/* vax_sysdev.c: VAX 3900 system-specific logic | |
Copyright (c) 1998-2013, Robert M Supnik | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name of Robert M Supnik shall not be | |
used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from Robert M Supnik. | |
This module contains the CVAX chip and VAX 3900 system-specific registers | |
and devices. | |
rom bootstrap ROM (no registers) | |
nvr non-volatile ROM (no registers) | |
csi console storage input | |
cso console storage output | |
cmctl memory controller | |
sysd system devices (SSC miscellany) | |
20-Dec-13 RMS Added unaligned register space access routines | |
23-Dec-10 RMS Added power clear call to boot routine (Mark Pizzolato) | |
25-Oct-05 RMS Automated CMCTL extended memory | |
16-Aug-05 RMS Fixed C++ declaration and cast problems | |
10-Mar-05 RMS Fixed bug in timer schedule routine (Mark Hittinger) | |
30-Sep-04 RMS Moved CADR, MSER, CONPC, CONPSL, machine_check, cpu_boot, | |
con_halt here from vax_cpu.c | |
Moved model-specific IPR's here from vax_cpu1.c | |
09-Sep-04 RMS Integrated powerup into RESET (with -p) | |
Added model-specific registers and routines from CPU | |
23-Jan-04 MP Added extended physical memory support (Mark Pizzolato) | |
07-Jun-03 MP Added calibrated delay to ROM reads (Mark Pizzolato) | |
Fixed calibration problems interval timer (Mark Pizzolato) | |
12-May-03 RMS Fixed compilation warnings from VC.Net | |
23-Apr-03 RMS Revised for 32b/64b t_addr | |
19-Aug-02 RMS Removed unused variables (David Hittner) | |
Allowed NVR to be attached to file | |
30-May-02 RMS Widened POS to 32b | |
28-Feb-02 RMS Fixed bug, missing end of table (Lars Brinkhoff) | |
*/ | |
#include "vax_defs.h" | |
#ifdef DONT_USE_INTERNAL_ROM | |
#define BOOT_CODE_FILENAME "ka655x.bin" | |
#else /* !DONT_USE_INTERNAL_ROM */ | |
#include "vax_ka655x_bin.h" /* Defines BOOT_CODE_FILENAME and BOOT_CODE_ARRAY, etc */ | |
#endif /* DONT_USE_INTERNAL_ROM */ | |
#define UNIT_V_NODELAY (UNIT_V_UF + 0) /* ROM access equal to RAM access */ | |
#define UNIT_NODELAY (1u << UNIT_V_NODELAY) | |
t_stat vax_boot (int32 flag, char *ptr); | |
int32 sys_model = 0; | |
/* Special boot command, overrides regular boot */ | |
CTAB vax_cmd[] = { | |
{ "BOOT", &vax_boot, RU_BOOT, | |
"bo{ot} boot simulator\n", NULL, &run_cmd_message }, | |
{ NULL } | |
}; | |
/* Console storage control/status */ | |
#define CSICSR_IMP (CSR_DONE + CSR_IE) /* console input */ | |
#define CSICSR_RW (CSR_IE) | |
#define CSOCSR_IMP (CSR_DONE + CSR_IE) /* console output */ | |
#define CSOCSR_RW (CSR_IE) | |
/* CMCTL configuration registers */ | |
#define CMCNF_VLD 0x80000000 /* addr valid */ | |
#define CMCNF_BA 0x1FF00000 /* base addr */ | |
#define CMCNF_LOCK 0x00000040 /* lock NI */ | |
#define CMCNF_SRQ 0x00000020 /* sig req WO */ | |
#define CMCNF_SIG 0x0000001F /* signature */ | |
#define CMCNF_RW (CMCNF_VLD | CMCNF_BA) /* read/write */ | |
#define CMCNF_MASK (CMCNF_RW | CMCNF_SIG) | |
#define MEM_BANK (1 << 22) /* bank size 4MB */ | |
#define MEM_SIG (0x17) /* ECC, 4 x 4MB */ | |
/* CMCTL error register */ | |
#define CMERR_RDS 0x80000000 /* uncorr err NI */ | |
#define CMERR_FRQ 0x40000000 /* 2nd RDS NI */ | |
