blob: 1d0b4fd781074a88233d38c98cc8ed444de948cc [file] [log] [blame] [raw]
/* pdp18b_dt.c: PDP-9/15 DECtape simulator
Copyright (c) 1993-2001, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
dt (PDP-9) TC02/TU55 DECtape
(PDP-15) TC15/TU56 DECtape
17-Jul-01 RMS Moved function prototype
11-May-01 RMS Fixed bug in reset
26-Apr-01 RMS Added device enable/disable support
15-Mar-01 RMS Added 129th word to PDP-8 format
18b DECtapes are represented by fixed length data blocks of 18b words. Two
tape formats are supported:
16b/18b/36b 256 words per block
12b 86 words per block [129 x 12b]
DECtape motion is measured in 3b lines. Time between lines is 33.33us.
Tape density is nominally 300 lines per inch. The format of a DECtape is
reverse end zone 36000 lines ~ 10 feet
block 0
:
block n
forward end zone 36000 lines ~ 10 feet
A block consists of five 18b header words, a tape-specific number of data
words, and five 18b trailer words. All systems except the PDP-8 use a
standard block length of 256 words; the PDP-8 uses a standard block length
of 86 words (x 18b = 129 words x 12b).
Because a DECtape file only contains data, the simulator cannot support
write timing and mark track and can only do a limited implementation
of read all and write all. Read all assumes that the tape has been
conventionally written forward:
header word 0 0
header word 1 block number (for forward reads)
header words 2,3 0
header word 4 0
:
trailer word 4 checksum
trailer words 3,2 0
trailer word 1 block number (for reverse reads)
trailer word 0 0
Write all writes only the data words and dumps the interblock words in the
bit bucket.
*/
#include "pdp18b_defs.h"
#define DT_NUMDR 8 /* #drives */
#define UNIT_V_WLK (UNIT_V_UF + 0) /* write locked */
#define UNIT_WLK (1 << UNIT_V_WLK)
#define UNIT_V_8FMT (UNIT_V_UF + 1) /* 12b format */
#define UNIT_8FMT (1 << UNIT_V_8FMT)
#define UNIT_W_UF 3 /* saved flag width */
#define STATE u3 /* unit state */
#define LASTT u4 /* last time update */
#define DT_WC 030 /* word count */
#define DT_CA 031 /* current addr */
/* System independent DECtape constants */
#define DT_EZLIN 36000 /* end zone length */
#define DT_HTLIN 30 /* header/trailer lines */
#define DT_BLKLN 6 /* blk no line in h/t */
#define DT_CSMLN 24 /* checksum line in h/t */
#define DT_HTWRD (DT_HTLIN / DT_WSIZE) /* header/trailer words */
#define DT_BLKWD (DT_BLKLN / DT_WSIZE) /* blk no word in h/t */
#define DT_CSMWD (DT_CSMLN / DT_WSIZE) /* checksum word in h/t */
/* 16b, 18b, 36b DECtape constants */
#define D18_WSIZE 6 /* word size in lines */
#define D18_BSIZE 256 /* block size in 18b */
#define D18_TSIZE 578 /* tape size */
#define D18_LPERB (DT_HTLIN + (D18_BSIZE * DT_WSIZE) + DT_HTLIN)
#define D18_FWDEZ (DT_EZLIN + (D18_LPERB * D18_TSIZE))
#define D18_CAPAC (D18_TSIZE * D18_BSIZE) /* tape capacity */
/* 12b DECtape constants */
#define D8_WSIZE 4 /* word size in lines */
#define D8_BSIZE 86 /* block size in 18b */
#define D8_TSIZE 1474 /* tape size */
#define D8_LPERB (DT_HTLIN + (D8_BSIZE * DT_WSIZE) + DT_HTLIN)
#define D8_FWDEZ (DT_EZLIN + (D8_LPERB * D8_TSIZE))
#define D8_CAPAC (D8_TSIZE * D8_BSIZE) /* tape capacity */
#define D8_NBSIZE ((D8_BSIZE * D18_WSIZE) / D8_WSIZE)
#define D8_FILSIZ (D8_NBSIZE * D8_TSIZE * sizeof (int16))
/* This controller */
#define DT_CAPAC D18_CAPAC /* default */
#define DT_WSIZE D18_WSIZE
/* Calculated constants, per unit */
#define DTU_BSIZE(u) (((u) -> flags & UNIT_8FMT)? D8_BSIZE: D18_BSIZE)
#define DTU_TSIZE(u) (((u) -> flags & UNIT_8FMT)? D8_TSIZE: D18_TSIZE)
#define DTU_LPERB(u) (((u) -> flags & UNIT_8FMT)? D8_LPERB: D18_LPERB)
#define DTU_FWDEZ(u) (((u) -> flags & UNIT_8FMT)? D8_FWDEZ: D18_FWDEZ)
#define DTU_CAPAC(u) (((u) -> flags & UNIT_8FMT)? D8_CAPAC: D18_CAPAC)
#define DT_LIN2BL(p,u) (((p) - DT_EZLIN) / DTU_LPERB (u))
#define DT_LIN2OF(p,u) (((p) - DT_EZLIN) % DTU_LPERB (u))
#define DT_LIN2WD(p,u) ((DT_LIN2OF (p,u) - DT_HTLIN) / DT_WSIZE)
#define DT_BLK2LN(p,u) (((p) * DTU_LPERB (u)) + DT_EZLIN)
#define DT_QREZ(u) (((u) -> pos) < DT_EZLIN)
#define DT_QFEZ(u) (((u) -> pos) >= ((uint32) DTU_FWDEZ (u)))
#define DT_QEZ(u) (DT_QREZ (u) || DT_QFEZ (u))
/* Status register A */
#define DTA_V_UNIT 15 /* unit select */
#define DTA_M_UNIT 07
#define DTA_UNIT (DTA_M_UNIT << DTA_V_UNIT)
#define DTA_V_MOT 13 /* motion */
#define DTA_M_MOT 03
