/* vax730_stddev.c: VAX 11/730 standard I/O devices | |
Copyright (c) 2010-2011, Matt Burke | |
This module incorporates code from SimH, Copyright (c) 1998-2008, Robert M Supnik | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
THE AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name(s) of the author(s) shall not be | |
used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from the author(s). | |
tti console input | |
tto console output | |
td console TU58 | |
todr TODR clock | |
tmr interval timer | |
28-Sep-11 MP Generalized setting TODR for all OSes. | |
Unbound the TODR value from the 100hz clock tick | |
interrupt. TODR now behaves like the original | |
battery backed-up clock and runs with the wall | |
clock, not the simulated instruction clock. | |
Two operational modes are available: | |
- Default VMS mode, which is similar to the previous | |
behavior in that without initializing the TODR it | |
would default to the value VMS would set it to if | |
VMS knew the correct time. This would be correct | |
almost all the time unless a VMS disk hadn't been | |
booted from for more than a year. This mode | |
produces strange time results for non VMS OSes on | |
each system boot. | |
- OS Agnostic mode. This mode behaves precisely like | |
the VAX780 TODR and works correctly for all OSes. | |
This mode is enabled by attaching the TODR to a | |
battery backup state file for the TOY clock | |
(i.e. sim> attach TODR TOY_CLOCK). When operating | |
in OS Agnostic mode, the TODR will initially start | |
counting from 0 and be adjusted differently when an | |
OS specifically writes to the TODR. VMS will prompt | |
to set the time on each boot unless the SYSGEN | |
parameter TIMEPROMPTWAIT is set to 0. | |
29-Mar-2011 MB First Version | |
*/ | |
#include "vax_defs.h" | |
#include "sim_tmxr.h" | |
/* Terminal definitions */ | |
#define RXCS_RD (CSR_DONE + CSR_IE) /* terminal input */ | |
#define RXCS_WR (CSR_IE) | |
#define RXDB_V_SEL 8 /* unit select */ | |
#define RXDB_M_SEL 0xF | |
#define RXDB_TERM 0x0 /* console terminal */ | |
#define RXDB_MISC 0xF /* console misc */ | |
#define RXDB_ERR 0x8000 /* error */ | |
#define TXCS_RD (CSR_DONE + CSR_IE) /* terminal output */ | |
#define TXCS_WR (CSR_IE) | |
#define TXDB_V_SEL 8 /* unit select */ | |
#define TXDB_M_SEL 0xF | |
#define TXDB_TERM 0x0 /* console terminal */ | |
#define TXDB_MISC 0xF /* console misc */ | |
#define MISC_MASK 0xFF /* console data mask */ | |
#define MISC_SWDN 0x1 /* software done */ | |
#define MISC_BOOT 0x2 /* reboot */ | |
#define MISC_CLWS 0x3 /* clear warm start */ | |
#define MISC_CLCS 0x4 /* clear cold start */ | |
#define TXDB_SEL (TXDB_M_SEL << TXDB_V_SEL) /* non-terminal */ | |
#define TXDB_GETSEL(x) (((x) >> TXDB_V_SEL) & TXDB_M_SEL) | |
#define CSTS_BRK 0x1 | |
#define CSTS_RD (CSR_DONE + CSR_IE + CSTS_BRK) /* terminal output */ | |
#define CSTS_WR (CSR_IE + CSTS_BRK) | |
/* Clock definitions */ | |
#define TMR_CSR_ERR 0x80000000 /* error W1C */ | |
#define TMR_CSR_DON 0x00000080 /* done W1C */ | |
#define TMR_CSR_IE 0x00000040 /* int enb RW */ | |
#define TMR_CSR_SGL 0x00000020 /* single WO */ | |
#define TMR_CSR_XFR 0x00000010 /* xfer WO */ | |
#define TMR_CSR_RUN 0x00000001 /* run RW */ | |
#define TMR_CSR_RD (TMR_CSR_W1C | TMR_CSR_WR) | |
#define TMR_CSR_W1C (TMR_CSR_ERR | TMR_CSR_DON) | |
#define TMR_CSR_WR (TMR_CSR_IE | TMR_CSR_RUN) | |
#define TMR_INC 10000 /* usec/interval */ | |
#define CLK_DELAY 5000 /* 100 Hz */ | |
#define TMXR_MULT 1 /* 100 Hz */ | |
/* TU58 definitions */ | |
#define UNIT_V_WLK (UNIT_V_UF) /* write locked */ | |
#define UNIT_WLK (1u << UNIT_V_UF) | |
#define UNIT_WPRT (UNIT_WLK | UNIT_RO) /* write protect */ | |
#define TD_NUMBLK 512 /* blocks/tape */ | |
#define TD_NUMBY 512 /* bytes/block */ | |
#define TD_SIZE (TD_NUMBLK * TD_NUMBY) /* bytes/tape */ | |
#define TD_OPDAT 001 /* Data */ | |
#define TD_OPCMD 002 /* Command */ | |
#define TD_OPINI 004 /* INIT */ | |
#define TD_OPBOO 010 /* Bootstrap */ | |
#define TD_OPCNT 020 /* Continue */ | |
#define TD_OPXOF 023 /* XOFF */ | |
#define TD_CMDNOP 0000 /* NOP */ | |
#define TD_CMDINI 0001 /* INIT */ | |
#define TD_CMDRD 0002 /* Read */ | |
#define TD_CMDWR 0003 /* Write */ | |
#define TD_CMDPOS 0005 /* Position */ | |
#define TD_CMDDIA 0007 /* Diagnose */ | |
#define TD_CMDGST 0010 /* Get Status */ | |
#define TD_CMDSST 0011 /* Set Status */ | |
#define TD_CMDMRSP 0012 /* MRSP Request */ | |
#define TD_CMDEND 0100 /* END */ | |
#define TD_STSOK 0000 /* Normal success */ | |
#define TD_STSRTY 0001 /* Success with retries */ | |
#define TD_STSFAIL 0377 /* Failed selftest */ | |
#define TD_STSPO 0376 /* Partial operation (end of medium) */ | |
#define TD_STSBUN 0370 /* Bad unit number */ | |
#define TD_STSNC 0367 /* No cartridge */ | |
#define TD_STSWP 0365 /* Write protected */ | |
#define TD_STSDCE 0357 /* Data check error */ | |
#define TD_STSSE 0340 /* Seek error (block not found) */ | |
