blob: ea78c6f8b1ebff08e8dcd6ff91979ea08d185efa [file] [log] [blame] [raw]
/* hp3000_defs.h: HP 3000 simulator general declarations
Copyright (c) 2016, J. David Bryan
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of the author shall not be used
in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization from the author.
13-May-16 JDB Modified for revised SCP API function parameter types
04-Feb-16 JDB First release version
11-Dec-12 JDB Created
This file provides the general declarations used throughout the HP 3000
simulator. It is required by all modules.
The author gratefully acknowledges the help of Frank McConnell in answering
questions about the HP 3000.
*/
#ifndef HP3000_DEFS_H_
#define HP3000_DEFS_H_
#include "sim_rev.h"
#include "sim_defs.h"
/* The following pragmas quell clang and Microsoft Visual C++ warnings that are
on by default but should not be, in my opinion. They warn about the use of
perfectly valid code and require the addition of redundant parentheses and
braces to silence them. Rather than clutter up the code with scores of extra
symbols that, in my view, make the code harder to read and maintain, I elect
to suppress these warnings.
VC++ 2008 warning descriptions:
- 4114: "same type qualifier used more than once" [legal per C99]
- 4554: "check operator precedence for possible error; use parentheses to
clarify precedence"
- 4996: "function was declared deprecated"
*/
#if defined (__clang__)
#pragma clang diagnostic ignored "-Wlogical-op-parentheses"
#pragma clang diagnostic ignored "-Wbitwise-op-parentheses"
#pragma clang diagnostic ignored "-Wshift-op-parentheses"
#pragma clang diagnostic ignored "-Wdangling-else"
#elif defined (_MSC_VER)
#pragma warning (disable: 4114 4554 4996)
#endif
/* Device register display mode flags */
#define REG_A (1 << REG_V_UF + 0) /* permit any display */
#define REG_B (1 << REG_V_UF + 1) /* permit binary display */
#define REG_M (1 << REG_V_UF + 2) /* default to instruction mnemonic display */
#define REG_S (1 << REG_V_UF + 3) /* default to status mnemonic display */
/* Register macros.
These additional register definition macros are used to define:
FBDATA -- a one-bit flag in an arrayed register
SRDATA -- an array of bytes large enough to hold a structure
YRDATA -- a binary register
The FBDATA macro defines flag bits that are replicated in the same place in
each element of an array; the array element size is assumed to be the minimum
necessary to hold the bit at the given offset. The SRDATA macro is used
solely to SAVE data stored in a structure so that it may be RESTOREd later.
The YRDATA macro extends the functionality of the ORDATA, DRDATA, and HRDATA
macros to registers with binary (base 2) representation.
Implementation notes:
1. Use caution that multiple FBDATA registers referencing the same array
have offsets that imply the same array element size. For example,
offsets of 3 and 5 can be used with an array of 8-bit elements, and
offsets 13 and 15 can be used with an array of 16-bit elements. However,
offsets 3 and 13 cannot be used, as the first implies 8-bit elements, and
the second implies 16-bit elements.
2. The REG structure for version 4.0 contains two extra fields that are not
present in 3.x versions.
*/
/* Macro name loc radix width offset depth desc fields */
/* ---------------------- ---- ------- ----- ----- ------ ---------- ---- ------ */
#if (SIM_MAJOR >= 4)
#define FBDATA(nm,loc,ofs,dep) #nm, &(loc), 2, 1, (ofs), (dep), NULL, NULL
#define SRDATA(nm,loc) #nm, &(loc), 8, 8, 0, sizeof loc, NULL, NULL
#define YRDATA(nm,loc,wid) #nm, &(loc), 2, (wid), 0, 1, NULL, NULL
#else
#define FBDATA(nm,loc,ofs,dep) #nm, &(loc), 2, 1, (ofs), (dep)
#define SRDATA(nm,loc) #nm, &(loc), 8, 8, 0, sizeof loc
#define YRDATA(nm,loc,wid) #nm, &(loc), 2, (wid), 0, 1
#endif
/* Debugging and console output.