#define DTA_V_MODE 12 /* mode */
#define DTA_V_FNC 9 /* function */
#define DTA_M_FNC 07
#define FNC_MOVE 00 /* move */
#define FNC_SRCH 01 /* search */
#define FNC_READ 02 /* read */
#define FNC_RALL 03 /* read all */
#define FNC_WRIT 04 /* write */
#define FNC_WALL 05 /* write all */
#define FNC_WMRK 06 /* write timing */
#define DTA_V_ENB 8 /* int enable */
#define DTA_V_CERF 7 /* clr error flag */
#define DTA_V_CDTF 6 /* clr DECtape flag */
#define DTA_FWDRV (1u << (DTA_V_MOT + 1))
#define DTA_STSTP (1u << DTA_V_MOT)
#define DTA_MODE (1u << DTA_V_MODE)
#define DTA_ENB (1u << DTA_V_ENB)
#define DTA_CERF (1u << DTA_V_CERF)
#define DTA_CDTF (1u << DTA_V_CDTF)
#define DTA_RW (0777700 & ~(DTA_CERF | DTA_CDTF))
#define DTA_GETUNIT(x) (((x) >> DTA_V_UNIT) & DTA_M_UNIT)
#define DTA_GETMOT(x) (((x) >> DTA_V_MOT) & DTA_M_MOT)
#define DTA_GETFNC(x) (((x) >> DTA_V_FNC) & DTA_M_FNC)
/* Status register B */
#define DTB_V_ERF 17 /* error flag */
#define DTB_V_MRK 16 /* mark trk err */
#define DTB_V_END 15 /* end zone err */
#define DTB_V_SEL 14 /* select err */
#define DTB_V_PAR 13 /* parity err */
#define DTB_V_TIM 12 /* timing err */
#define DTB_V_DTF 6 /* DECtape flag */
#define DTB_ERF (1u << DTB_V_ERF)
#define DTB_MRK (1u << DTB_V_MRK)
#define DTB_END (1u << DTB_V_END)
#define DTB_SEL (1u << DTB_V_SEL)
#define DTB_PAR (1u << DTB_V_PAR)
#define DTB_TIM (1u << DTB_V_TIM)
#define DTB_DTF (1u << DTB_V_DTF)
#define DTB_ALLERR (DTB_ERF | DTB_MRK | DTB_END | DTB_SEL | \
DTB_PAR | DTB_TIM)
/* DECtape state */
#define DTS_V_MOT 3 /* motion */
#define DTS_M_MOT 07
#define DTS_STOP 0 /* stopped */
#define DTS_DECF 2 /* decel, fwd */
#define DTS_DECR 3 /* decel, rev */
#define DTS_ACCF 4 /* accel, fwd */
#define DTS_ACCR 5 /* accel, rev */
#define DTS_ATSF 6 /* @speed, fwd */
#define DTS_ATSR 7 /* @speed, rev */
#define DTS_DIR 01 /* dir mask */
#define DTS_V_FNC 0 /* function */
#define DTS_M_FNC 07
#define DTS_OFR 7 /* "off reel" */
#define DTS_GETMOT(x) (((x) >> DTS_V_MOT) & DTS_M_MOT)
#define DTS_GETFNC(x) (((x) >> DTS_V_FNC) & DTS_M_FNC)
#define DTS_V_2ND 6 /* next state */
#define DTS_V_3RD (DTS_V_2ND + DTS_V_2ND) /* next next */
#define DTS_STA(y,z) (((y) << DTS_V_MOT) | ((z) << DTS_V_FNC))
#define DTS_SETSTA(y,z) uptr -> STATE = DTS_STA (y, z)
#define DTS_SET2ND(y,z) uptr -> STATE = (uptr -> STATE & 077) | \
((DTS_STA (y, z)) << DTS_V_2ND)
#define DTS_SET3RD(y,z) uptr -> STATE = (uptr -> STATE & 07777) | \
((DTS_STA (y, z)) << DTS_V_3RD)
#define DTS_NXTSTA(x) (x >> DTS_V_2ND)
/* Operation substates */
#define DTO_WCO 1 /* wc overflow */
#define DTO_SOB 2 /* start of block */
/* Logging */
#define LOG_MS 001 /* move, search */
#define LOG_RW 002 /* read, write */
#define LOG_RA 004 /* read all */
#define LOG_BL 010 /* block # lblk */
#define DT_UPDINT if ((dtsa & DTA_ENB) && (dtsb & (DTB_ERF | DTB_DTF))) \
int_req = int_req | INT_DTA; \
else int_req = int_req & ~INT_DTA;
#define ABS(x) (((x) < 0)? (-(x)): (x))
extern int32 M[];
extern int32 int_req, dev_enb;
extern UNIT cpu_unit;
extern int32 sim_switches;
int32 dtsa = 0; /* status A */
int32 dtsb = 0; /* status B */
int32 dt_ltime = 12; /* interline time */
int32 dt_actime = 54000; /* accel time */
int32 dt_dctime = 72000; /* decel time */
int32 dt_substate = 0;
int32 dt_log = 0;
int32 dt_logblk = 0;
t_stat dt_svc (UNIT *uptr);
t_stat dt_reset (DEVICE *dptr);
t_stat dt_attach (UNIT *uptr, char *cptr);
t_stat dt_detach (UNIT *uptr);
void dt_deselect (int32 oldf);
void dt_newsa (int32 newf);
void dt_newfnc (UNIT *uptr, int32 newsta);
t_bool dt_setpos (UNIT *uptr);
void dt_schedez (UNIT *uptr, int32 dir);
void dt_seterr (UNIT *uptr, int32 e);
int32 dt_comobv (int32 val);
int32 dt_csum (UNIT *uptr, int32 blk);
int32 dt_gethdr (UNIT *uptr, int32 blk, int32 relpos);
extern int32 sim_is_running;
/* DT data structures
dt_dev DT device descriptor
dt_unit DT unit list
dt_reg DT register list
dt_mod DT modifier list
*/
UNIT dt_unit[] = {
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, DT_CAPAC) } };
REG dt_reg[] = {
{ GRDATA (DTSA, dtsa, 8, 12, 6) },
{ GRDATA (DTSB, dtsb, 8, 12, 6) },
{ FLDATA (INT, int_req, INT_V_DTA) },
{ FLDATA (ENB, dtsa, DTA_V_ENB) },
{ FLDATA (DTF, dtsb, DTB_V_DTF) },
{ FLDATA (ERF, dtsb, DTB_V_ERF) },
{ ORDATA (WC, M[DT_WC], 18) },
{ ORDATA (CA, M[DT_CA], 18) },