#define TD_STSMS 0337 /* Motor stopped */ | |
#define TD_STSBOP 0320 /* Bad opcode */ | |
#define TD_STSBBN 0311 /* Bad block number (>511) */ | |
#define TD_GETOPC 0 /* get opcode state */ | |
#define TD_GETLEN 1 /* get length state */ | |
#define TD_GETDATA 2 /* get data state */ | |
#define TD_IDLE 0 /* idle state */ | |
#define TD_READ 1 /* read */ | |
#define TD_READ1 2 /* fill buffer */ | |
#define TD_READ2 3 /* empty buffer */ | |
#define TD_WRITE 4 /* write */ | |
#define TD_WRITE1 5 /* write */ | |
#define TD_WRITE2 6 /* write */ | |
#define TD_END 7 /* empty buffer */ | |
#define TD_END1 8 /* empty buffer */ | |
#define TD_INIT 9 /* empty buffer */ | |
int32 tti_csr = 0; /* control/status */ | |
uint32 tti_buftime; /* time input character arrived */ | |
int32 tti_buf = 0; /* buffer */ | |
int32 tti_int = 0; /* interrupt */ | |
int32 tto_csr = 0; /* control/status */ | |
int32 tto_buf = 0; /* buffer */ | |
int32 tto_int = 0; /* interrupt */ | |
int32 csi_csr = 0; /* control/status */ | |
int32 csi_buf = 0; /* buffer */ | |
int32 csi_int = 0; /* interrupt */ | |
int32 cso_csr = 0; /* control/status */ | |
int32 cso_buf = 0; /* buffer */ | |
int32 cso_int = 0; /* interrupt */ | |
int32 cso_state = 0; /* state */ | |
int32 tmr_iccs = 0; /* interval timer csr */ | |
uint32 tmr_icr = 0; /* curr interval */ | |
uint32 tmr_nicr = 0; /* next interval */ | |
uint32 tmr_inc = 0; /* timer increment */ | |
int32 tmr_sav = 0; /* timer save */ | |
int32 tmr_int = 0; /* interrupt */ | |
int32 tmr_use_100hz = 1; /* use 100Hz for timer */ | |
int32 clk_tps = 100; /* ticks/second */ | |
int32 tmxr_poll = CLK_DELAY * TMXR_MULT; /* term mux poll */ | |
int32 tmr_poll = CLK_DELAY; /* pgm timer poll */ | |
struct todr_battery_info { | |
uint32 toy_gmtbase; /* GMT base of set value */ | |
uint32 toy_gmtbasemsec; /* The milliseconds of the set value */ | |
}; | |
typedef struct todr_battery_info TOY; | |
int32 td_swait = 100; /* seek, per block */ | |
int32 td_cwait = 150; /* command time */ | |
int32 td_xwait = 180; /* tr set time */ | |
int32 td_iwait = 180; /* init time */ | |
uint8 td_ibuf[TD_NUMBY] = { 0 }; /* input buffer */ | |
int32 td_ibptr = 0; /* input buffer pointer */ | |
int32 td_ilen = 0; /* input length */ | |
uint8 td_obuf[TD_NUMBY] = { 0 }; /* output buffer */ | |
int32 td_obptr = 0; /* output buffer pointer */ | |
int32 td_olen = 0; /* output length */ | |
int32 td_block = 0; /* current block number */ | |
int32 td_txsize = 0; /* remaining transfer size */ | |
int32 td_offset = 0; /* offset into current transfer */ | |
int32 td_state = TD_IDLE; | |
int32 td_unitno = 0; /* active unit number */ | |
int32 td_ecode = 0; /* end packet success code */ | |
extern jmp_buf save_env; | |
t_stat tti_svc (UNIT *uptr); | |
t_stat tto_svc (UNIT *uptr); | |
t_stat clk_svc (UNIT *uptr); | |
t_stat tmr_svc (UNIT *uptr); | |
t_stat tti_reset (DEVICE *dptr); | |
t_stat tto_reset (DEVICE *dptr); | |
t_stat clk_reset (DEVICE *dptr); | |
const char *tti_description (DEVICE *dptr); | |
const char *tto_description (DEVICE *dptr); | |
const char *clk_description (DEVICE *dptr); | |
const char *tmr_description (DEVICE *dptr); | |
const char *td_description (DEVICE *dptr); | |
t_stat tti_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr); | |
t_stat tto_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr); | |
t_stat clk_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr); | |
t_stat clk_attach (UNIT *uptr, char *cptr); | |
t_stat clk_detach (UNIT *uptr); | |
t_stat tmr_reset (DEVICE *dptr); | |
t_stat td_svc (UNIT *uptr); | |
t_stat td_reset (DEVICE *dptr); | |
int32 icr_rd (t_bool interp); | |
void tmr_incr (uint32 inc); | |
void tmr_sched (void); | |
t_stat todr_resync (void); | |
t_stat txdb_misc_wr (int32 data); | |
void td_process_packet(); | |
t_bool td_test_xfr (UNIT *uptr, int32 state); | |
/* TTI data structures | |
tti_dev TTI device descriptor | |
tti_unit TTI unit descriptor | |
tti_reg TTI register list | |
*/ | |
UNIT tti_unit = { UDATA (&tti_svc, UNIT_IDLE|TT_MODE_8B, 0), SERIAL_IN_WAIT }; | |
REG tti_reg[] = { | |
{ HRDATAD (RXDB, tti_buf, 16, "last data item processed") }, | |
{ HRDATAD (RXCS, tti_csr, 16, "control/status register") }, | |
{ FLDATAD (INT, tti_int, 0, "interrupt pending flag") }, | |
{ FLDATAD (DONE, tti_csr, CSR_V_DONE, "device done flag (CSR<7>)") }, | |
{ FLDATAD (IE, tti_csr, CSR_V_IE, "interrupt enable flag (CSR<6>)") }, | |
{ DRDATAD (POS, tti_unit.pos, T_ADDR_W, "number of characters input"), PV_LEFT }, | |
{ DRDATAD (TIME, tti_unit.wait, 24, "input polling interval"), PV_LEFT }, | |
{ NULL } | |
}; | |
MTAB tti_mod[] = { | |
{ TT_MODE, TT_MODE_7B, "7b", "7B", NULL, NULL, NULL, "Set 7 bit mode" }, | |
{ TT_MODE, TT_MODE_8B, "8b", "8B", NULL, NULL, NULL, "Set 8 bit mode" }, | |
{ 0 } | |
}; | |
DEVICE tti_dev = { | |
"TTI", &tti_unit, tti_reg, tti_mod, | |
1, 10, 31, 1, 16, 8, | |
NULL, NULL, &tti_reset, | |
NULL, NULL, NULL, | |
NULL, 0, 0, NULL, NULL, NULL, &tti_help, NULL, NULL, | |