"dprintf" is used to write debugging messages. It does an "fprintf" to the
debug output stream if the stream is open and the debug "flag" is currently
enabled in device "dev". Otherwise, it's a NOP. "..." is the format string
and associated values.
"dpprintf" is identical to "dprintf", except that a device pointer is passed
instead of a device structure.
"DPRINTING" and "DPPRINTING" implement the test conditions for device and
device pointer debugging, respectively. They are used explicitly only when
several debug statements employing the same flag are required, and it is
desirable to avoid repeating the stream and flag test for each one.
"cprintf", "cputs", and "cputc" are used to write messages to the console
and, if console logging is enabled, to the log output stream. They do
"(f)printf", "fputs", or "(f)putc", respectively. "..." is the format string
and associated values, "str" is the string to write, and "ch" is the
character to write.
Implementation notes:
1. The "cputs" macro uses "fputs" for both console and log file output
because "puts" appends a newline, whereas "fputs" does not.
*/
#define DPRINTING(d,f) (sim_deb && ((d).dctrl & (f)))
#define DPPRINTING(d,f) (sim_deb && ((d)->dctrl & (f)))
#define dprintf(dev, flag, ...) \
if (DPRINTING (dev, flag)) \
hp_debug (&(dev), (flag), __VA_ARGS__); \
else \
(void) 0
#define dpprintf(dptr, flag, ...) \
if (DPPRINTING (dptr, flag)) \
hp_debug ((dptr), (flag), __VA_ARGS__); \
else \
(void) 0
#define cprintf(...) \
do { \
printf (__VA_ARGS__); \
if (sim_log) \
fprintf (sim_log, __VA_ARGS__); \
} while (0)
#define cputs(str) \
do { \
fputs (str, stdout); \
if (sim_log) \
fputs (str, sim_log); \
} while (0)
#define cputc(ch) \
do { \
putc (ch); \
if (sim_log) \
fputc (ch, sim_log); \
} while (0)
/* Simulation stop codes.
These VM-specific status codes stop the simulator. The "sim_stop_messages"
array in "hp3000_sys.c" contains the message strings that correspond
one-for-one with the stop codes.
Implementation notes:
1. Codes before STOP_RERUN cause the instruction to be rerun, so P is backed
up twice. For codes after, P points to the next instruction to be
executed (which is the current instruction for an infinite loop stop).
*/
#define STOP_SYSHALT 1 /* system halt */
#define STOP_UNIMPL 2 /* unimplemented instruction stop */
#define STOP_UNDEF 3 /* undefined instruction stop */
#define STOP_PAUS 4 /* PAUS instruction stop */
#define STOP_RERUN 4 /* stops above here cause the instruction to be re-run */
#define STOP_HALT 5 /* programmed halt */
#define STOP_BRKPNT 6 /* breakpoint */
#define STOP_INFLOOP 7 /* infinite loop stop */
#define STOP_CLOAD 8 /* cold load complete */
#define STOP_CDUMP 9 /* cold dump complete */
/* Modifier validation identifiers */
#define MTAB_XDV (MTAB_XTD | MTAB_VDV)
#define MTAB_XUN (MTAB_XTD | MTAB_VUN)
#define VAL_DEVNO 0 /* validate DEVNO=0-127 */
#define VAL_INTMASK 1 /* validate INTMASK=0-15/E/D */
#define VAL_INTPRI 2 /* validate INTPRI=0-31 */
#define VAL_SRNO 3 /* validate SRNO=0-15 */
/* I/O event timing.
I/O events are scheduled for future service by specifying the desired delay
in units of event ticks. Typically, one event tick represents the execution
of one CPU instruction, and this is the way event ticks are defined in the
current simulator implementation. However, while the average execution time
of a typical instruction mix on a Series II is given as 2.57 microseconds,
actual instruction times vary greatly, due to the presence of block move and
loop instructions. Variations of an order of magnitude are common, and two
orders or more are possible for longer blocks.
To accommodate possible future variable instruction timing, I/O service
activation times must not assume a constant 2.57 microseconds per event tick.
Delays should be defined in terms of the "uS" (microseconds), "mS"
(milliseconds), and "S" (seconds) macros below.