#define CMERR_CRD 0x20000000 /* CRD err NI */ | |
#define CMERR_PAG 0x1FFFFC00 /* page addr NI */ | |
#define CMERR_DMA 0x00000100 /* DMA err NI */ | |
#define CMERR_BUS 0x00000080 /* bus err NI */ | |
#define CMERR_SYN 0x0000007F /* syndrome NI */ | |
#define CMERR_W1C (CMERR_RDS | CMERR_FRQ | CMERR_CRD | \ | |
CMERR_DMA | CMERR_BUS) | |
/* CMCTL control/status register */ | |
#define CMCSR_PMI 0x00002000 /* PMI speed NI */ | |
#define CMCSR_CRD 0x00001000 /* enb CRD int NI */ | |
#define CMCSR_FRF 0x00000800 /* force ref WONI */ | |
#define CMCSR_DET 0x00000400 /* dis err NI */ | |
#define CMCSR_FDT 0x00000200 /* fast diag NI */ | |
#define CMCSR_DCM 0x00000080 /* diag mode NI */ | |
#define CMCSR_SYN 0x0000007F /* syndrome NI */ | |
#define CMCSR_MASK (CMCSR_PMI | CMCSR_CRD | CMCSR_DET | \ | |
CMCSR_FDT | CMCSR_DCM | CMCSR_SYN) | |
/* KA655 boot/diagnostic register */ | |
#define BDR_BRKENB 0x00000080 /* break enable */ | |
/* KA655 cache control register */ | |
#define CACR_DRO 0x00FFFF00 /* diag bits RO */ | |
#define CACR_V_DPAR 24 /* data parity */ | |
#define CACR_FIXED 0x00000040 /* fixed bits */ | |
#define CACR_CPE 0x00000020 /* parity err W1C */ | |
#define CACR_CEN 0x00000010 /* enable */ | |
#define CACR_DPE 0x00000004 /* disable par NI */ | |
#define CACR_WWP 0x00000002 /* write wrong par NI */ | |
#define CACR_DIAG 0x00000001 /* diag mode */ | |
#define CACR_W1C (CACR_CPE) | |
#define CACR_RW (CACR_CEN | CACR_DPE | CACR_WWP | CACR_DIAG) | |
/* SSC base register */ | |
#define SSCBASE_MBO 0x20000000 /* must be one */ | |
#define SSCBASE_RW 0x1FFFFC00 /* base address */ | |
/* SSC configuration register */ | |
#define SSCCNF_BLO 0x80000000 /* batt low W1C */ | |
#define SSCCNF_IVD 0x08000000 /* int dsbl NI */ | |
#define SSCCNF_IPL 0x03000000 /* int IPL NI */ | |
#define SSCCNF_ROM 0x00F70000 /* ROM param NI */ | |
#define SSCCNF_CTLP 0x00008000 /* ctrl P enb */ | |
#define SSCCNF_BAUD 0x00007700 /* baud rates NI */ | |
#define SSCCNF_ADS 0x00000077 /* addr strb NI */ | |
#define SSCCNF_W1C SSCCNF_BLO | |
#define SSCCNF_RW 0x0BF7F777 | |
/* SSC timeout register */ | |
#define SSCBTO_BTO 0x80000000 /* timeout W1C */ | |
#define SSCBTO_RWT 0x40000000 /* read/write W1C */ | |
#define SSCBTO_INTV 0x00FFFFFF /* interval NI */ | |
#define SSCBTO_W1C (SSCBTO_BTO | SSCBTO_RWT) | |
#define SSCBTO_RW SSCBTO_INTV | |
/* SSC output port */ | |
#define SSCOTP_MASK 0x0000000F /* output port */ | |
/* SSC timer control/status */ | |
#define TMR_CSR_ERR 0x80000000 /* error W1C */ | |
#define TMR_CSR_DON 0x00000080 /* done W1C */ | |
#define TMR_CSR_IE 0x00000040 /* int enb */ | |
#define TMR_CSR_SGL 0x00000020 /* single WO */ | |
#define TMR_CSR_XFR 0x00000010 /* xfer WO */ | |
#define TMR_CSR_STP 0x00000004 /* stop */ | |
#define TMR_CSR_RUN 0x00000001 /* run */ | |
#define TMR_CSR_W1C (TMR_CSR_ERR | TMR_CSR_DON) | |
#define TMR_CSR_RW (TMR_CSR_IE | TMR_CSR_STP | TMR_CSR_RUN) | |
/* SSC timer intervals */ | |
#define TMR_INC 10000 /* usec/interval */ | |
/* SSC timer vector */ | |
#define TMR_VEC_MASK 0x000003FC /* vector */ | |
/* SSC address strobes */ | |
#define SSCADS_MASK 0x3FFFFFFC /* match or mask */ | |
extern UNIT clk_unit; | |
extern int32 MSER; | |
extern int32 tmr_poll; | |