{ DRDATA (LTIME, dt_ltime, 31), REG_NZ },
{ DRDATA (ACTIME, dt_actime, 31), REG_NZ },
{ DRDATA (DCTIME, dt_dctime, 31), REG_NZ },
{ ORDATA (SUBSTATE, dt_substate, 2) },
{ ORDATA (LOG, dt_log, 4), REG_HIDDEN },
{ DRDATA (LBLK, dt_logblk, 12), REG_HIDDEN },
{ DRDATA (POS0, dt_unit[0].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS1, dt_unit[1].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS2, dt_unit[2].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS3, dt_unit[3].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS4, dt_unit[4].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS5, dt_unit[5].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS6, dt_unit[6].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS7, dt_unit[7].pos, 31), PV_LEFT + REG_RO },
{ ORDATA (STATE0, dt_unit[0].STATE, 18), REG_RO },
{ ORDATA (STATE1, dt_unit[1].STATE, 18), REG_RO },
{ ORDATA (STATE2, dt_unit[2].STATE, 18), REG_RO },
{ ORDATA (STATE3, dt_unit[3].STATE, 18), REG_RO },
{ ORDATA (STATE4, dt_unit[4].STATE, 18), REG_RO },
{ ORDATA (STATE5, dt_unit[5].STATE, 18), REG_RO },
{ ORDATA (STATE6, dt_unit[6].STATE, 18), REG_RO },
{ ORDATA (STATE7, dt_unit[7].STATE, 18), REG_RO },
{ DRDATA (LASTT0, dt_unit[0].LASTT, 32), REG_HRO },
{ DRDATA (LASTT1, dt_unit[1].LASTT, 32), REG_HRO },
{ DRDATA (LASTT2, dt_unit[2].LASTT, 32), REG_HRO },
{ DRDATA (LASTT3, dt_unit[3].LASTT, 32), REG_HRO },
{ DRDATA (LASTT4, dt_unit[4].LASTT, 32), REG_HRO },
{ DRDATA (LASTT5, dt_unit[5].LASTT, 32), REG_HRO },
{ DRDATA (LASTT6, dt_unit[6].LASTT, 32), REG_HRO },
{ DRDATA (LASTT7, dt_unit[7].LASTT, 32), REG_HRO },
{ GRDATA (FLG0, dt_unit[0].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG1, dt_unit[1].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG2, dt_unit[2].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG3, dt_unit[3].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG4, dt_unit[4].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG5, dt_unit[5].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG6, dt_unit[6].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG7, dt_unit[7].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ FLDATA (*DEVENB, dev_enb, INT_V_DTA), REG_HRO },
{ NULL } };
MTAB dt_mod[] = {
{ UNIT_WLK, 0, "write enabled", "ENABLED", NULL },
{ UNIT_WLK, UNIT_WLK, "write locked", "LOCKED", NULL },
{ UNIT_8FMT, 0, "16b/18b", NULL, NULL },
{ UNIT_8FMT, UNIT_8FMT, "12b", NULL, NULL },
{ 0 } };
DEVICE dt_dev = {
"DT", dt_unit, dt_reg, dt_mod,
DT_NUMDR, 8, 24, 1, 8, 18,
NULL, NULL, &dt_reset,
NULL, &dt_attach, &dt_detach };
/* IOT routines */
int32 dt75 (int32 pulse, int32 AC)
{
int32 old_dtsa = dtsa, fnc;
UNIT *uptr;
if (((pulse & 060) == 040) && (pulse & 05)) { /* select */
if (pulse & 01) dtsa = 0; /* DTCA */
if (pulse & 02) AC = dtsa; /* DTRA!... */
if (pulse & 04) { /* DTXA */
if ((AC & DTA_CERF) == 0) dtsb = dtsb & ~DTB_ALLERR;
if ((AC & DTA_CDTF) == 0) dtsb = dtsb & ~DTB_DTF;
dtsa = dtsa ^ (AC & DTA_RW); }
if ((old_dtsa ^ dtsa) & DTA_UNIT) dt_deselect (old_dtsa);
uptr = dt_dev.units + DTA_GETUNIT (dtsa); /* get unit */
fnc = DTA_GETFNC (dtsa); /* get fnc */
if (((uptr -> flags) & UNIT_DIS) || /* disabled? */
(fnc >= FNC_WMRK) || /* write mark? */
((fnc == FNC_WRIT) && (uptr -> flags & UNIT_WLK)) ||
((fnc == FNC_WALL) && (uptr -> flags & UNIT_WLK)))
dt_seterr (uptr, DTB_SEL); /* select err */
else dt_newsa (dtsa); /* new func */
DT_UPDINT;
return AC; }
if ((pulse & 067) == 042) return dtsa; /* DTRA */
if ((pulse & 067) == 061) /* DTEF */
return ((dtsb & DTB_ERF)? IOT_SKP + AC: AC);
if ((pulse & 067) == 062) return dtsb; /* DTRB */
if ((pulse & 067) == 063) /* DTEF!DTRB */
return ((dtsb & DTB_ERF)? IOT_SKP + dtsb: dtsb);
return AC;
}
int32 dt76 (int32 pulse, int32 AC)
{
if ((pulse & 01) && (dtsb & DTB_DTF)) /* DTDF */
return IOT_SKP + AC;
return AC;
}
/* Unit deselect */
void dt_deselect (int32 oldf)
{
int32 old_unit = DTA_GETUNIT (oldf);
UNIT *uptr = dt_dev.units + old_unit;
int32 old_mot = DTS_GETMOT (uptr -> STATE);
if (old_mot >= DTS_ATSF) /* at speed? */
dt_newfnc (uptr, DTS_STA (old_mot, DTS_OFR));
else if (old_mot >= DTS_ACCF) /* accelerating? */
DTS_SET2ND (DTS_ATSF | (old_mot & DTS_DIR), DTS_OFR);
return; }
/* Command register change
1. If change in motion, stop to start
- schedule acceleration
- set function as next state