&tti_description | |
}; | |
/* TTO data structures | |
tto_dev TTO device descriptor | |
tto_unit TTO unit descriptor | |
tto_reg TTO register list | |
*/ | |
UNIT tto_unit = { UDATA (&tto_svc, TT_MODE_8B, 0), SERIAL_OUT_WAIT }; | |
REG tto_reg[] = { | |
{ HRDATAD (TXDB, tto_buf, 16, "last data item processed") }, | |
{ HRDATAD (TXCS, tto_csr, 16, "control/status register") }, | |
{ FLDATAD (INT, tto_int, 0, "interrupt pending flag") }, | |
{ FLDATAD (DONE, tto_csr, CSR_V_DONE, "device done flag (CSR<7>)") }, | |
{ FLDATAD (IE, tto_csr, CSR_V_IE, "interrupt enable flag (CSR<6>)") }, | |
{ DRDATAD (POS, tto_unit.pos, T_ADDR_W, "number of characters output"), PV_LEFT }, | |
{ DRDATAD (TIME, tto_unit.wait, 24, "time from I/O initiation to interrupt"), PV_LEFT + REG_NZ }, | |
{ NULL } | |
}; | |
MTAB tto_mod[] = { | |
{ TT_MODE, TT_MODE_7B, "7b", "7B", NULL, NULL, NULL, "Set 7 bit mode" }, | |
{ TT_MODE, TT_MODE_8B, "8b", "8B", NULL, NULL, NULL, "Set 8 bit mode" }, | |
{ TT_MODE, TT_MODE_7P, "7p", "7P", NULL, NULL, NULL, "Set 7 bit mode (suppress non printing)" }, | |
{ 0 } | |
}; | |
DEVICE tto_dev = { | |
"TTO", &tto_unit, tto_reg, tto_mod, | |
1, 10, 31, 1, 16, 8, | |
NULL, NULL, &tto_reset, | |
NULL, NULL, NULL, | |
NULL, 0, 0, NULL, NULL, NULL, &tto_help, NULL, NULL, | |
&tto_description | |
}; | |
/* TODR and TMR data structures */ | |
UNIT clk_unit = { UDATA (&clk_svc, UNIT_IDLE+UNIT_FIX, sizeof(TOY)), CLK_DELAY };/* 100Hz */ | |
REG clk_reg[] = { | |
{ DRDATAD (TIME, clk_unit.wait, 24, "initial poll interval"), REG_NZ + PV_LEFT }, | |
{ DRDATAD (POLL, tmr_poll, 24, "calibrated poll interval"), REG_NZ + PV_LEFT + REG_HRO }, | |
{ DRDATAD (TPS, clk_tps, 8, "ticks per second (100)"), REG_NZ + PV_LEFT }, | |
#if defined (SIM_ASYNCH_IO) | |
{ DRDATAD (ASYNCH, sim_asynch_enabled, 1, "asynch I/O enabled flag"), PV_LEFT }, | |
{ DRDATAD (LATENCY, sim_asynch_latency, 32, "desired asynch interrupt latency"), PV_LEFT }, | |
{ DRDATAD (INST_LATENCY, sim_asynch_inst_latency, 32, "calibrated instruction latency"), PV_LEFT }, | |
#endif | |
{ NULL } | |
}; | |
DEVICE clk_dev = { | |
"TODR", &clk_unit, clk_reg, NULL, | |
1, 0, 8, 4, 0, 32, | |
NULL, NULL, &clk_reset, | |
NULL, &clk_attach, &clk_detach, | |
NULL, 0, 0, NULL, NULL, NULL, &clk_help, NULL, NULL, | |
&clk_description | |
}; | |
UNIT tmr_unit = { UDATA (&tmr_svc, 0, 0) }; /* timer */ | |
REG tmr_reg[] = { | |
{ HRDATAD (ICCS, tmr_iccs, 32, "interval timer control and status") }, | |
{ HRDATAD (ICR, tmr_icr, 32, "interval count register") }, | |
{ HRDATAD (NICR, tmr_nicr, 32, "next interval count register") }, | |
{ FLDATAD (INT, tmr_int, 0, "interrupt request") }, | |
{ HRDATA (INCR, tmr_inc, 32), REG_HIDDEN }, | |
{ HRDATA (SAVE, tmr_sav, 32), REG_HIDDEN }, | |
{ FLDATA (USE100HZ, tmr_use_100hz, 0), REG_HIDDEN }, | |
{ NULL } | |
}; | |
DEVICE tmr_dev = { | |
"TMR", &tmr_unit, tmr_reg, NULL, | |
1, 0, 0, 0, 0, 0, | |
NULL, NULL, &tmr_reset, | |
NULL, NULL, NULL, | |
NULL, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, | |
&tmr_description | |
}; | |
/* TU58 data structures | |
td_dev RX device descriptor | |
td_unit RX unit list | |
td_reg RX register list | |
td_mod RX modifier list | |
*/ | |
UNIT td_unit[] = { | |
{ UDATA (&td_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_BUFABLE+UNIT_MUSTBUF, TD_SIZE) }, | |
{ UDATA (&td_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_BUFABLE+UNIT_MUSTBUF, TD_SIZE) } | |
}; | |
REG td_reg[] = { | |
{ HRDATAD (ECODE, td_ecode, 8, "end packet success code") }, | |
{ HRDATAD (BLK, td_block, 8, "current block number") }, | |
{ DRDATAD (PSTATE, td_state, 4, "state"), REG_RO }, | |
{ DRDATAD (BPTR, td_obptr, 7, "output buffer pointer") }, | |
{ DRDATAD (CTIME, td_cwait, 24, "command time"), PV_LEFT }, | |
{ DRDATAD (STIME, td_swait, 24, "seek, per block"), PV_LEFT }, | |
{ DRDATAD (XTIME, td_xwait, 24, "tr set time"), PV_LEFT }, | |
{ NULL } | |
}; | |
MTAB td_mod[] = { | |
{ UNIT_WLK, 0, "write enabled", "WRITEENABLED", NULL, NULL, NULL, "Write enable TU58 drive" }, | |
{ UNIT_WLK, UNIT_WLK, "write locked", "LOCKED", NULL, NULL, NULL, "Write lock TU58 drive" }, | |
{ 0 } | |
}; | |
DEVICE td_dev = { | |
"TD", td_unit, td_reg, td_mod, | |
2, DEV_RDX, 20, 1, DEV_RDX, 8, | |
NULL, NULL, &td_reset, | |
NULL, NULL, NULL, | |
NULL, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, | |
&td_description | |
}; | |
/* Console storage MxPR routines | |
csrs_rd/wr input control/status | |
csrd_rd input buffer | |
csts_rd/wr output control/status | |
cstd_wr output buffer | |
*/ | |
int32 csrs_rd (void) | |
{ | |
return (csi_csr & RXCS_RD); | |
} | |
void csrs_wr (int32 data) | |
{ | |
if ((data & CSR_IE) == 0) | |
cso_int = 0; | |
else if ((csi_csr & (CSR_DONE + CSR_IE)) == CSR_DONE) | |
csi_int = 1; | |
csi_csr = (csi_csr & ~RXCS_WR) | (data & RXCS_WR); | |
return; | |
} | |
int32 csrd_rd (void) | |
{ | |
int32 t = csi_buf; /* char + error */ | |