extern DEVICE vc_dev, lk_dev, vs_dev; | |
uint32 *rom = NULL; /* boot ROM */ | |
uint32 *nvr = NULL; /* non-volatile mem */ | |
int32 CADR = 0; /* cache disable reg */ | |
int32 MSER = 0; /* mem sys error reg */ | |
int32 conpc, conpsl; /* console reg */ | |
int32 csi_csr = 0; /* control/status */ | |
int32 cso_csr = 0; /* control/status */ | |
int32 cmctl_reg[CMCTLSIZE >> 2] = { 0 }; /* CMCTL reg */ | |
int32 ka_cacr = 0; /* KA655 cache ctl */ | |
int32 ka_bdr = BDR_BRKENB; /* KA655 boot diag */ | |
t_bool ka_hltenab = 1; /* Halt Enable / Autoboot flag */ | |
int32 ssc_base = SSCBASE; /* SSC base */ | |
int32 ssc_cnf = 0; /* SSC conf */ | |
int32 ssc_bto = 0; /* SSC timeout */ | |
int32 ssc_otp = 0; /* SSC output port */ | |
int32 tmr_csr[2] = { 0 }; /* SSC timers */ | |
uint32 tmr_tir[2] = { 0 }; /* curr interval */ | |
uint32 tmr_tnir[2] = { 0 }; /* next interval */ | |
int32 tmr_tivr[2] = { 0 }; /* vector */ | |
uint32 tmr_inc[2] = { 0 }; /* tir increment */ | |
uint32 tmr_sav[2] = { 0 }; /* saved inst cnt */ | |
int32 ssc_adsm[2] = { 0 }; /* addr strobes */ | |
int32 ssc_adsk[2] = { 0 }; | |
int32 cdg_dat[CDASIZE >> 2]; /* cache data */ | |
static uint32 rom_delay = 0; | |
t_stat rom_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw); | |
t_stat rom_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw); | |
t_stat rom_reset (DEVICE *dptr); | |
t_stat rom_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr); | |
const char *rom_description (DEVICE *dptr); | |
t_stat nvr_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw); | |
t_stat nvr_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw); | |
t_stat nvr_reset (DEVICE *dptr); | |
t_stat nvr_attach (UNIT *uptr, char *cptr); | |
t_stat nvr_detach (UNIT *uptr); | |
t_stat nvr_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr); | |
const char *nvr_description (DEVICE *dptr); | |
t_stat csi_reset (DEVICE *dptr); | |
const char *csi_description (DEVICE *dptr); | |
t_stat cso_reset (DEVICE *dptr); | |
t_stat cso_svc (UNIT *uptr); | |
const char *cso_description (DEVICE *dptr); | |
t_stat tmr_svc (UNIT *uptr); | |
t_stat sysd_reset (DEVICE *dptr); | |
t_stat sysd_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr); | |
const char *sysd_description (DEVICE *dptr); | |
int32 rom_rd (int32 pa); | |
int32 nvr_rd (int32 pa); | |
void nvr_wr (int32 pa, int32 val, int32 lnt); | |
int32 csrs_rd (void); | |
int32 csrd_rd (void); | |
int32 csts_rd (void); | |
void csrs_wr (int32 dat); | |
void csts_wr (int32 dat); | |
void cstd_wr (int32 dat); | |
int32 cmctl_rd (int32 pa); | |
void cmctl_wr (int32 pa, int32 val, int32 lnt); | |
int32 ka_rd (int32 pa); | |
void ka_wr (int32 pa, int32 val, int32 lnt); | |
int32 cdg_rd (int32 pa); | |
void cdg_wr (int32 pa, int32 val, int32 lnt); | |
int32 ssc_rd (int32 pa); | |
void ssc_wr (int32 pa, int32 val, int32 lnt); | |
int32 tmr_tir_rd (int32 tmr, t_bool interp); | |
void tmr_csr_wr (int32 tmr, int32 val); | |
void tmr_sched (int32 tmr); | |
void tmr_incr (int32 tmr, uint32 inc); | |
int32 tmr0_inta (void); | |
int32 tmr1_inta (void); | |
int32 parity (int32 val, int32 odd); | |
t_stat sysd_powerup (void); | |
extern int32 intexc (int32 vec, int32 cc, int32 ipl, int ei); | |