2. If change in motion, start to stop
- if not already decelerating (could be reversing),
schedule deceleration
3. If change in direction,
- if not decelerating, schedule deceleration
- set accelerating (other dir) as next state
- set function as next next state
4. If not accelerating or at speed,
- schedule acceleration
- set function as next state
5. If not yet at speed,
- set function as next state
6. If at speed,
- set function as current state, schedule function
*/
void dt_newsa (int32 newf)
{
int32 new_unit, prev_mot, prev_fnc, new_fnc;
int32 prev_mving, new_mving, prev_dir, new_dir;
UNIT *uptr;
new_unit = DTA_GETUNIT (newf); /* new, old units */
uptr = dt_dev.units + new_unit;
if ((uptr -> flags & UNIT_ATT) == 0) { /* new unit attached? */
dt_seterr (uptr, DTB_SEL); /* no, error */
return; }
prev_mot = DTS_GETMOT (uptr -> STATE); /* previous motion */
prev_mving = prev_mot != DTS_STOP; /* previous moving? */
prev_dir = prev_mot & DTS_DIR; /* previous dir? */
prev_fnc = DTS_GETFNC (uptr -> STATE); /* prev function? */
new_mving = (newf & DTA_STSTP) != 0; /* new moving? */
new_dir = (newf & DTA_FWDRV) != 0; /* new dir? */
new_fnc = DTA_GETFNC (newf); /* new function? */
if ((prev_mving | new_mving) == 0) return; /* stop to stop */
if (new_mving & ~prev_mving) { /* start? */
if (dt_setpos (uptr)) return; /* update pos */
sim_cancel (uptr); /* stop current */
sim_activate (uptr, dt_actime); /* schedule accel */
DTS_SETSTA (DTS_ACCF | new_dir, 0); /* state = accel */
DTS_SET2ND (DTS_ATSF | new_dir, new_fnc); /* next = fnc */
return; }
if (prev_mving & ~new_mving) { /* stop? */
if ((prev_mot & ~DTS_DIR) != DTS_DECF) { /* !already stopping? */
if (dt_setpos (uptr)) return; /* update pos */
sim_cancel (uptr); /* stop current */
sim_activate (uptr, dt_dctime); } /* schedule decel */
DTS_SETSTA (DTS_DECF | prev_dir, 0); /* state = decel */
return; }
if (prev_dir ^ new_dir) { /* dir chg? */
if ((prev_mot & ~DTS_DIR) != DTS_DECF) { /* !already stopping? */
if (dt_setpos (uptr)) return; /* update pos */
sim_cancel (uptr); /* stop current */
sim_activate (uptr, dt_dctime); } /* schedule decel */
DTS_SETSTA (DTS_DECF | prev_dir, 0); /* state = decel */
DTS_SET2ND (DTS_ACCF | new_dir, 0); /* next = accel */
DTS_SET3RD (DTS_ATSF | new_dir, new_fnc); /* next next = fnc */
return; }
if (prev_mot < DTS_ACCF) { /* not accel/at speed? */
if (dt_setpos (uptr)) return; /* update pos */
sim_cancel (uptr); /* cancel cur */
sim_activate (uptr, dt_actime); /* schedule accel */
DTS_SETSTA (DTS_ACCF | new_dir, 0); /* state = accel */
DTS_SET2ND (DTS_ATSF | new_dir, new_fnc); /* next = fnc */
return; }
if (prev_mot < DTS_ATSF) { /* not at speed? */
DTS_SET2ND (DTS_ATSF | new_dir, new_fnc); /* next = fnc */
return; }
dt_newfnc (uptr, DTS_STA (DTS_ATSF | new_dir, new_fnc));/* state = fnc */
return;
}
/* Schedule new DECtape function
This routine is only called if
- the selected unit is attached
- the selected unit is at speed (forward or backward)
This routine
- updates the selected unit's position
- updates the selected unit's state
- schedules the new operation
*/
void dt_newfnc (UNIT *uptr, int32 newsta)
{
int32 fnc, dir, blk, unum, relpos, newpos;
uint32 oldpos;
oldpos = uptr -> pos; /* save old pos */
if (dt_setpos (uptr)) return; /* update pos */
uptr -> STATE = newsta; /* update state */
fnc = DTS_GETFNC (uptr -> STATE); /* set variables */
dir = DTS_GETMOT (uptr -> STATE) & DTS_DIR;
unum = uptr - dt_dev.units;
if (oldpos == uptr -> pos) /* bump pos */
uptr -> pos = uptr -> pos + (dir? -1: 1);
blk = DT_LIN2BL (uptr -> pos, uptr);
if (dir? DT_QREZ (uptr): DT_QFEZ (uptr)) { /* wrong ez? */
dt_seterr (uptr, DTB_END); /* set ez flag, stop */
return; }
sim_cancel (uptr); /* cancel cur op */
dt_substate = DTO_SOB; /* substate = block start */
switch (fnc) { /* case function */
case DTS_OFR: /* off reel */
if (dir) newpos = -1000; /* rev? < start */
else newpos = DTU_FWDEZ (uptr) + DT_EZLIN + 1000; /* fwd? > end */
break;
case FNC_MOVE: /* move */
dt_schedez (uptr, dir); /* sched end zone */
if (dt_log & LOG_MS) printf ("[DT%d: moving %s]\n", unum, (dir?
"backward": "forward"));
return; /* done */
case FNC_SRCH: /* search */
if (dir) newpos = DT_BLK2LN ((DT_QFEZ (uptr)?
DTU_TSIZE (uptr): blk), uptr) - DT_BLKLN - DT_WSIZE;
else newpos = DT_BLK2LN ((DT_QREZ (uptr)?