csi_csr = csi_csr & ~CSR_DONE; /* clr done */ | |
csi_buf = csi_buf & BMASK; /* clr errors */ | |
csi_int = 0; | |
return t; | |
} | |
int32 csts_rd (void) | |
{ | |
return (cso_csr & TXCS_RD); | |
} | |
void csts_wr (int32 data) | |
{ | |
if ((cso_csr & CSTS_BRK) && !(data & CSTS_BRK)) { | |
td_ibptr = 0; | |
td_ibuf[td_ibptr++] = TD_OPINI; | |
td_process_packet(); /* check packet */ | |
} | |
if ((data & CSR_IE) == 0) | |
cso_int = 0; | |
else if ((cso_csr & (CSR_DONE + CSR_IE)) == CSR_DONE) | |
cso_int = 1; | |
cso_csr = (cso_csr & ~CSTS_WR) | (data & CSTS_WR); | |
return; | |
} | |
void cstd_wr (int32 data) | |
{ | |
cso_buf = data & WMASK; /* save data */ | |
cso_csr = cso_csr & ~CSR_DONE; /* clear flag */ | |
cso_int = 0; /* clear int */ | |
switch (cso_state) { | |
case TD_GETOPC: | |
td_ibptr = 0; | |
td_ibuf[td_ibptr++] = cso_buf; | |
td_process_packet(); /* check packet */ | |
break; | |
case TD_GETLEN: | |
td_ibuf[td_ibptr++] = cso_buf; | |
td_ilen = cso_buf + 4; /* packet length + header + checksum */ | |
cso_state = TD_GETDATA; | |
break; | |
case TD_GETDATA: | |
td_ibuf[td_ibptr++] = cso_buf; | |
if (td_ibptr >= td_ilen) { | |
cso_state = TD_GETOPC; | |
td_process_packet(); | |
} | |
break; | |
} | |
cso_csr = cso_csr | CSR_DONE; /* set input flag */ | |
if (cso_csr & CSR_IE) | |
cso_int = 1; | |
return; | |
} | |
void td_process_packet() | |
{ | |
int32 opcode = td_ibuf[0]; | |
switch (opcode) { | |
case TD_OPDAT: | |
if (td_state != TD_WRITE1) { /* expecting data? */ | |
sim_printf("TU58 protocol error 1\n"); | |
return; | |
} | |
if (td_ibptr < 2) { /* whole packet read? */ | |
cso_state = TD_GETLEN; /* get rest of packet */ | |
return; | |
} | |
td_state = TD_WRITE2; | |
sim_activate (&td_dev.units[td_unitno], td_cwait); /* sched command */ | |
break; | |
case TD_OPCMD: | |
if (td_state != TD_IDLE) { /* expecting command? */ | |
sim_printf("TU58 protocol error 2\n"); | |
return; | |
} | |
if (td_ibptr < 2) { /* whole packet read? */ | |
cso_state = TD_GETLEN; /* get rest of packet */ | |
return; | |
} | |
switch (td_ibuf[2]) { | |
case TD_CMDNOP: /* NOP */ | |
case TD_CMDGST: /* Get status */ | |
case TD_CMDSST: /* Set status */ | |
td_unitno = td_ibuf[4]; | |
td_state = TD_END; /* All treated as NOP */ | |
td_ecode = TD_STSOK; | |
td_offset = 0; | |
sim_activate (&td_dev.units[td_unitno], td_cwait); /* sched command */ | |
break; | |
case TD_CMDINI: | |
sim_printf("Warning: TU58 command 'INIT' not implemented\n"); | |
break; | |
case TD_CMDRD: | |
td_unitno = td_ibuf[4]; | |
td_block = ((td_ibuf[11] << 8) | td_ibuf[10]); | |
td_txsize = ((td_ibuf[9] << 8) | td_ibuf[8]); | |
td_state = TD_READ; | |
td_offset = 0; | |
sim_activate (&td_dev.units[td_unitno], td_cwait); /* sched command */ | |
break; | |
case TD_CMDWR: | |
td_unitno = td_ibuf[4]; | |
td_block = ((td_ibuf[11] << 8) | td_ibuf[10]); | |
td_txsize = ((td_ibuf[9] << 8) | td_ibuf[8]); | |
td_state = TD_WRITE; | |
td_offset = 0; | |
sim_activate (&td_dev.units[td_unitno], td_cwait); /* sched command */ | |
break; | |
case TD_CMDPOS: | |
sim_printf("Warning: TU58 command 'Position' not implemented\n"); | |
break; | |
case TD_CMDDIA: | |
sim_printf("Warning: TU58 command 'Diagnose' not implemented\n"); | |
break; | |
case TD_CMDMRSP: /* MRSP supported? */ | |
csi_buf = TD_OPDAT; /* TP_OPCMD = yes, TP_OPDAT = no */ | |
csi_csr = csi_csr | CSR_DONE; /* set input flag */ | |
if (csi_csr & CSR_IE) | |
csi_int = 1; | |
break; | |
} | |
break; | |
case TD_OPINI: | |
sim_cancel (&td_dev.units[0]); | |
sim_cancel (&td_dev.units[1]); | |
td_ibptr = 0; | |
td_obptr = 0; | |
td_olen = 0; | |
td_offset = 0; | |
td_txsize = 0; | |
cso_state = TD_GETOPC; | |
td_state = TD_INIT; | |
sim_activate (&td_dev.units[0], td_iwait); /* sched command */ | |
break; | |
case TD_OPBOO: | |
if (td_state != TD_IDLE) { | |
sim_printf("TU58 protocol error 3\n"); | |
return; | |
} | |
if (td_ibptr < 2) { /* whole packet read? */ | |
td_ilen = 2; | |
cso_state = TD_GETDATA; /* get rest of packet */ | |
return; | |
} | |
td_unitno = td_ibuf[1]; | |
td_block = 0; | |
td_txsize = 512; | |
td_state = TD_READ; | |
td_offset = 0; | |
sim_activate (&td_dev.units[td_unitno], td_cwait); /* sched command */ | |
break; | |
case TD_OPCNT: | |
break; | |
default: | |
//sim_printf("TU58: Unknown opcode %d\n", opcode); | |
break; | |
} | |
} | |
/* Terminal MxPR routines | |
rxcs_rd/wr input control/status | |
rxdb_rd input buffer | |
txcs_rd/wr output control/status | |
txdb_wr output buffer | |
*/ | |
int32 rxcs_rd (void) | |
{ | |
return (tti_csr & RXCS_RD); | |
} | |
void rxcs_wr (int32 data) | |
{ | |
if ((data & CSR_IE) == 0) | |
tti_int = 0; | |
else if ((tti_csr & (CSR_DONE + CSR_IE)) == CSR_DONE) | |
tti_int = 1; | |
tti_csr = (tti_csr & ~RXCS_WR) | (data & RXCS_WR); | |
return; | |
} | |
int32 rxdb_rd (void) | |
{ | |
int32 t = tti_buf; /* char + error */ | |
if (tti_csr & CSR_DONE) { /* Input pending ? */ | |
tti_csr = tti_csr & ~CSR_DONE; /* clr done */ | |