extern int32 cqmap_rd (int32 pa); | |
extern void cqmap_wr (int32 pa, int32 val, int32 lnt); | |
extern int32 cqipc_rd (int32 pa); | |
extern void cqipc_wr (int32 pa, int32 val, int32 lnt); | |
extern int32 cqbic_rd (int32 pa); | |
extern void cqbic_wr (int32 pa, int32 val, int32 lnt); | |
extern int32 cqmem_rd (int32 pa); | |
extern void cqmem_wr (int32 pa, int32 val, int32 lnt); | |
extern int32 iccs_rd (void); | |
extern int32 todr_rd (void); | |
extern int32 rxcs_rd (void); | |
extern int32 rxdb_rd (void); | |
extern int32 txcs_rd (void); | |
extern void iccs_wr (int32 dat); | |
extern void todr_wr (int32 dat); | |
extern void rxcs_wr (int32 dat); | |
extern void txcs_wr (int32 dat); | |
extern void txdb_wr (int32 dat); | |
extern void ioreset_wr (int32 dat); | |
extern void cpu_idle (void); | |
/* ROM data structures | |
rom_dev ROM device descriptor | |
rom_unit ROM units | |
rom_reg ROM register list | |
*/ | |
UNIT rom_unit = { UDATA (NULL, UNIT_FIX+UNIT_BINK, ROMSIZE) }; | |
REG rom_reg[] = { | |
{ NULL } | |
}; | |
MTAB rom_mod[] = { | |
{ UNIT_NODELAY, UNIT_NODELAY, "fast access", "NODELAY", NULL, NULL, NULL, "Disable calibrated delay - ROM runs like RAM" }, | |
{ UNIT_NODELAY, 0, "1usec calibrated access", "DELAY", NULL, NULL, NULL, "Enable calibrated ROM delay - ROM runs slowly" }, | |
{ 0 } | |
}; | |
DEVICE rom_dev = { | |
"ROM", &rom_unit, rom_reg, rom_mod, | |
1, 16, ROMAWIDTH, 4, 16, 32, | |
&rom_ex, &rom_dep, &rom_reset, | |
NULL, NULL, NULL, | |
NULL, 0, 0, NULL, NULL, NULL, &rom_help, NULL, NULL, | |
&rom_description | |
}; | |
/* NVR data structures | |
nvr_dev NVR device descriptor | |
nvr_unit NVR units | |
nvr_reg NVR register list | |
*/ | |
UNIT nvr_unit = | |
{ UDATA (NULL, UNIT_FIX+UNIT_BINK, NVRSIZE) }; | |
REG nvr_reg[] = { | |
{ NULL } | |
}; | |
DEVICE nvr_dev = { | |
"NVR", &nvr_unit, nvr_reg, NULL, | |
1, 16, NVRAWIDTH, 4, 16, 32, | |
&nvr_ex, &nvr_dep, &nvr_reset, | |
NULL, &nvr_attach, &nvr_detach, | |
NULL, 0, 0, NULL, NULL, NULL, &nvr_help, NULL, NULL, | |
&nvr_description | |
}; | |
/* CSI data structures | |
csi_dev CSI device descriptor | |
csi_unit CSI unit descriptor | |
csi_reg CSI register list | |
*/ | |
DIB csi_dib = { 0, 0, NULL, NULL, 1, IVCL (CSI), SCB_CSI, { NULL } }; | |
UNIT csi_unit = { UDATA (NULL, 0, 0), KBD_POLL_WAIT }; | |
REG csi_reg[] = { | |
{ ORDATAD (BUF, csi_unit.buf, 8, "last data item processed") }, | |
{ ORDATAD (CSR, csi_csr, 16, "control/status register") }, | |
{ FLDATAD (INT, int_req[IPL_CSI], INT_V_CSI, "interrupt pending flag") }, | |
{ FLDATAD (DONE, csi_csr, CSR_V_DONE, "device done flag (CSR<7>)") }, | |
{ FLDATAD (ERR, csi_csr, CSR_V_ERR, "error flag (CSR<15>)") }, | |
{ FLDATAD (IE, csi_csr, CSR_V_IE, "interrupt enable flag (CSR<6>)") }, | |
{ DRDATAD (POS, csi_unit.pos, 32, "number of characters input"), PV_LEFT }, | |
{ DRDATAD (TIME, csi_unit.wait, 24, "input polling interval"), REG_NZ + PV_LEFT }, | |
{ NULL } | |
}; | |
MTAB csi_mod[] = { | |
{ MTAB_XTD|MTAB_VDV, 0, "VECTOR", NULL, NULL, &show_vec, NULL, "Display interrupt vector" }, | |
{ 0 } | |
}; | |
DEVICE csi_dev = { | |
"CSI", &csi_unit, csi_reg, csi_mod, | |
1, 10, 31, 1, 8, 8, | |
NULL, NULL, &csi_reset, | |