0: blk + 1), uptr) + DT_BLKLN + (DT_WSIZE - 1);
if (dt_log & LOG_MS) printf ("[DT%d: searching %s]\n", unum,
(dir? "backward": "forward"));
break;
case FNC_WRIT: /* write */
case FNC_READ: /* read */
if (DT_QEZ (uptr)) { /* in "ok" end zone? */
if (dir) newpos = DTU_FWDEZ (uptr) - DT_HTLIN - DT_WSIZE;
else newpos = DT_EZLIN + DT_HTLIN + (DT_WSIZE - 1);
break; }
relpos = DT_LIN2OF (uptr -> pos, uptr); /* cur pos in blk */
if ((relpos >= DT_HTLIN) && /* in data zone? */
(relpos < (DTU_LPERB (uptr) - DT_HTLIN))) {
dt_seterr (uptr, DTB_SEL);
return; }
if (dir) newpos = DT_BLK2LN (((relpos >= (DTU_LPERB (uptr) - DT_HTLIN))?
blk + 1: blk), uptr) - DT_HTLIN - DT_WSIZE;
else newpos = DT_BLK2LN (((relpos < DT_HTLIN)?
blk: blk + 1), uptr) + DT_HTLIN + (DT_WSIZE - 1);
break;
case FNC_RALL: /* read all */
case FNC_WALL: /* write all */
if (DT_QEZ (uptr)) { /* in "ok" end zone? */
if (dir) newpos = DTU_FWDEZ (uptr) - DT_WSIZE;
else newpos = DT_EZLIN + (DT_WSIZE - 1); }
else { newpos = ((uptr -> pos) / DT_WSIZE) * DT_WSIZE;
if (!dir) newpos = newpos + (DT_WSIZE - 1); }
if ((dt_log & LOG_RA) || ((dt_log & LOG_BL) && (blk == dt_logblk)))
printf ("[DT%d: read all block %d %s%s\n",
unum, blk, (dir? "backward": "forward"),
((dtsa & DTA_MODE)? " continuous]": "]"));
break;
default:
dt_seterr (uptr, DTB_SEL); /* bad state */
return; }
sim_activate (uptr, ABS (newpos - ((int32) uptr -> pos)) * dt_ltime);
return;
}
/* Update DECtape position
DECtape motion is modeled as a constant velocity, with linear
acceleration and deceleration. The motion equations are as follows:
t = time since operation started
tmax = time for operation (accel, decel only)
v = at speed velocity in lines (= 1/dt_ltime)
Then:
at speed dist = t * v
accel dist = (t^2 * v) / (2 * tmax)
decel dist = (((2 * t * tmax) - t^2) * v) / (2 * tmax)
This routine uses the relative (integer) time, rather than the absolute
(floating point) time, to allow save and restore of the start times.
*/
t_bool dt_setpos (UNIT *uptr)
{
uint32 new_time, ut, ulin, udelt;
int32 mot = DTS_GETMOT (uptr -> STATE);
int32 unum, delta;
new_time = sim_grtime (); /* current time */
ut = new_time - uptr -> LASTT; /* elapsed time */
if (ut == 0) return FALSE; /* no time gone? exit */
uptr -> LASTT = new_time; /* update last time */
switch (mot & ~DTS_DIR) { /* case on motion */
case DTS_STOP: /* stop */
delta = 0;
break;
case DTS_DECF: /* slowing */
ulin = ut / (uint32) dt_ltime; udelt = dt_dctime / dt_ltime;
delta = ((ulin * udelt * 2) - (ulin * ulin)) / (2 * udelt);
break;
case DTS_ACCF: /* accelerating */
ulin = ut / (uint32) dt_ltime; udelt = dt_actime / dt_ltime;
delta = (ulin * ulin) / (2 * udelt);
break;
case DTS_ATSF: /* at speed */
delta = ut / (uint32) dt_ltime;
break; }
if (mot & DTS_DIR) uptr -> pos = uptr -> pos - delta; /* update pos */
else uptr -> pos = uptr -> pos + delta;
if ((uptr -> pos < 0) ||
(uptr -> pos > ((uint32) (DTU_FWDEZ (uptr) + DT_EZLIN)))) {
detach_unit (uptr); /* off reel? */
uptr -> STATE = uptr -> pos = 0;
unum = uptr - dt_dev.units;
if (unum == DTA_GETUNIT (dtsa)) /* if selected, */
dt_seterr (uptr, DTB_SEL); /* error */
return TRUE; }
return FALSE;
}
/* Unit service
Unit must be attached, detach cancels operation
*/
t_stat dt_svc (UNIT *uptr)
{
int32 mot = DTS_GETMOT (uptr -> STATE);
int32 dir = mot & DTS_DIR;
int32 fnc = DTS_GETFNC (uptr -> STATE);
int32 *bptr = uptr -> filebuf;
int32 unum = uptr - dt_dev.units;
int32 blk, wrd, ma, relpos, dat;
t_addr ba;
/* Motion cases
Decelerating - if next state != stopped, must be accel reverse
Accelerating - next state must be @speed, schedule function
At speed - do functional processing
*/
switch (mot) {
case DTS_DECF: case DTS_DECR: /* decelerating */
if (dt_setpos (uptr)) return SCPE_OK; /* update pos */
uptr -> STATE = DTS_NXTSTA (uptr -> STATE); /* advance state */
if (uptr -> STATE) /* not stopped? */
sim_activate (uptr, dt_actime); /* must be reversing */
return SCPE_OK;
case DTS_ACCF: case DTS_ACCR: /* accelerating */
dt_newfnc (uptr, DTS_NXTSTA (uptr -> STATE)); /* adv state, sched */
return SCPE_OK;
case DTS_ATSF: case DTS_ATSR: /* at speed */
break; /* check function */
default: /* other */
dt_seterr (uptr, DTB_SEL); /* state error */
return SCPE_OK; }
/* Functional cases
Move - must be at end zone
Search - transfer block number, schedule next block
Off reel - detach unit (it must be deselected)
*/