tti_buf = tti_buf & BMASK; /* clr errors */ | |
tti_int = 0; | |
sim_activate_abs (&tti_unit, tti_unit.wait); /* check soon for more input */ | |
} | |
return t; | |
} | |
int32 txcs_rd (void) | |
{ | |
return (tto_csr & TXCS_RD); | |
} | |
void txcs_wr (int32 data) | |
{ | |
if ((data & CSR_IE) == 0) | |
tto_int = 0; | |
else if ((tto_csr & (CSR_DONE + CSR_IE)) == CSR_DONE) | |
tto_int = 1; | |
tto_csr = (tto_csr & ~TXCS_WR) | (data & TXCS_WR); | |
return; | |
} | |
void txdb_wr (int32 data) | |
{ | |
tto_buf = data & WMASK; /* save data */ | |
tto_csr = tto_csr & ~CSR_DONE; /* clear flag */ | |
tto_int = 0; /* clear int */ | |
if (tto_buf & TXDB_SEL) /* console mailbox? */ | |
txdb_misc_wr (tto_buf); | |
sim_activate (&tto_unit, tto_unit.wait); /* no, console */ | |
return; | |
} | |
/* Terminal input service (poll for character) */ | |
t_stat tti_svc (UNIT *uptr) | |
{ | |
int32 c; | |
sim_clock_coschedule (uptr, KBD_WAIT (uptr->wait, tmr_poll)); | |
/* continue poll */ | |
if ((tti_csr & CSR_DONE) && /* input still pending and < 500ms? */ | |
((sim_os_msec () - tti_buftime) < 500)) | |
return SCPE_OK; | |
if ((c = sim_poll_kbd ()) < SCPE_KFLAG) /* no char or error? */ | |
return c; | |
if (c & SCPE_BREAK) /* break? */ | |
tti_buf = RXDB_ERR; | |
else tti_buf = sim_tt_inpcvt (c, TT_GET_MODE (uptr->flags)); | |
tti_buftime = sim_os_msec (); | |
uptr->pos = uptr->pos + 1; | |
tti_csr = tti_csr | CSR_DONE; | |
if (tti_csr & CSR_IE) | |
tti_int = 1; | |
return SCPE_OK; | |
} | |
/* Terminal input reset */ | |
t_stat tti_reset (DEVICE *dptr) | |
{ | |
tmxr_set_console_units (&tti_unit, &tto_unit); | |
tti_buf = 0; | |
tti_csr = 0; | |
tti_int = 0; | |
sim_activate_abs (&tti_unit, KBD_WAIT (tti_unit.wait, tmr_poll)); | |
return SCPE_OK; | |
} | |
t_stat tti_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) | |
{ | |
fprintf (st, "Console Terminal Input (TTI)\n\n"); | |
fprintf (st, "The terminal input (TTI) polls the console keyboard for input.\n\n"); | |
fprint_set_help (st, dptr); | |
fprint_show_help (st, dptr); | |
fprint_reg_help (st, dptr); | |
return SCPE_OK; | |
} | |
const char *tti_description (DEVICE *dptr) | |
{ | |
return "console terminal input"; | |
} | |
/* Terminal output service (output character) */ | |
t_stat tto_svc (UNIT *uptr) | |
{ | |
int32 c; | |
t_stat r; | |
if ((tto_buf & TXDB_SEL) == 0) { /* for console? */ | |
c = sim_tt_outcvt (tto_buf, TT_GET_MODE (uptr->flags)); | |
if (c >= 0) { | |
if ((r = sim_putchar_s (c)) != SCPE_OK) { /* output; error? */ | |
sim_activate (uptr, uptr->wait); /* retry */ | |
return ((r == SCPE_STALL)? SCPE_OK: r); /* !stall? report */ | |
} | |
} | |
uptr->pos = uptr->pos + 1; | |
} | |
tto_csr = tto_csr | CSR_DONE; | |
if (tto_csr & CSR_IE) | |
tto_int = 1; | |
return SCPE_OK; | |
} | |
/* Terminal output reset */ | |
t_stat tto_reset (DEVICE *dptr) | |
{ | |
tto_buf = 0; | |
tto_csr = CSR_DONE; | |
tto_int = 0; | |
sim_cancel (&tto_unit); /* deactivate unit */ | |
return SCPE_OK; | |
} | |
t_stat tto_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) | |
{ | |
fprintf (st, "Console Terminal Output (TTO)\n\n"); | |
fprintf (st, "The terminal output (TTO) writes to the simulator console.\n\n"); | |
fprint_set_help (st, dptr); | |
fprint_show_help (st, dptr); | |
fprint_reg_help (st, dptr); | |
return SCPE_OK; | |
} | |
const char *tto_description (DEVICE *dptr) | |
{ | |
return "console terminal output"; | |
} | |
/* Programmable timer | |
The architected VAX timer, which increments at 1Mhz, cannot be | |
accurately simulated due to the overhead that would be required | |
for 1M clock events per second. Instead, a hidden calibrated | |
100Hz timer is run (because that's what VMS expects), and a | |
hack is used for the interval timer. | |
When the timer is started, the timer interval is inspected. | |
if the interval is >= 10msec, then the 100Hz timer drives the | |
next interval | |
if the interval is < 10mec, then count instructions | |
If the interval register is read, then its value between events | |
is interpolated using the current instruction count versus the | |
count when the most recent event started, the result is scaled | |
to the calibrated system clock, unless the interval being timed | |
is less than a calibrated system clock tick (or the calibrated | |
clock is running very slowly) at which time the result will be | |
the elapsed instruction count. | |
*/ | |
int32 iccs_rd (void) | |
{ | |
return tmr_iccs & TMR_CSR_RD; | |
} | |
void iccs_wr (int32 val) | |
{ | |
if ((val & TMR_CSR_RUN) == 0) { /* clearing run? */ | |
sim_cancel (&tmr_unit); /* cancel timer */ | |
tmr_use_100hz = 0; | |
if (tmr_iccs & TMR_CSR_RUN) /* run 1 -> 0? */ | |
tmr_icr = icr_rd (TRUE); /* update itr */ | |
} | |
tmr_iccs = tmr_iccs & ~(val & TMR_CSR_W1C); /* W1C csr */ | |
tmr_iccs = (tmr_iccs & ~TMR_CSR_WR) | /* new r/w */ | |
(val & TMR_CSR_WR); | |
if (val & TMR_CSR_XFR) tmr_icr = tmr_nicr; /* xfr set? */ | |