NULL, NULL, NULL, | |
&csi_dib, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL | |
}; | |
/* CSO data structures | |
cso_dev CSO device descriptor | |
cso_unit CSO unit descriptor | |
cso_reg CSO register list | |
*/ | |
DIB cso_dib = { 0, 0, NULL, NULL, 1, IVCL (CSO), SCB_CSO, { NULL } }; | |
UNIT cso_unit = { UDATA (&cso_svc, UNIT_SEQ+UNIT_ATTABLE, 0), SERIAL_OUT_WAIT }; | |
REG cso_reg[] = { | |
{ ORDATAD (BUF, cso_unit.buf, 8, "last data item processed") }, | |
{ ORDATAD (CSR, cso_csr, 16, "control/status register") }, | |
{ FLDATAD (INT, int_req[IPL_CSO], INT_V_CSO, "interrupt pending flag") }, | |
{ FLDATAD (ERR, cso_csr, CSR_V_ERR, "error flag (CSR<15>)") }, | |
{ FLDATAD (DONE, cso_csr, CSR_V_DONE, "device done flag (CSR<7>)") }, | |
{ FLDATAD (IE, cso_csr, CSR_V_IE, "interrupt enable flag (CSR<6>)") }, | |
{ DRDATAD (POS, cso_unit.pos, 32, "number of characters output"), PV_LEFT }, | |
{ DRDATAD (TIME, cso_unit.wait, 24, "time from I/O initiation to interrupt"), PV_LEFT }, | |
{ NULL } | |
}; | |
MTAB cso_mod[] = { | |
{ MTAB_XTD|MTAB_VDV, 0, "VECTOR", NULL, NULL, &show_vec, NULL, "Display interrupt vector" }, | |
{ 0 } | |
}; | |
DEVICE cso_dev = { | |
"CSO", &cso_unit, cso_reg, cso_mod, | |
1, 10, 31, 1, 8, 8, | |
NULL, NULL, &cso_reset, | |
NULL, NULL, NULL, | |
&cso_dib, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL | |
}; | |
/* SYSD data structures | |
sysd_dev SYSD device descriptor | |
sysd_unit SYSD units | |
sysd_reg SYSD register list | |
*/ | |
DIB sysd_dib[] = { | |
{0, 0, NULL, NULL, | |
2, IVCL (TMR0), 0, { &tmr0_inta, &tmr1_inta } } | |
}; | |
UNIT sysd_unit[] = { | |
{ UDATA (&tmr_svc, 0, 0) }, | |
{ UDATA (&tmr_svc, 0, 0) } | |
}; | |
REG sysd_reg[] = { | |
{ HRDATAD (CADR, CADR, 8, "cache disable register") }, | |
{ HRDATAD (MSER, MSER, 8, "memory system error register") }, | |
{ HRDATAD (CONPC, conpc, 32, "PC at console halt") }, | |
{ HRDATAD (CONPSL, conpsl, 32, "PSL at console halt") }, | |
{ BRDATAD (CMCSR, cmctl_reg, 16, 32, CMCTLSIZE >> 2, "CMCTL control and status registers") }, | |
{ HRDATAD (CACR, ka_cacr, 8, "second-level cache control register") }, | |
{ HRDATAD (BDR, ka_bdr, 8, "front panel jumper register") }, | |
{ HRDATAD (BASE, ssc_base, 29, "SSC base address register") }, | |
{ HRDATAD (CNF, ssc_cnf, 32, "SSC configuration register") }, | |
{ HRDATAD (BTO, ssc_bto, 32, "SSC bus timeout register") }, | |
{ HRDATAD (OTP, ssc_otp, 4, "SSC output port") }, | |
{ HRDATAD (TCSR0, tmr_csr[0], 32, "SSC timer 0 control/status register") }, | |
{ HRDATAD (TIR0, tmr_tir[0], 32, "SSC timer 0 interval register") }, | |
{ HRDATAD (TNIR0, tmr_tnir[0], 32, "SSC timer 0 next interval register") }, | |
{ HRDATAD (TIVEC0, tmr_tivr[0], 9, "SSC timer 0 interrupt vector register") }, | |
{ HRDATAD (TINC0, tmr_inc[0], 32, "SSC timer 0 tir increment") }, | |
{ HRDATAD (TSAV0, tmr_sav[0], 32, "SSC timer 0 saved inst cnt") }, | |
{ HRDATAD (TCSR1, tmr_csr[1], 32, "SSC timer 1 control/status register") }, | |
{ HRDATAD (TIR1, tmr_tir[1], 32, "SSC timer 1 interval register") }, | |
{ HRDATAD (TNIR1, tmr_tnir[1], 32, "SSC timer 1 next interval register") }, | |
{ HRDATAD (TIVEC1, tmr_tivr[1], 9, "SSC timer 1 interrupt vector register") }, | |