if (dt_setpos (uptr)) return SCPE_OK; /* update pos */
if (DT_QEZ (uptr)) { /* in end zone? */
dt_seterr (uptr, DTB_END); /* end zone error */
return SCPE_OK; }
blk = DT_LIN2BL (uptr -> pos, uptr); /* get block # */
switch (fnc) { /* at speed, check fnc */
case FNC_MOVE: /* move */
dt_seterr (uptr, DTB_END); /* end zone error */
return SCPE_OK;
case FNC_SRCH: /* search */
if (dtsb & DTB_DTF) { /* DTF set? */
dt_seterr (uptr, DTB_TIM); /* timing error */
return SCPE_OK; }
sim_activate (uptr, DTU_LPERB (uptr) * dt_ltime);/* sched next block */
M[DT_WC] = (M[DT_WC] + 1) & DMASK; /* inc WC */
ma = M[DT_CA] & ADDRMASK; /* get mem addr */
if (MEM_ADDR_OK (ma)) M[ma] = blk; /* store block # */
if (((dtsa & DTA_MODE) == 0) || (M[DT_WC] == 0))
dtsb = dtsb | DTB_DTF; /* set DTF */
break;
case DTS_OFR: /* off reel */
detach_unit (uptr); /* must be deselected */
uptr -> STATE = uptr -> pos = 0; /* no visible action */
break;
/* Read has four subcases
Start of block, not wc ovf - check that DTF is clear, otherwise normal
Normal - increment MA, WC, copy word from tape to memory
if read dir != write dir, bits must be scrambled
if wc overflow, next state is wc overflow
if end of block, possibly set DTF, next state is start of block
Wc ovf, not start of block -
if end of block, possibly set DTF, next state is start of block
Wc ovf, start of block - if end of block reached, timing error,
otherwise, continue to next word
*/
case FNC_READ: /* read */
wrd = DT_LIN2WD (uptr -> pos, uptr); /* get word # */
switch (dt_substate) { /* case on substate */
case DTO_SOB: /* start of block */
if (dtsb & DTB_DTF) { /* DTF set? */
dt_seterr (uptr, DTB_TIM); /* timing error */
return SCPE_OK; }
if ((dt_log & LOG_RW) || ((dt_log & LOG_BL) && (blk == dt_logblk)))
printf ("[DT%d: reading block %d %s%s\n",
unum, blk, (dir? "backward": "forward"),
((dtsa & DTA_MODE)? " continuous]": "]"));
dt_substate = 0; /* fall through */
case 0: /* normal read */
M[DT_WC] = (M[DT_WC] + 1) & DMASK; /* incr WC, CA */
M[DT_CA] = (M[DT_CA] + 1) & DMASK;
ma = M[DT_CA] & ADDRMASK; /* mem addr */
ba = (blk * DTU_BSIZE (uptr)) + wrd; /* buffer ptr */
dat = bptr[ba]; /* get tape word */
if (dir) dat = dt_comobv (dat); /* rev? comp obv */
if (MEM_ADDR_OK (ma)) M[ma] = dat; /* mem addr legal? */
if (M[DT_WC] == 0) dt_substate = DTO_WCO; /* wc ovf? */
case DTO_WCO: /* wc ovf, not sob */
if (wrd != (dir? 0: DTU_BSIZE (uptr) - 1)) /* not last? */
sim_activate (uptr, DT_WSIZE * dt_ltime);
else { dt_substate = dt_substate | DTO_SOB;
sim_activate (uptr, ((2 * DT_HTLIN) + DT_WSIZE) * dt_ltime);
if (((dtsa & DTA_MODE) == 0) || (M[DT_WC] == 0))
dtsb = dtsb | DTB_DTF; } /* set DTF */
break;
case DTO_WCO | DTO_SOB: /* next block */
if (wrd == (dir? 0: DTU_BSIZE (uptr))) /* end of block? */
dt_seterr (uptr, DTB_TIM); /* timing error */
else sim_activate (uptr, DT_WSIZE * dt_ltime);
break; }
break;
/* Write has four subcases
Start of block, not wc ovf - check that DTF is clear, set block direction
Normal - increment MA, WC, copy word from memory to tape
if wc overflow, next state is wc overflow
if end of block, possibly set DTF, next state is start of block
Wc ovf, not start of block -
copy 0 to tape
if end of block, possibly set DTF, next state is start of block
Wc ovf, start of block - schedule end zone
*/
case FNC_WRIT: /* write */
wrd = DT_LIN2WD (uptr -> pos, uptr); /* get word # */
switch (dt_substate) { /* case on substate */
case DTO_SOB: /* start block */
if (dtsb & DTB_DTF) { /* DTF set? */
dt_seterr (uptr, DTB_TIM); /* timing error */
return SCPE_OK; }
if ((dt_log & LOG_RW) || ((dt_log & LOG_BL) && (blk == dt_logblk)))
printf ("[DT%d: writing block %d %s%s\n", unum, blk,
(dir? "backward": "forward"),
((dtsa & DTA_MODE)? " continuous]": "]"));
dt_substate = 0; /* fall through */
case 0: /* normal write */
M[DT_WC] = (M[DT_WC] + 1) & DMASK; /* incr WC, CA */
M[DT_CA] = (M[DT_CA] + 1) & DMASK;
case DTO_WCO: /* wc ovflo */
ma = M[DT_CA] & ADDRMASK; /* mem addr */
ba = (blk * DTU_BSIZE (uptr)) + wrd; /* buffer ptr */
dat = dt_substate? 0: M[ma]; /* get word */
if (dir) dat = dt_comobv (dat); /* rev? comp obv */
bptr[ba] = dat; /* write word */
if (ba >= uptr -> hwmark) uptr -> hwmark = ba + 1;
if (M[DT_WC] == 0) dt_substate = DTO_WCO;
if (wrd != (dir? 0: DTU_BSIZE (uptr) - 1)) /* not last? */
sim_activate (uptr, DT_WSIZE * dt_ltime);
else { dt_substate = dt_substate | DTO_SOB;