if (val & TMR_CSR_RUN) { /* run? */ | |
if (val & TMR_CSR_XFR) /* new tir? */ | |
sim_cancel (&tmr_unit); /* stop prev */ | |
if (!sim_is_active (&tmr_unit)) /* not running? */ | |
tmr_sched (); /* activate */ | |
} | |
else if (val & TMR_CSR_SGL) { /* single step? */ | |
tmr_incr (1); /* incr tmr */ | |
if (tmr_icr == 0) /* if ovflo, */ | |
tmr_icr = tmr_nicr; /* reload tir */ | |
} | |
if ((tmr_iccs & (TMR_CSR_DON | TMR_CSR_IE)) != /* update int */ | |
(TMR_CSR_DON | TMR_CSR_IE)) | |
tmr_int = 0; | |
return; | |
} | |
int32 icr_rd (t_bool interp) | |
{ | |
uint32 delta; | |
if (interp || (tmr_iccs & TMR_CSR_RUN)) { /* interp, running? */ | |
delta = sim_grtime () - tmr_sav; /* delta inst */ | |
if (tmr_use_100hz && (tmr_poll > TMR_INC)) /* scale large int */ | |
delta = (uint32) ((((double) delta) * TMR_INC) / tmr_poll); | |
if (delta >= tmr_inc) | |
delta = tmr_inc - 1; | |
return tmr_icr + delta; | |
} | |
return tmr_icr; | |
} | |
int32 nicr_rd (void) | |
{ | |
return tmr_nicr; | |
} | |
void nicr_wr (int32 val) | |
{ | |
tmr_nicr = val; | |
} | |
/* 100Hz base clock unit service */ | |
t_stat clk_svc (UNIT *uptr) | |
{ | |
tmr_poll = sim_rtcn_calb (clk_tps, TMR_CLK); /* calibrate clock */ | |
sim_activate_after (uptr, 1000000/clk_tps); /* reactivate unit */ | |
tmxr_poll = tmr_poll * TMXR_MULT; /* set mux poll */ | |
AIO_SET_INTERRUPT_LATENCY(tmr_poll*clk_tps); /* set interrrupt latency */ | |
if ((tmr_iccs & TMR_CSR_RUN) && tmr_use_100hz) /* timer on, std intvl? */ | |
tmr_incr (TMR_INC); /* do timer service */ | |
return SCPE_OK; | |
} | |
/* Interval timer unit service */ | |
t_stat tmr_svc (UNIT *uptr) | |
{ | |
tmr_incr (tmr_inc); /* incr timer */ | |
return SCPE_OK; | |
} | |
/* Timer increment */ | |
void tmr_incr (uint32 inc) | |
{ | |
uint32 new_icr = (tmr_icr + inc) & LMASK; /* add incr */ | |
if (new_icr < tmr_icr) { /* ovflo? */ | |
tmr_icr = 0; /* now 0 */ | |
if (tmr_iccs & TMR_CSR_DON) /* done? set err */ | |
tmr_iccs = tmr_iccs | TMR_CSR_ERR; | |
else tmr_iccs = tmr_iccs | TMR_CSR_DON; /* set done */ | |
if (tmr_iccs & TMR_CSR_RUN) { /* run? */ | |
tmr_icr = tmr_nicr; /* reload */ | |
tmr_sched (); /* reactivate */ | |
} | |
if (tmr_iccs & TMR_CSR_IE) /* ie? set int req */ | |
tmr_int = 1; | |
else tmr_int = 0; | |
} | |
else { | |
tmr_icr = new_icr; /* no, update icr */ | |
if (tmr_iccs & TMR_CSR_RUN) /* still running? */ | |
tmr_sched (); /* reactivate */ | |
} | |
return; | |
} | |
/* Timer scheduling */ | |
void tmr_sched (void) | |
{ | |
tmr_sav = sim_grtime (); /* save intvl base */ | |
tmr_inc = (~tmr_icr + 1); /* inc = interval */ | |
if (tmr_inc == 0) tmr_inc = 1; | |
if (tmr_inc < TMR_INC) { /* 100Hz multiple? */ | |
sim_activate (&tmr_unit, tmr_inc); /* schedule timer */ | |
tmr_use_100hz = 0; | |
} | |
else tmr_use_100hz = 1; /* let clk handle */ | |
return; | |
} | |
/* 100Hz clock reset */ | |
t_stat clk_reset (DEVICE *dptr) | |
{ | |
sim_register_clock_unit (&clk_unit); /* declare clock unit */ | |
tmr_poll = sim_rtcn_init (clk_unit.wait, TMR_CLK); /* init 100Hz timer */ | |
sim_activate_abs (&clk_unit, tmr_poll); /* activate 100Hz unit */ | |
tmxr_poll = tmr_poll * TMXR_MULT; /* set mux poll */ | |
if (clk_unit.filebuf == NULL) { /* make sure the TODR is initialized */ | |
clk_unit.filebuf = calloc(sizeof(TOY), 1); | |
if (clk_unit.filebuf == NULL) | |
return SCPE_MEM; | |
todr_resync (); | |
} | |
return SCPE_OK; | |
} | |
t_stat clk_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) | |
{ | |
fprintf (st, "Real-Time Clock (%s)\n\n", dptr->name); | |
fprintf (st, "The real-time clock autocalibrates; the clock interval is adjusted up or down\n"); | |
fprintf (st, "so that the clock tracks actual elapsed time.\n\n"); | |
fprintf (st, "There are two modes of TODR operation:\n\n"); | |
fprintf (st, " Default VMS mode. Without initializing the TODR it returns the current\n"); | |
fprintf (st, " time of year offset which VMS would set the clock to\n"); | |
fprintf (st, " if VMS knew the correct time (i.e. by manual input).\n"); | |
fprintf (st, " This is correct almost all the time unless a VMS disk\n"); | |
fprintf (st, " hadn't been booted from in the current year. This mode\n"); | |
fprintf (st, " produces strange time results for non VMS OSes on each\n"); | |
fprintf (st, " system boot.\n"); | |
fprintf (st, " OS Agnostic mode. This mode behaves precisely like the VAX780 TODR and\n"); | |
fprintf (st, " works correctly for all OSes. This mode is enabled by\n"); | |
fprintf (st, " attaching the %s to a battery backup state file for the\n", dptr->name); | |
fprintf (st, " TOY clock (i.e. sim> attach %s TOY_CLOCK). When\n", dptr->name); | |
fprintf (st, " operating in OS Agnostic mode, the TODR will initially\n"); | |
fprintf (st, " start counting from 0 and be adjusted differently when\n"); | |
fprintf (st, " an OS specifically writes to the TODR. VMS determines\n"); | |
fprintf (st, " if the TODR currently contains a valid time if the value\n"); | |