*/
#define USEC_PER_EVENT 2.57 /* average CPU instruction time in microseconds */
#define uS(t) (uint32) ((t) > USEC_PER_EVENT ? (t) / USEC_PER_EVENT + 0.5 : 1)
#define mS(t) (uint32) (((t) * 1000.0) / USEC_PER_EVENT + 0.5)
#define S(t) (uint32) (((t) * 1000000.0) / USEC_PER_EVENT + 0.5)
/* Architectural constants.
These macros specify the width, sign location, value mask, and minimum and
maximum signed and unsigned values for the data sizes supported by the
simulator. In addition, masks for 16-bit and 32-bit overflow are defined (an
overflow is indicated if the masked bits are not all ones or all zeros).
Implementation notes:
1. The HP_WORD type is a 32-bit unsigned type, instead of the more logical
16-bit unsigned type. This is because IA-32 processors execute
instructions with 32-bit operands much faster than those with 16-bit
operands.
Using 16-bit operands omits the masking required for 32-bit values. For
example, the code generated for the following operations is as follows:
uint16 a, b, c;
a = b + c & 0xFFFF;
movzwl _b, %eax
addw _c, %ax
movw %ax, _a
uint32 x, y, z;
x = y + z & 0xFFFF;
movl _z, %eax
addl _y, %eax
andl $65535, %eax
movl %eax, _x
However, the first case uses operand override prefixes, which require
substantially more time to decode (6 clock cycles vs. 1 clock cycle).
This time outweighs the additional 32-bit AND instruction, which executes
in 1 clock cycle.
On an Intel Core 2 Duo processor, defining HP_WORD as uint16 causes the
HP 3000 memory diagnostic to run about 10% slower.
*/
#define HP_WORD uint32 /* HP 16-bit word representation */
#define R_MASK 0177777u /* 16-bit register mask */
#define D8_WIDTH 8 /* 8-bit data bit width */
#define D8_MASK 0377u /* 8-bit data mask */
#define D8_UMAX 0377u /* 8-bit unsigned maximum value */
#define D8_SMAX 0177u /* 8-bit signed maximum value */
#define D8_SMIN 0200u /* 8-bit signed minimum value */
#define D8_SIGN 0200u /* 8-bit sign */
#define D16_WIDTH 16 /* 16-bit data bit width */
#define D16_MASK 0177777u /* 16-bit data mask */
#define D16_UMAX 0177777u /* 16-bit unsigned maximum value */
#define D16_SMAX 0077777u /* 16-bit signed maximum value */
#define D16_SMIN 0100000u /* 16-bit signed minimum value */
#define D16_SIGN 0100000u /* 16-bit sign */
#define D32_WIDTH 32 /* 32-bit data bit width */
#define D32_MASK 037777777777u /* 32-bit data mask */
#define D32_UMAX 037777777777u /* 32-bit unsigned maximum value */
#define D32_SMAX 017777777777u /* 32-bit signed maximum value */
#define D32_SMIN 020000000000u /* 32-bit signed minimum value */
#define D32_SIGN 020000000000u /* 32-bit sign */
#define D48_WIDTH 48 /* 48-bit data bit width */
#define D48_MASK 07777777777777777uL /* 48-bit data mask */
#define D48_UMAX 07777777777777777uL /* 48-bit unsigned maximum value */
#define D48_SMAX 03777777777777777uL /* 48-bit signed maximum value */
#define D48_SMIN 04000000000000000uL /* 48-bit signed minimum value */
#define D48_SIGN 04000000000000000uL /* 48-bit sign */
#define D64_WIDTH 64 /* 64-bit data bit width */
#define D64_MASK 01777777777777777777777uL /* 64-bit data mask */
#define D64_UMAX 01777777777777777777777uL /* 64-bit unsigned maximum value */
#define D64_SMAX 00777777777777777777777uL /* 64-bit signed maximum value */
#define D64_SMIN 01000000000000000000000uL /* 64-bit signed minimum value */