{ HRDATAD (TINC1, tmr_inc[1], 32, "SSC timer 1 tir increment") }, | |
{ HRDATAD (TSAV1, tmr_sav[1], 32, "SSC timer 1 saved inst cnt") }, | |
{ HRDATAD (ADSM0, ssc_adsm[0], 32, "SSC address match 0 address") }, | |
{ HRDATAD (ADSK0, ssc_adsk[0], 32, "SSC address match 0 mask") }, | |
{ HRDATAD (ADSM1, ssc_adsm[1], 32, "SSC address match 1 address") }, | |
{ HRDATAD (ADSK1, ssc_adsk[1], 32, "SSC address match 1 mask") }, | |
{ BRDATAD (CDGDAT, cdg_dat, 16, 32, CDASIZE >> 2, "cache diagnostic data store") }, | |
{ FLDATAD (HLTENAB, ka_hltenab, 0, "KA655 Autoboot/Halt Enable") }, | |
{ NULL } | |
}; | |
DEVICE sysd_dev = { | |
"SYSD", sysd_unit, sysd_reg, NULL, | |
2, 16, 16, 1, 16, 8, | |
NULL, NULL, &sysd_reset, | |
NULL, NULL, NULL, | |
&sysd_dib, 0, 0, NULL, NULL, NULL, &sysd_help, NULL, NULL, | |
&sysd_description | |
}; | |
/* ROM: read only memory - stored in a buffered file | |
Register space access routines see ROM twice | |
ROM access has been 'regulated' to about 1Mhz to avoid issues | |
with testing the interval timers in self-test. Specifically, | |
the VAX boot ROM (ka655.bin) contains code which presumes that | |
the VAX runs at a particular slower speed when code is running | |
from ROM (which is not cached). These assumptions are built | |
into instruction based timing loops. As the host platform gets | |
much faster than the original VAX, the assumptions embedded in | |
these code loops are no longer valid. | |
Code has been added to the ROM implementation to limit CPU speed | |
to about 500K instructions per second. This heads off any future | |
issues with the embedded timing loops. | |
*/ | |
int32 rom_swapb(int32 val) | |
{ | |
return ((val << 24) & 0xff000000) | (( val << 8) & 0xff0000) | | |
((val >> 8) & 0xff00) | ((val >> 24) & 0xff); | |
} | |
volatile int32 rom_loopval = 0; | |
int32 rom_read_delay (int32 val) | |
{ | |
uint32 i, l = rom_delay; | |
if (rom_unit.flags & UNIT_NODELAY) | |
return val; | |
/* Calibrate the loop delay factor when first used. | |
Do this 4 times and use the largest value computed. */ | |
if (rom_delay == 0) { | |
uint32 ts, te, c = 10000, samples = 0; | |
while (1) { | |
c = c * 2; | |
te = sim_os_msec(); | |
while (te == (ts = sim_os_msec ())); /* align on ms tick */ | |
/* This is merely a busy wait with some "work" that won't get optimized | |
away by a good compiler. loopval always is zero. To avoid smart compilers, | |
the loopval variable is referenced in the function arguments so that the | |
function expression is not loop invariant. It also must be referenced | |
by subsequent code to avoid the whole computation being eliminated. */ | |
for (i = 0; i < c; i++) | |
rom_loopval |= (rom_loopval + ts) ^ rom_swapb (rom_swapb (rom_loopval + ts)); | |
te = sim_os_msec (); | |
if ((te - ts) < 50) /* sample big enough? */ | |
continue; | |
if (rom_delay < (rom_loopval + (c / (te - ts) / 1000) + 1)) | |
rom_delay = rom_loopval + (c / (te - ts) / 1000) + 1; | |
if (++samples >= 4) | |
break; | |
c = c / 2; | |
} | |
if (rom_delay < 5) | |
rom_delay = 5; | |
} | |
for (i = 0; i < l; i++) | |
rom_loopval |= (rom_loopval + val) ^ rom_swapb (rom_swapb (rom_loopval + val)); | |
