1x110 SCA + ASR DCM must be combined with MQA!MQL | |
1x111 SCA + LSR SAM | |
EAE instructions which fetch memory operands use the CPU's DEFER | |
state to read the first word; if the address operand is in locations | |
x0010 - x0017, it is autoincremented. | |
*/ | |
/* EAE continued */ | |
switch ((IR >> 1) & 027) { /* decode IR<6,8:10> */ | |
case 020: /* mode A, B: SCA */ | |
LAC = LAC | SC; | |
break; | |
case 0: /* mode A, B: NOP */ | |
break; | |
case 021: /* mode B: DAD */ | |
if (emode) { | |
MA = IF | PC; | |
INDIRECT; /* defer state */ | |
MQ = MQ + M[MA]; | |
MA = DF | ((MA + 1) & 07777); | |
LAC = (LAC & 07777) + M[MA] + (MQ >> 12); | |
MQ = MQ & 07777; | |
PC = (PC + 1) & 07777; | |
break; } | |
LAC = LAC | SC; /* mode A: SCA then */ | |
case 1: /* mode B: ACS */ | |
if (emode) { | |
SC = LAC & 037; | |
LAC = LAC & 010000; | |
break; } | |
SC = (~M[IF | PC]) & 037; /* mode A: SCL */ | |
PC = (PC + 1) & 07777; | |
break; | |
case 022: /* mode B: DST */ | |
if (emode) { | |
MA = IF | PC; | |
INDIRECT; /* defer state */ | |
if (MEM_ADDR_OK (MA)) M[MA] = MQ & 07777; | |
MA = DF | ((MA + 1) & 07777); | |
if (MEM_ADDR_OK (MA)) M[MA] = LAC & 07777; | |
PC = (PC + 1) & 07777; | |
break; } | |
LAC = LAC | SC; /* mode A: SCA then */ | |
case 2: /* MUY */ | |
MA = IF | PC; | |
if (emode) { INDIRECT; } /* mode B: defer */ | |
temp = (MQ * M[MA]) + (LAC & 07777); | |
LAC = (temp >> 12) & 07777; | |
MQ = temp & 07777; | |
PC = (PC + 1) & 07777; | |
SC = 014; /* 12 shifts */ | |
break; | |
/* EAE continued */ | |
case 023: /* mode B: SWBA */ | |
if (emode) break; | |
LAC = LAC | SC; /* mode A: SCA then */ | |
case 3: /* DVI */ | |
MA = IF | PC; | |
if (emode) { INDIRECT; } /* mode B: defer */ | |
if ((LAC & 07777) >= M[MA]) { /* overflow? */ | |
LAC = LAC | 010000; /* set link */ | |
MQ = ((MQ << 1) + 1) & 07777; /* rotate MQ */ | |
SC = 01; } /* 1 shift */ | |
else { temp = ((LAC & 07777) << 12) | MQ; | |
MQ = temp / M[MA]; | |
LAC = temp % M[MA]; | |
SC = 015; } /* 13 shifts */ | |
PC = (PC + 1) & 07777; | |
break; | |
case 024: /* mode B: DPSZ */ | |
if (emode) { | |
if (((LAC | MQ) & 07777) == 0) PC = (PC + 1) & 07777; | |
break; } | |
LAC = LAC | SC; /* mode A: SCA then */ | |
case 4: /* NMI */ | |
temp = (LAC << 12) | MQ; /* preserve link */ | |
for (SC = 0; ((temp & 017777777) != 0) && | |
(temp & 040000000) == ((temp << 1) & 040000000); SC++) | |
temp = temp << 1; | |
LAC = (temp >> 12) & 017777; | |
MQ = temp & 07777; | |
if (emode && ((LAC & 07777) == 04000) && (MQ == 0)) | |
LAC = LAC & 010000; /* clr if 4000'0000 */ | |
break; | |
case 025: /* mode B: DPIC */ | |
if (emode) { | |
temp = (LAC + 1) & 07777; /* SWP already done! */ | |
LAC = MQ + (temp == 0); | |
MQ = temp; | |
break; } | |
LAC = LAC | SC; /* mode A: SCA then */ | |
case 5: /* SHL */ | |
SC = (M[IF | PC] & 037) + (emode ^ 1); /* shift+1 if mode A */ | |
temp = ((LAC << 12) | MQ) << SC; /* preserve link */ | |
LAC = (temp >> 12) & 017777; | |
MQ = temp & 07777; | |
PC = (PC + 1) & 07777; | |
SC = emode? 037: 0; /* SC = 0 if mode A */ | |
break; | |
/* EAE continued */ | |
case 026: /* mode B: DCM */ | |
if (emode) { | |
temp = (-LAC) & 07777; /* SWP already done! */ | |
LAC = (MQ ^ 07777) + (temp == 0); | |
MQ = temp; | |
break; } | |
LAC = LAC | SC; /* mode A: SCA then */ | |
case 6: /* ASR */ | |
SC = (M[IF | PC] & 037) + (emode ^ 1); /* shift+1 if mode A */ | |
temp = ((LAC & 07777) << 12) | MQ; /* sext from AC0 */ | |
if (emode && (SC != 0)) gtf = (temp >> (SC - 1)) & 1; | |
temp = temp >> SC; | |