#define D64_SIGN 01000000000000000000000uL /* 64-bit sign */
#define S16_OVFL_MASK ((uint32) D16_UMAX << D16_WIDTH | \
D16_SIGN) /* 16-bit signed overflow mask */
#define S32_OVFL_MASK ((t_uint64) D32_UMAX << D32_WIDTH | \
D32_SIGN) /* 32-bit signed overflow mask */
/* Memory constants */
#define LA_WIDTH 16 /* logical address bit width */
#define LA_MASK ((1 << LA_WIDTH) - 1) /* logical address mask (2 ** 16 - 1) */
#define LA_MAX ((1 << LA_WIDTH) - 1) /* logical address maximum (2 ** 16 - 1) */
#define BA_WIDTH 4 /* bank address bit width */
#define BA_MASK ((1 << BA_WIDTH) - 1) /* bank address mask (2 ** 4 - 1) */
#define BA_MAX ((1 << BA_WIDTH) - 1) /* bank address maximum (2 ** 4 - 1) */
#define PA_WIDTH (LA_WIDTH + BA_WIDTH) /* physical address bit width */
#define PA_MASK ((1 << PA_WIDTH) - 1) /* physical address mask (2 ** 20 - 1) */
#define PA_MAX ((1 << PA_WIDTH) - 1) /* physical address maximum (2 ** 20 - 1) */
#define DV_WIDTH 16 /* data value bit width */
#define DV_MASK ((1 << DV_WIDTH) - 1) /* data value mask (2 ** 16 - 1) */
#define DV_SIGN (1 << (DV_WIDTH - 1)) /* data value sign (2 ** 15) */
#define DV_UMAX ((1 << DV_WIDTH) - 1) /* data value unsigned maximum (2 ** 16 - 1) */
#define DV_SMAX ((1 << (DV_WIDTH - 1)) - 1) /* data value signed maximum (2 ** 15 - 1) */
/* Memory address macros.
These macros convert between logical and physical addresses. The functions
provided are:
- TO_PA -- merge a bank number and offset into a physical address
- TO_BANK -- extract the bank number part of a physical address
- TO_OFFSET -- extract the offset part of a physical address
Implementation notes:
1. The TO_PA offset parameter is not masked to 16 bits, as this value is
almost always derived from a value that is inherently 16 bits in size. In
the few cases where it is not, explicit masking is required.
*/
#define TO_PA(b,o) (((uint32) (b) & BA_MASK) << LA_WIDTH | (uint32) (o))
#define TO_BANK(p) ((p) >> LA_WIDTH & BA_MASK)
#define TO_OFFSET(p) ((p) & LA_MASK)
/* Portable conversions.
SIMH is written with the assumption that the defined-size types (e.g.,
uint16) are at least the required number of bits but may be larger.
Conversions that otherwise would make inherent size assumptions must instead
be coded explicitly. For example, doing:
negative_value_32 = (int32) negative_value_16;
...will not guarantee that bits 0-15 of "negative_value_32" are ones, whereas
the supplied sign-extension macro will.
The conversions available are:
- SEXT -- int16 sign-extended to int32
- NEG16 -- int16 negated
- NEG32 -- int32 negated
- INT16 -- uint16 to int16
- INT32 -- uint32 to int32
Implementation notes:
1. The routines assume that 16-bit values are masked to exactly 16 bits
before invoking.
*/
#define SEXT(x) (int32) ((x) & D16_SIGN ? (x) | ~D16_MASK : (x))
#define NEG16(x) ((~(x) + 1) & D16_MASK)
#define NEG32(x) ((~(x) + 1) & D32_MASK)
#define INT16(u) ((u) > D16_SMAX ? (-(int16) (D16_UMAX - (u)) - 1) : (int16) (u))
#define INT32(u) ((u) > D32_SMAX ? (-(int32) (D32_UMAX - (u)) - 1) : (int32) (u))
/* Byte accessors.
These macros extract the upper and lower bytes from a word and form a word
from upper and lower bytes. Replacement of a byte within a word is also
provided, as is an enumeration type that defines byte selection.