fprintf (st, " it sees is less than about 1 month. If the time isn't\n"); | |
fprintf (st, " valid VMS will prompt to set the time during the system\n"); | |
fprintf (st, " boot. While prompting for the time it will wait for an\n"); | |
fprintf (st, " answer to the prompt for up to the SYSGEN parameter\n"); | |
fprintf (st, " TIMEPROMPTWAIT seconds. A value of 0 for TIMEPROMPTWAIT\n"); | |
fprintf (st, " will disable the clock setting prompt.\n"); | |
fprint_reg_help (st, dptr); | |
return SCPE_OK; | |
} | |
const char *clk_description (DEVICE *dptr) | |
{ | |
return "time of year clock"; | |
} | |
/* CLK attach */ | |
t_stat clk_attach (UNIT *uptr, char *cptr) | |
{ | |
t_stat r; | |
uptr->flags = uptr->flags | (UNIT_ATTABLE | UNIT_BUFABLE); | |
memset (uptr->filebuf, 0, (size_t)uptr->capac); | |
r = attach_unit (uptr, cptr); | |
if (r != SCPE_OK) | |
uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE); | |
else | |
uptr->hwmark = (uint32) uptr->capac; | |
return r; | |
} | |
/* CLK detach */ | |
t_stat clk_detach (UNIT *uptr) | |
{ | |
t_stat r; | |
r = detach_unit (uptr); | |
if ((uptr->flags & UNIT_ATT) == 0) | |
uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE); | |
return r; | |
} | |
/* Interval timer reset */ | |
t_stat tmr_reset (DEVICE *dptr) | |
{ | |
tmr_iccs = 0; | |
tmr_icr = 0; | |
tmr_nicr = 0; | |
tmr_int = 0; | |
tmr_use_100hz = 1; | |
sim_cancel (&tmr_unit); /* cancel timer */ | |
todr_resync (); /* resync TODR */ | |
return SCPE_OK; | |
} | |
const char *tmr_description (DEVICE *dptr) | |
{ | |
return "interval timer"; | |
} | |
/* TODR routines */ | |
int32 todr_rd (void) | |
{ | |
TOY *toy = (TOY *)clk_unit.filebuf; | |
struct timespec base, now, val; | |
clock_gettime(CLOCK_REALTIME, &now); /* get curr time */ | |
base.tv_sec = toy->toy_gmtbase; | |
base.tv_nsec = toy->toy_gmtbasemsec * 1000000; | |
sim_timespec_diff (&val, &now, &base); | |
return (int32)(val.tv_sec*100 + val.tv_nsec/10000000); /* 100hz Clock Ticks */ | |
} | |
void todr_wr (int32 data) | |
{ | |
TOY *toy = (TOY *)clk_unit.filebuf; | |
struct timespec now, val, base; | |
/* Save the GMT time when set value was 0 to record the base for future | |
read operations in "battery backed-up" state */ | |
if (-1 == clock_gettime(CLOCK_REALTIME, &now)) /* get curr time */ | |
return; /* error? */ | |
val.tv_sec = ((uint32)data) / 100; | |
val.tv_nsec = (((uint32)data) % 100) * 10000000; | |
sim_timespec_diff (&base, &now, &val); /* base = now - data */ | |
toy->toy_gmtbase = (uint32)base.tv_sec; | |
toy->toy_gmtbasemsec = base.tv_nsec/1000000; | |
} | |
t_stat todr_resync (void) | |
{ | |
TOY *toy = (TOY *)clk_unit.filebuf; | |
if (clk_unit.flags & UNIT_ATT) { /* Attached means behave like real VAX780 */ | |
if (!toy->toy_gmtbase) /* Never set? */ | |
todr_wr (0); /* Start ticking from 0 */ | |
} | |
else { /* Not-Attached means */ | |
uint32 base; /* behave like simh VMS default */ | |
time_t curr; | |
struct tm *ctm; | |
curr = time (NULL); /* get curr time */ | |
if (curr == (time_t) -1) /* error? */ | |
return SCPE_NOFNC; | |
ctm = localtime (&curr); /* decompose */ | |
if (ctm == NULL) /* error? */ | |
return SCPE_NOFNC; | |
base = (((((ctm->tm_yday * 24) + /* sec since 1-Jan */ | |
ctm->tm_hour) * 60) + | |
ctm->tm_min) * 60) + | |
ctm->tm_sec; | |
todr_wr ((base * 100) + 0x10000000); /* use VMS form */ | |
} | |
return SCPE_OK; | |
} | |
/* Console write, txdb<11:8> != 0 (console unit) */ | |
t_stat txdb_misc_wr (int32 data) | |
{ | |
int32 sel = TXDB_GETSEL (data); /* get selection */ | |
if (sel == TXDB_MISC) { /* misc function? */ | |
switch (data & MISC_MASK) { /* case on function */ | |
case MISC_CLWS: | |
case MISC_CLCS: | |
break; | |
case MISC_SWDN: | |
ABORT (STOP_SWDN); | |
break; | |
case MISC_BOOT: | |
ABORT (STOP_BOOT); | |
break; | |
} | |
} | |
return SCPE_OK; | |
} | |
t_stat td_svc (UNIT *uptr) | |
{ | |
int32 i, t, data_size; | |
uint16 c, w; | |
uint32 da; | |
int8 *fbuf = uptr->filebuf; | |
switch (td_state) { /* case on state */ | |
case TD_IDLE: /* idle */ | |
return SCPE_IERR; /* done */ | |
case TD_READ: case TD_WRITE: /* read, write */ | |
if (td_test_xfr (uptr, td_state)) { /* transfer ok? */ | |
t = abs (td_block - 0); /* # blocks to seek */ | |
if (t == 0) /* minimum 1 */ | |
t = 1; | |
td_state++; /* set next state */ | |
sim_activate (uptr, td_swait * t); /* schedule seek */ | |
break; | |
} | |
else td_state = TD_END; | |
sim_activate (uptr, td_xwait); /* schedule next */ | |
break; | |
case TD_READ1: /* build data packet */ | |
// da = CALC_DA (td_block); /* get tape address */ | |
da = (td_block * 512) + td_offset; /* get tape address */ | |
if (td_txsize > 128) /* Packet length */ | |
data_size = 128; | |
else data_size = td_txsize; | |
td_txsize = td_txsize - data_size; | |
td_offset = td_offset + data_size; | |
td_obptr = 0; | |
td_obuf[td_obptr++] = TD_OPDAT; /* Data packet */ | |
td_obuf[td_obptr++] = data_size; /* Data length */ | |