if (LAC & 04000) temp = temp | ((SC > 24)? -1: | |
(-1 << (24 - SC))); | |
LAC = (temp >> 12) & 017777; | |
MQ = temp & 07777; | |
PC = (PC + 1) & 07777; | |
SC = emode? 037: 0; /* SC = 0 if mode A */ | |
break; | |
case 027: /* mode B: SAM */ | |
if (emode) { | |
temp = LAC & 07777; | |
LAC = MQ + (temp ^ 07777) + 1; /* L'AC = MQ - AC */ | |
gtf = (temp <= MQ) ^ ((temp ^ MQ) >> 11); | |
break; } | |
LAC = LAC | SC; /* mode A: SCA then */ | |
case 7: /* LSR */ | |
SC = (M[IF | PC] & 037) + (emode ^ 1); /* shift+1 if mode A */ | |
temp = ((LAC & 07777) << 12) | MQ; /* clear link */ | |
if (emode && (SC != 0)) gtf = (temp >> (SC - 1)) & 1; | |
temp = temp >> SC; | |
LAC = (temp >> 12) & 07777; | |
MQ = temp & 07777; | |
PC = (PC + 1) & 07777; | |
SC = emode? 037: 0; /* SC = 0 if mode A */ | |
break; } /* end switch */ | |
break; /* end case 7 */ | |
/* Opcode 6, IOT */ | |
case 030:case 031:case 032:case 033: /* IOT */ | |
if (UF) { /* privileged? */ | |
int_req = int_req | INT_UF; | |
break; } | |
device = (IR >> 3) & 077; /* device = IR<3:8> */ | |
pulse = IR & 07; /* pulse = IR<9:11> */ | |
iot_data = LAC & 07777; /* AC unchanged */ | |
switch (device) { /* decode IR<3:8> */ | |
case 0: /* CPU control */ | |
switch (pulse) { /* decode IR<9:11> */ | |
case 0: /* SKON */ | |
if (int_req & INT_ION) PC = (PC + 1) & 07777; | |
int_req = int_req & ~INT_ION; | |
break; | |
case 1: /* ION */ | |
int_req = (int_req | INT_ION) & ~INT_NO_ION_PENDING; | |
break; | |
case 2: /* IOF */ | |
int_req = int_req & ~INT_ION; | |
break; | |
case 3: /* SRQ */ | |
if (int_req & INT_ALL) PC = (PC + 1) & 07777; | |
break; | |
case 4: /* GTF */ | |
LAC = (LAC & 010000) | | |
((LAC & 010000) >> 1) | (gtf << 10) | | |
(((int_req & INT_ALL) != 0) << 9) | | |
(((int_req & INT_ION) != 0) << 7) | SF; | |
break; | |
case 5: /* RTF */ | |
gtf = ((LAC & 02000) >> 10); | |
UB = (LAC & 0100) >> 6; | |
IB = (LAC & 0070) << 9; | |
DF = (LAC & 0007) << 12; | |
LAC = ((LAC & 04000) << 1) | iot_data; | |
int_req = (int_req | INT_ION) & ~INT_NO_CIF_PENDING; | |
break; | |
case 6: /* SGT */ | |
if (gtf) PC = (PC + 1) & 07777; | |
break; | |
case 7: /* CAF */ | |
gtf = 0; | |
emode = 0; | |
int_req = int_req & INT_NO_CIF_PENDING; | |
dev_done = 0; | |
dev_enable = INT_INIT_ENABLE; | |
LAC = 0; | |
break; } /* end switch pulse */ | |
continue; /* skip rest of IOT */ | |
/* IOT, continued: memory extension */ | |
case 020:case 021:case 022:case 023: | |
case 024:case 025:case 026:case 027: /* memory extension */ | |
switch (pulse) { /* decode IR<9:11> */ | |
case 1: /* CDF */ | |
DF = (IR & 0070) << 9; | |
break; | |
case 2: /* CIF */ | |
IB = (IR & 0070) << 9; | |
int_req = int_req & ~INT_NO_CIF_PENDING; | |
break; | |
case 3: /* CDF CIF */ | |
DF = IB = (IR & 0070) << 9; | |
int_req = int_req & ~INT_NO_CIF_PENDING; | |
break; | |
case 4: | |
switch (device & 07) { /* decode IR<6:8> */ | |
case 0: /* CINT */ | |
int_req = int_req & ~INT_UF; | |
break; | |
case 1: /* RDF */ | |
LAC = LAC | (DF >> 9); | |
break; | |
case 2: /* RIF */ | |
LAC = LAC | (IF >> 9); | |
break; | |
case 3: /* RIB */ | |
LAC = LAC | SF; | |
break; | |
case 4: /* RMF */ | |
UB = (SF & 0100) >> 6; | |
IB = (SF & 0070) << 9; | |
DF = (SF & 0007) << 12; | |
int_req = int_req & ~INT_NO_CIF_PENDING; | |
break; | |
case 5: /* SINT */ | |
if (int_req & INT_UF) PC = (PC + 1) & 07777; | |
break; | |
case 6: /* CUF */ | |
UB = 0; | |
int_req = int_req & ~INT_NO_CIF_PENDING; | |
break; | |
case 7: /* SUF */ | |
UB = 1; | |