The accessors are:
- UPPER_BYTE -- return the byte from the upper position of a word value
- LOWER_BYTE -- return the byte from the lower position of a word value
- TO_WORD -- return a word with the specified upper and lower bytes
- REPLACE_UPPER -- replace the upper byte of the word value
- REPLACE_LOWER -- replace the lower byte of the word value
*/
typedef enum {
upper, /* upper byte selected */
lower /* lower byte selected */
} BYTE_SELECTOR;
#define UPPER_BYTE(w) (uint8) ((w) >> D8_WIDTH & D8_MASK)
#define LOWER_BYTE(w) (uint8) ((w) & D8_MASK)
#define TO_WORD(u,l) (HP_WORD) (((u) & D8_MASK) << D8_WIDTH | (l) & D8_MASK)
#define REPLACE_UPPER(w,b) ((w) & D8_MASK | ((b) & D8_MASK) << D8_WIDTH)
#define REPLACE_LOWER(w,b) ((w) & D8_MASK << D8_WIDTH | (b) & D8_MASK)
/* Double-word accessors */
#define UPPER_WORD(d) (HP_WORD) ((d) >> D16_WIDTH & D16_MASK)
#define LOWER_WORD(d) (HP_WORD) ((d) & D16_MASK)
#define TO_DWORD(u,l) ((uint32) (u) << D16_WIDTH | (l))
/* Flip-flops */
typedef enum {
CLEAR = 0, /* the flip-flop is clear */
SET = 1 /* the flip-flop is set */
} FLIP_FLOP;
#define TOGGLE(ff) ff = (ff ^ 1) /* toggle a flip-flop variable */
#define D_FF(b) ((b) != 0) /* use a Boolean expression for a D flip-flop */
/* Bitset formatting.
See the comments at the "fmt_bitset" function (hp3000_sys.c) for details of
the specification of bitset names and format structures.
*/
typedef enum { /* direction of interpretation */
msb_first, /* left-to-right */
lsb_first /* right-to-left */
} BITSET_DIRECTION;
typedef enum { /* alternate names */
no_alt, /* no alternates are present in the name array */
has_alt /* the name array contains alternates */
} BITSET_ALTERNATE;
typedef enum { /* trailing separator */
no_bar, /* omit a trailing separator */
append_bar /* append a trailing separator */
} BITSET_BAR;
typedef const char *const BITSET_NAME; /* a bit name string pointer */
typedef struct { /* bit set format descriptor */
uint32 name_count; /* count of bit names */
BITSET_NAME *names; /* pointer to an array of bit names */
uint32 offset; /* offset from LSB to first bit */
BITSET_DIRECTION direction; /* direction of interpretation */
BITSET_ALTERNATE alternate; /* alternate interpretations presence */
BITSET_BAR bar; /* trailing separator choice */
} BITSET_FORMAT;
/* Bitset format specifier initialization */
#define FMT_INIT(names,offset,dir,alt,bar) \
sizeof (names) / sizeof (names) [0], \
(names), (offset), (dir), (alt), (bar)
/* System interface global data structures */
extern const uint16 odd_parity [256]; /* a table of parity bits for odd parity */
extern const BITSET_FORMAT inbound_format; /* the inbound signal format structure */
extern const BITSET_FORMAT outbound_format; /* the outbound signal format structure */
/* System interface global SCP support routines previously declared in scp.h */
/*
extern t_stat sim_load (FILE *fptr, CONST char *cptr, CONST char *fnam, int flag);
extern t_stat fprint_sym (FILE *ofile, t_addr addr, t_value *val, UNIT *uptr, int32 sw);
extern t_stat parse_sym (CONST char *cptr, t_addr addr, UNIT *uptr, t_value *val, int32 sw);
*/
/* System interface global SCP support routines */
extern t_stat hp_set_dib (UNIT *uptr, int32 code, CONST char *cptr, void *desc);
extern t_stat hp_show_dib (FILE *st, UNIT *uptr, int32 code, CONST void *desc);
/* System interface global utility routines */
extern t_bool hp_device_conflict (void);
extern t_stat fprint_cpu (FILE *ofile, t_value *val, uint32 radix, int32 switches);
extern const char *fmt_status (uint32 status);
extern const char *fmt_char (uint32 charval);
extern const char *fmt_bitset (uint32 bitset, const BITSET_FORMAT bitfmt);
extern void hp_debug (DEVICE *dptr, uint32 flag, ...);
#endif