return val + rom_loopval; | |
} | |
int32 rom_rd (int32 pa) | |
{ | |
int32 rg = ((pa - ROMBASE) & ROMAMASK) >> 2; | |
return rom_read_delay (rom[rg]); | |
} | |
void rom_wr_B (int32 pa, int32 val) | |
{ | |
int32 rg = ((pa - ROMBASE) & ROMAMASK) >> 2; | |
int32 sc = (pa & 3) << 3; | |
rom[rg] = ((val & 0xFF) << sc) | (rom[rg] & ~(0xFF << sc)); | |
return; | |
} | |
/* ROM examine */ | |
t_stat rom_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw) | |
{ | |
uint32 addr = (uint32) exta; | |
if ((vptr == NULL) || (addr & 03)) | |
return SCPE_ARG; | |
if (addr >= ROMSIZE) | |
return SCPE_NXM; | |
*vptr = rom[addr >> 2]; | |
return SCPE_OK; | |
} | |
/* ROM deposit */ | |
t_stat rom_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw) | |
{ | |
uint32 addr = (uint32) exta; | |
if (addr & 03) | |
return SCPE_ARG; | |
if (addr >= ROMSIZE) | |
return SCPE_NXM; | |
rom[addr >> 2] = (uint32) val; | |
return SCPE_OK; | |
} | |
/* ROM reset */ | |
t_stat rom_reset (DEVICE *dptr) | |
{ | |
if (rom == NULL) | |
rom = (uint32 *) calloc (ROMSIZE >> 2, sizeof (uint32)); | |
if (rom == NULL) | |
return SCPE_MEM; | |
return SCPE_OK; | |
} | |
t_stat rom_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) | |
{ | |
fprintf (st, "Read-only memory (ROM)\n\n"); | |
fprintf (st, "The boot ROM consists of a single unit, simulating the 128KB boot ROM. It\n"); | |
fprintf (st, "has no registers. The boot ROM can be loaded with a binary byte stream\n"); | |
fprintf (st, "using the LOAD -r command:\n\n"); | |
fprintf (st, " LOAD -r KA655X.BIN load ROM image KA655X.BIN\n\n"); | |
fprintf (st, "When the simulator starts running (via the BOOT command), if the ROM has\n"); | |
fprintf (st, "not yet been loaded, an attempt will be made to automatically load the\n"); | |
fprintf (st, "ROM image from the file ka655x.bin in the current working directory.\n"); | |
fprintf (st, "If that load attempt fails, then a copy of the missing ROM file is\n"); | |
fprintf (st, "written to the current directory and the load attempt is retried.\n\n"); | |
fprintf (st, "ROM accesses a use a calibrated delay that slows ROM-based execution to\n"); | |
fprintf (st, "about 500K instructions per second. This delay is required to make the\n"); | |
fprintf (st, "power-up self-test routines run correctly on very fast hosts.\n"); | |
fprint_set_help (st, dptr); | |
return SCPE_OK; | |
} | |
const char *rom_description (DEVICE *dptr) | |
{ | |
return "read-only memory"; | |
} | |
/* NVR: non-volatile RAM - stored in a buffered file */ | |
int32 nvr_rd (int32 pa) | |
{ | |
int32 rg = (pa - NVRBASE) >> 2; | |
return nvr[rg]; | |
} | |
void nvr_wr (int32 pa, int32 val, int32 lnt) | |
{ | |
int32 rg = (pa - NVRBASE) >> 2; | |
if (lnt < L_LONG) { /* byte or word? */ | |
int32 sc = (pa & 3) << 3; /* merge */ | |
int32 mask = (lnt == L_WORD)? 0xFFFF: 0xFF; | |
nvr[rg] = ((val & mask) << sc) | (nvr[rg] & ~(mask << sc)); | |
} | |
else nvr[rg] = val; | |
return; | |
} | |
/* NVR examine */ | |
t_stat nvr_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw) | |
{ | |
uint32 addr = (uint32) exta; | |
if ((vptr == NULL) || (addr & 03)) | |
return SCPE_ARG; | |
if (addr >= NVRSIZE) | |
return SCPE_NXM; | |
*vptr = nvr[addr >> 2]; | |