sim_activate (uptr, ((2 * DT_HTLIN) + DT_WSIZE) * dt_ltime);
if (((dtsa & DTA_MODE) == 0) || (M[DT_WC] == 0))
dtsb = dtsb | DTB_DTF; } /* set DTF */
break;
case DTO_WCO | DTO_SOB: /* all done */
dt_schedez (uptr, dir); /* sched end zone */
break; }
break;
/* Read all has two subcases
Not word count overflow - increment MA, WC, copy word from tape to memory
Word count overflow - schedule end zone
*/
case FNC_RALL:
switch (dt_substate) { /* case on substate */
case 0: case DTO_SOB: /* read in progress */
if (dtsb & DTB_DTF) { /* DTF set? */
dt_seterr (uptr, DTB_TIM); /* timing error */
return SCPE_OK; }
relpos = DT_LIN2OF (uptr -> pos, uptr); /* cur pos in blk */
M[DT_WC] = (M[DT_WC] + 1) & DMASK; /* incr WC, CA */
M[DT_CA] = (M[DT_CA] + 1) & DMASK;
ma = M[DT_CA] & ADDRMASK; /* mem addr */
if ((relpos >= DT_HTLIN) && /* in data zone? */
(relpos < (DTU_LPERB (uptr) - DT_HTLIN))) {
wrd = DT_LIN2WD (uptr -> pos, uptr);
ba = (blk * DTU_BSIZE (uptr)) + wrd;
dat = bptr[ba]; } /* get tape word */
else dat = dt_gethdr (uptr, blk, relpos); /* get hdr */
if (dir) dat = dt_comobv (dat); /* rev? comp obv */
sim_activate (uptr, DT_WSIZE * dt_ltime);
if (MEM_ADDR_OK (ma)) M[ma] = dat; /* mem addr legal? */
if (M[DT_WC] == 0) dt_substate = DTO_WCO;
if (((dtsa & DTA_MODE) == 0) || (M[DT_WC] == 0))
dtsb = dtsb | DTB_DTF; /* set DTF */
break;
case DTO_WCO: case DTO_WCO | DTO_SOB: /* all done */
dt_schedez (uptr, dir); /* sched end zone */
break; } /* end case substate */
break;
/* Write all has two subcases
Not word count overflow - increment MA, WC, copy word from memory to tape
Word count overflow - schedule end zone
*/
case FNC_WALL:
switch (dt_substate) { /* case on substate */
case 0: case DTO_SOB: /* read in progress */
if (dtsb & DTB_DTF) { /* DTF set? */
dt_seterr (uptr, DTB_TIM); /* timing error */
return SCPE_OK; }
relpos = DT_LIN2OF (uptr -> pos, uptr); /* cur pos in blk */
M[DT_WC] = (M[DT_WC] + 1) & DMASK; /* incr WC, CA */
M[DT_CA] = (M[DT_CA] + 1) & DMASK;
ma = M[DT_CA] & ADDRMASK; /* mem addr */
if ((relpos >= DT_HTLIN) && /* in data zone? */
(relpos < (DTU_LPERB (uptr) - DT_HTLIN))) {
dat = M[ma]; /* get mem word */
if (dir) dat = dt_comobv (dat);
wrd = DT_LIN2WD (uptr -> pos, uptr);
ba = (blk * DTU_BSIZE (uptr)) + wrd;
bptr[ba] = dat; /* write word */
if (ba >= uptr -> hwmark) uptr -> hwmark = ba + 1; }
/* /* ignore hdr */
sim_activate (uptr, DT_WSIZE * dt_ltime);
if (M[DT_WC] == 0) dt_substate = DTO_WCO;
if (((dtsa & DTA_MODE) == 0) || (M[DT_WC] == 0))
dtsb = dtsb | DTB_DTF; /* set DTF */
break;
case DTO_WCO: case DTO_WCO | DTO_SOB: /* all done */
dt_schedez (uptr, dir); /* sched end zone */
break; } /* end case substate */
break;
default:
dt_seterr (uptr, DTB_SEL); /* impossible state */
break; }
DT_UPDINT; /* update interrupts */
return SCPE_OK;
}
/* Utility routines */
/* Set error flag */
void dt_seterr (UNIT *uptr, int32 e)
{
int32 mot = DTS_GETMOT (uptr -> STATE);
dtsa = dtsa & ~DTA_STSTP; /* clear go */
dtsb = dtsb | DTB_ERF | e; /* set error flag */
if (mot >= DTS_ACCF) { /* ~stopped or stopping? */
sim_cancel (uptr); /* cancel activity */
if (dt_setpos (uptr)) return; /* update position */
sim_activate (uptr, dt_dctime); /* sched decel */
DTS_SETSTA (DTS_DECF | (mot & DTS_DIR), 0); } /* state = decel */
DT_UPDINT;
return;
}
/* Schedule end zone */
void dt_schedez (UNIT *uptr, int32 dir)
{
int32 newpos;
if (dir) newpos = DT_EZLIN - DT_WSIZE; /* rev? rev ez */
else newpos = DTU_FWDEZ (uptr) + DT_WSIZE; /* fwd? fwd ez */
sim_activate (uptr, ABS (newpos - ((int32) uptr -> pos)) * dt_ltime);
return;
}
/* Complement obverse routine */
int32 dt_comobv (int32 dat)
{
dat = dat ^ 0777777; /* compl obverse */
dat = ((dat >> 15) & 07) | ((dat >> 9) & 070) |
((dat >> 3) & 0700) | ((dat & 0700) << 3) |
((dat & 070) << 9) | ((dat & 07) << 15);
return dat;
}
/* Checksum routine */
int32 dt_csum (UNIT *uptr, int32 blk)
{
int32 *bptr = uptr -> filebuf;
int32 ba = blk * DTU_BSIZE (uptr);
int32 i, csum, wrd;
csum = 077; /* init csum */
for (i = 0; i < DTU_BSIZE (uptr); i++) { /* loop thru buf */
wrd = bptr[ba + i] ^ 0777777; /* get ~word */
csum = csum ^ (wrd >> 12) ^ (wrd >> 6) ^ wrd; }
return (csum & 077);
}
/* Get header word */
int32 dt_gethdr (UNIT *uptr, int32 blk, int32 relpos)
{
int32 wrd = relpos / DT_WSIZE;
if (wrd == DT_BLKWD) return blk; /* fwd blknum */
if (wrd == (2 * DT_HTWRD + DTU_BSIZE (uptr) - DT_CSMWD - 1)) /* fwd csum */