int_req = int_req & ~INT_NO_CIF_PENDING; | |
break; } /* end switch device */ | |
break; | |
default: | |
reason = stop_inst; | |
break; } /* end switch pulse */ | |
continue; /* skip rest of IOT */ | |
/* IOT, continued: other special cases */ | |
case 010: /* power fail */ | |
switch (pulse) { /* decode IR<9:11> */ | |
case 1: /* SBE */ | |
break; | |
case 2: /* SPL */ | |
if (int_req & INT_PWR) PC = (PC + 1) & 07777; | |
break; | |
case 3: /* CAL */ | |
int_req = int_req & ~INT_PWR; | |
break; | |
default: | |
reason = stop_inst; | |
break; } /* end switch pulse */ | |
continue; /* skip rest of IOT */ | |
default: /* unknown device */ | |
reason = stop_inst; /* stop on flag */ | |
continue; /* skip rest of IOT */ | |
/* IOT, continued: I/O devices */ | |
case 1: /* PTR */ | |
iot_data = ptr (pulse, iot_data); | |
break; | |
case 2: /* PTP */ | |
iot_data = ptp (pulse, iot_data); | |
break; | |
case 3: /* TTI */ | |
iot_data = tti (pulse, iot_data); | |
break; | |
case 4: /* TTO */ | |
iot_data = tto (pulse, iot_data); | |
break; | |
case 013: /* CLK */ | |
iot_data = clk (pulse, iot_data); | |
break; | |
case 060: /* RF08 */ | |
iot_data = rf60 (pulse, iot_data); | |
break; | |
case 061: | |
iot_data = rf61 (pulse, iot_data); | |
break; | |
case 062: | |
iot_data = rf62 (pulse, iot_data); | |
break; | |
case 064: | |
iot_data = rf64 (pulse, iot_data); | |
break; | |
case 066: /* LPT */ | |
iot_data = lpt (pulse, iot_data); | |
break; | |
case 070: /* TM8E */ | |
iot_data = mt70 (pulse, iot_data); | |
break; | |
case 071: | |
iot_data = mt71 (pulse, iot_data); | |
break; | |
case 072: | |
iot_data = mt72 (pulse, iot_data); | |
break; | |
case 074: /* RK8E */ | |
iot_data = rk (pulse, iot_data); | |
break; | |
case 075: /* RX8E */ | |
iot_data = rx (pulse, iot_data); | |
break; } /* end switch device */ | |
LAC = (LAC & 010000) | (iot_data & 07777); | |
if (iot_data & IOT_SKP) PC = (PC + 1) & 07777; | |
if (iot_data >= IOT_REASON) reason = iot_data >> IOT_V_REASON; | |
break; } /* end switch opcode */ | |
} /* end while */ | |
/* Simulation halted */ | |
saved_PC = IF | (PC & 07777); /* save copies */ | |
saved_DF = DF & 070000; | |
saved_LAC = LAC & 017777; | |
saved_MQ = MQ & 07777; | |
return reason; | |
} /* end sim_instr */ | |
/* Reset routine */ | |
t_stat cpu_reset (DEVICE *dptr) | |
{ | |
int_req = (int_req & ~INT_ION) | INT_NO_CIF_PENDING; | |
saved_DF = IB = (saved_PC >> 12) & 03; | |
UF = UB = gtf = emode = 0; | |
return cpu_svc (&cpu_unit); | |
} | |
/* Breakpoint service */ | |
t_stat cpu_svc (UNIT *uptr) | |
{ | |
if ((ibkpt_addr & ~ILL_ADR_FLAG) == save_ibkpt) ibkpt_addr = save_ibkpt; | |
save_ibkpt = -1; | |
return SCPE_OK; | |
} | |
/* Memory examine */ | |
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw) | |
{ | |
if (addr >= MEMSIZE) return SCPE_NXM; | |
if (vptr != NULL) *vptr = M[addr] & 07777; | |
return SCPE_OK; | |
} | |
/* Memory deposit */ | |
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw) | |
{ | |
if (addr >= MEMSIZE) return SCPE_NXM; | |
M[addr] = val & 07777; | |
return SCPE_OK; | |
} | |
/* Memory size change */ | |
t_stat cpu_set_size (UNIT *uptr, int32 value) | |
{ | |
int32 mc = 0; | |
t_addr i; | |
if ((value <= 0) || (value > MAXMEMSIZE) || ((value & 07777) != 0)) | |
return SCPE_ARG; | |
for (i = value; i < MEMSIZE; i++) mc = mc | M[i]; | |
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE))) | |
return SCPE_OK; | |
MEMSIZE = value; | |
for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0; | |
return SCPE_OK; | |
} |