for (i = 0; i < data_size; i++) /* copy sector to buf */ | |
td_obuf[td_obptr++] = fbuf[da + i]; | |
c = 0; | |
for (i = 0; i < (data_size + 2); i++) { /* Calculate checksum */ | |
w = (td_obuf[i] << ((i & 0x1) ? 8 : 0)); | |
c = c + w + ( (uint32)((uint32)c + (uint32)w) > 0xFFFF ? 1 : 0); | |
} | |
td_obuf[td_obptr++] = (c & 0xFF); /* Checksum L */ | |
td_obuf[td_obptr++] = ((c >> 8) & 0xFF); /* Checksum H */ | |
td_olen = td_obptr; | |
td_obptr = 0; | |
td_state = TD_READ2; /* go empty */ | |
sim_activate (uptr, td_xwait); /* schedule next */ | |
break; | |
case TD_READ2: /* send data packet to host */ | |
if ((csi_csr & CSR_DONE) == 0) { /* prev data taken? */ | |
csi_buf = td_obuf[td_obptr++]; /* get next byte */ | |
csi_csr = csi_csr | CSR_DONE; /* set input flag */ | |
if (csi_csr & CSR_IE) | |
csi_int = 1; | |
if (td_obptr >= td_olen) { /* buffer empty? */ | |
if (td_txsize > 0) | |
td_state = TD_READ1; | |
else | |
td_state = TD_END; | |
} | |
} | |
sim_activate (uptr, td_xwait); /* schedule next */ | |
break; | |
case TD_WRITE1: /* send continue */ | |
if ((csi_csr & CSR_DONE) == 0) { /* prev data taken? */ | |
csi_buf = TD_OPCNT; | |
csi_csr = csi_csr | CSR_DONE; /* set input flag */ | |
if (csi_csr & CSR_IE) | |
csi_int = 1; | |
break; | |
} | |
sim_activate (uptr, td_xwait); /* schedule next */ | |
break; | |
case TD_WRITE2: /* write data to buffer */ | |
da = (td_block * 512) + td_offset; /* get tape address */ | |
td_olen = td_ibuf[1]; | |
for (i = 0; i < td_olen; i++) /* write data to buffer */ | |
fbuf[da + i] = td_ibuf[i + 2]; | |
td_offset += td_olen; | |
td_txsize -= td_olen; | |
da = da + td_olen; | |
if (da > uptr->hwmark) /* update hwmark */ | |
uptr->hwmark = da; | |
if (td_txsize > 0) | |
td_state = TD_WRITE1; | |
else { /* check whole number of blocks written */ | |
if ((td_olen = (512 - (td_offset % 512)) != 512)) { | |
for (i = 0; i < td_olen; i++) | |
fbuf[da + i] = 0; /* zero fill */ | |
da = da + td_olen; | |
if (da > uptr->hwmark) /* update hwmark */ | |
uptr->hwmark = da; | |
} | |
td_state = TD_END; | |
} | |
sim_activate (uptr, td_xwait); /* schedule next */ | |
break; | |
case TD_END: /* build end packet */ | |
td_obptr = 0; | |
td_obuf[td_obptr++] = TD_OPCMD; /* Command packet */ | |
td_obuf[td_obptr++] = 0xA; /* ** Need definition ** */ | |
td_obuf[td_obptr++] = TD_CMDEND; | |
td_obuf[td_obptr++] = td_ecode; /* Success code */ | |
td_obuf[td_obptr++] = td_unitno; /* Unit number */ | |
td_obuf[td_obptr++] = 0; /* Not used */ | |
td_obuf[td_obptr++] = 0; /* Sequence L (not used) */ | |
td_obuf[td_obptr++] = 0; /* Sequence H (not used) */ | |
td_obuf[td_obptr++] = (td_offset & 0xFF); /* Byte count L */ | |
td_obuf[td_obptr++] = ((td_offset >> 8) & 0xFF);/* Byte count H */ | |
td_obuf[td_obptr++] = 0; /* Summary status L */ | |
td_obuf[td_obptr++] = 0; /* Summary status H */ | |
c = 0; | |
for (i = 0; i < (0xA + 2); i++) { /* Calculate checksum */ | |
w = (td_obuf[i] << ((i & 0x1) ? 8 : 0)); | |
c = c + w + ( (uint32)((uint32)c + (uint32)w) > 0xFFFF ? 1 : 0); | |
} | |
td_obuf[td_obptr++] = c & 0xFF; /* Checksum L */ | |
td_obuf[td_obptr++] = (c >> 8) & 0xFF; /* Checksum H */ | |
td_olen = td_obptr; | |
td_obptr = 0; | |
td_state = TD_END1; /* go empty */ | |
sim_activate (uptr, td_xwait); /* schedule next */ | |
break; | |
case TD_END1: /* send end packet to host */ | |
if ((csi_csr & CSR_DONE) == 0) { /* prev data taken? */ | |
csi_buf = td_obuf[td_obptr++]; /* get next byte */ | |
csi_csr = csi_csr | CSR_DONE; /* set input flag */ | |
if (csi_csr & CSR_IE) | |
csi_int = 1; | |
if (td_obptr >= td_olen) { /* buffer empty? */ | |
td_state = TD_IDLE; | |
break; | |
} | |
} | |
sim_activate (uptr, td_xwait); /* schedule next */ | |
break; | |
case TD_INIT: | |
if ((csi_csr & CSR_DONE) == 0) { /* prev data taken? */ | |
csi_buf = TD_OPCNT; | |
csi_csr = csi_csr | CSR_DONE; /* set input flag */ | |
if (csi_csr & CSR_IE) | |
csi_int = 1; | |
td_state = TD_IDLE; | |
break; | |
} | |
sim_activate (uptr, td_xwait); /* schedule next */ | |
break; | |
} | |
return SCPE_OK; | |
} | |
/* Test for data transfer okay */ | |
t_bool td_test_xfr (UNIT *uptr, int32 state) | |
{ | |
if ((uptr->flags & UNIT_BUF) == 0) /* not buffered? */ | |
td_ecode = TD_STSNC; | |
else if (td_block >= TD_NUMBLK) /* bad block? */ | |
td_ecode = TD_STSBBN; | |
else if ((state == TD_WRITE) && (uptr->flags & UNIT_WPRT)) /* write and locked? */ | |
td_ecode = TD_STSWP; | |
else { | |
td_ecode = TD_STSOK; | |
return TRUE; | |
} | |
return FALSE; | |
} | |
/* Reset */ | |
t_stat td_reset (DEVICE *dptr) | |
{ | |
cso_buf = 0; | |
cso_csr = CSR_DONE; | |
cso_int = 0; | |
cso_state = TD_GETOPC; | |
td_ibptr = 0; | |
td_obptr = 0; | |
td_olen = 0; | |
td_offset = 0; | |
td_txsize = 0; | |
sim_cancel (&td_dev.units[0]); | |
sim_cancel (&td_dev.units[1]); | |
return SCPE_OK; | |
} | |
const char *td_description (DEVICE *dptr) | |
{ | |
return "Console TU58 cartridge"; | |
} |