return (dt_csum (uptr, blk) << 12);
if (wrd == (2 * DT_HTWRD + DTU_BSIZE (uptr) - DT_BLKWD - 1)) /* rev blkno */
return dt_comobv (blk);
return 0; /* all others */
}
/* Reset routine */
t_stat dt_reset (DEVICE *dptr)
{
int32 i, prev_mot;
UNIT *uptr;
for (i = 0; i < DT_NUMDR; i++) { /* stop all drives */
uptr = dt_dev.units + i;
if (sim_is_running) { /* CAF? */
prev_mot = DTS_GETMOT (uptr -> STATE); /* get motion */
if ((prev_mot & ~DTS_DIR) > DTS_DECF) { /* accel or spd? */
if (dt_setpos (uptr)) continue; /* update pos */
sim_cancel (uptr);
sim_activate (uptr, dt_dctime); /* sched decel */
DTS_SETSTA (DTS_DECF | (prev_mot & DTS_DIR), 0);
} }
else { sim_cancel (uptr); /* sim reset */
uptr -> STATE = 0;
uptr -> LASTT = sim_grtime (); } }
dtsa = dtsb = 0; /* clear status */
DT_UPDINT; /* reset interrupt */
return SCPE_OK;
}
/* IORS routine */
int32 dt_iors (void)
{
return ((dtsb & (DTB_ERF | DTB_DTF))? IOS_DTA: 0);
}
/* Attach routine
Determine native or PDP8 format
Allocate buffer
If PDP8, read 12b format and convert to 18b in buffer
If native, read data into buffer
*/
t_stat dt_attach (UNIT *uptr, char *cptr)
{
uint16 pdp8b[D8_NBSIZE];
int32 k, p, *bptr;
t_stat r;
t_addr ba;
uptr -> flags = uptr -> flags & ~UNIT_8FMT;
r = attach_unit (uptr, cptr); /* attach */
if (r != SCPE_OK) return r; /* fail? */
if (sim_switches & SWMASK ('F')) /* att foreign? */
uptr -> flags = uptr -> flags | UNIT_8FMT; /* PDP8 = T */
else if (!(sim_switches & SWMASK ('N'))) { /* autosize? */
if ((fseek (uptr -> fileref, 0, SEEK_END) == 0) &&
(p = ftell (uptr -> fileref)) &&
(p == D8_FILSIZ)) uptr -> flags = uptr -> flags | UNIT_8FMT; }
uptr -> capac = DTU_CAPAC (uptr); /* set capacity */
uptr -> filebuf = calloc (uptr -> capac, sizeof (int32));
if (uptr -> filebuf == NULL) { /* can't alloc? */
detach_unit (uptr);
return SCPE_MEM; }
printf ("%DT: buffering file in memory\n");
rewind (uptr -> fileref); /* start of file */
if (uptr -> flags & UNIT_8FMT) { /* PDP-8? */
bptr = uptr -> filebuf; /* file buffer */
for (ba = 0; ba < uptr -> capac; ) { /* loop thru file */
k = fxread (pdp8b, sizeof (int16), D8_NBSIZE, uptr -> fileref);
if (k == 0) break;
for ( ; k < D8_NBSIZE; k++) pdp8b[k] = 0;
for (k = 0; k < D8_NBSIZE; k = k + 3) { /* loop thru blk */
bptr[ba] = ((pdp8b[k] & 07777) << 6) |
((pdp8b[k + 1] >> 6) & 077);
bptr[ba + 1] = ((pdp8b[k + 1] & 077) << 12) |
(pdp8b[k + 2] & 07777);
ba = ba + 2; } /* end blk loop */
} /* end file loop */
uptr -> hwmark = ba; } /* end if */
else uptr -> hwmark = fxread (uptr -> filebuf, sizeof (int32),
uptr -> capac, uptr -> fileref);
uptr -> flags = uptr -> flags | UNIT_BUF; /* set buf flag */
uptr -> pos = DT_EZLIN; /* beyond leader */
uptr -> LASTT = sim_grtime (); /* last pos update */
return SCPE_OK;
}
/* Detach routine
Cancel in progress operation
If PDP8, convert 18b buffer to 12b and write to file
If native, write buffer to file
Deallocate buffer
*/
t_stat dt_detach (UNIT* uptr)
{
uint16 pdp8b[D8_NBSIZE];
int32 k, *bptr;
int32 unum = uptr - dt_dev.units;
t_addr ba;
if (!(uptr -> flags & UNIT_ATT)) return SCPE_OK;
if (sim_is_active (uptr)) {
sim_cancel (uptr);
if ((unum == DTA_GETUNIT (dtsa)) && (dtsa & DTA_STSTP)) {
dtsb = dtsb | DTB_ERF | DTB_SEL | DTB_DTF;
DT_UPDINT; }
uptr -> STATE = uptr -> pos = 0; }
if (uptr -> hwmark) { /* any data? */
printf ("DT: writing buffer to file\n");
rewind (uptr -> fileref); /* start of file */
if (uptr -> flags & UNIT_8FMT) { /* PDP8? */
bptr = uptr -> filebuf; /* file buffer */
for (ba = 0; ba < uptr -> hwmark; ) { /* loop thru buf */
for (k = 0; k < D8_NBSIZE; k = k + 3) { /* loop blk */
pdp8b[k] = (bptr[ba] >> 6) & 07777;
pdp8b[k + 1] = ((bptr[ba] & 077) << 6) |
((bptr[ba + 1] >> 12) & 077);
pdp8b[k + 2] = bptr[ba + 1] & 07777;
ba = ba + 2; } /* end loop blk */
fxwrite (pdp8b, sizeof (int16), D8_NBSIZE, uptr -> fileref);
if (ferror (uptr -> fileref)) break; } /* end loop file */
} /* end if PDP8 */
else fxwrite (uptr -> filebuf, sizeof (int32), /* write file */
uptr -> hwmark, uptr -> fileref);
if (ferror (uptr -> fileref)) perror ("I/O error"); } /* end if hwmark */
free (uptr -> filebuf); /* release buf */
uptr -> flags = uptr -> flags & ~UNIT_BUF; /* clear buf flag */
uptr -> filebuf = NULL; /* clear buf ptr */
uptr -> flags = uptr -> flags & ~UNIT_8FMT; /* default fmt */
uptr -> capac = DT_CAPAC; /* default size */
return detach_unit (uptr);
}