return SCPE_OK; | |
} | |
/* NVR deposit */ | |
t_stat nvr_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw) | |
{ | |
uint32 addr = (uint32) exta; | |
if (addr & 03) | |
return SCPE_ARG; | |
if (addr >= NVRSIZE) | |
return SCPE_NXM; | |
nvr[addr >> 2] = (uint32) val; | |
return SCPE_OK; | |
} | |
/* NVR reset */ | |
t_stat nvr_reset (DEVICE *dptr) | |
{ | |
if (nvr == NULL) { | |
nvr = (uint32 *) calloc (NVRSIZE >> 2, sizeof (uint32)); | |
nvr_unit.filebuf = nvr; | |
ssc_cnf = ssc_cnf | SSCCNF_BLO; | |
} | |
if (nvr == NULL) | |
return SCPE_MEM; | |
return SCPE_OK; | |
} | |
/* NVR attach */ | |
t_stat nvr_attach (UNIT *uptr, char *cptr) | |
{ | |
t_stat r; | |
uptr->flags = uptr->flags | (UNIT_ATTABLE | UNIT_BUFABLE); | |
r = attach_unit (uptr, cptr); | |
if (r != SCPE_OK) | |
uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE); | |
else { | |
uptr->hwmark = (uint32) uptr->capac; | |
ssc_cnf = ssc_cnf & ~SSCCNF_BLO; | |
} | |
return r; | |
} | |
/* NVR detach */ | |
t_stat nvr_detach (UNIT *uptr) | |
{ | |
t_stat r; | |
r = detach_unit (uptr); | |
if ((uptr->flags & UNIT_ATT) == 0) | |
uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE); | |
return r; | |
} | |
t_stat nvr_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) | |
{ | |
fprintf (st, "Non-volatile Memory (NVR)\n\n"); | |
fprintf (st, "The NVR consists of a single unit, simulating 1KB of battery-backed up memory\n"); | |
fprintf (st, "in the SSC chip. When the simulator starts, NVR is cleared to 0, and the SSC\n"); | |
fprintf (st, "battery-low indicator is set. Normally, NVR is saved and restored like other\n"); | |
fprintf (st, "memory in the system. Alternately, NVR can be attached to a file. This\n"); | |
fprintf (st, "allows its contents to be saved and restored independently of other memories,\n"); | |
fprintf (st, "so that NVR state can be preserved across simulator runs.\n\n"); | |
fprintf (st, "Successfully loading an NVR image clears the SSC battery-low indicator.\n\n"); | |
return SCPE_OK; | |
} | |
const char *nvr_description (DEVICE *dptr) | |
{ | |
return "non-volatile memory"; | |
} | |
/* CSI: console storage input */ | |
int32 csrs_rd (void) | |
{ | |
return (csi_csr & CSICSR_IMP); | |
} | |
int32 csrd_rd (void) | |
{ | |
csi_csr = csi_csr & ~CSR_DONE; | |
CLR_INT (CSI); | |
return (csi_unit.buf & 0377); | |
} | |
void csrs_wr (int32 data) | |
{ | |
if ((data & CSR_IE) == 0) | |
CLR_INT (CSI); | |
else if ((csi_csr & (CSR_DONE + CSR_IE)) == CSR_DONE) | |
SET_INT (CSI); | |
csi_csr = (csi_csr & ~CSICSR_RW) | (data & CSICSR_RW); | |
return; | |
} | |
t_stat csi_reset (DEVICE *dptr) | |
{ | |
csi_unit.buf = 0; | |
csi_csr = 0; | |
CLR_INT (CSI); | |
return SCPE_OK; | |
} | |
const char *csi_description (DEVICE *dptr) | |
{ | |
return "console storage input"; | |
} | |
/* CSO: console storage output */ | |
int32 csts_rd (void) | |
{ | |
return (cso_csr & CSOCSR_IMP); | |
} | |
void csts_wr (int32 data) | |
{ | |
if ((data & CSR_IE) == 0) | |
CLR_INT (CSO); | |
else if ((cso_csr & (CSR_DONE + CSR_IE)) == CSR_DONE) | |
SET_INT (CSO); | |
cso_csr = (cso_csr & ~CSOCSR_RW) | (data & CSOCSR_RW); | |
return; | |
} | |
void cstd_wr (int32 data) | |
{ | |
cso_unit.buf = data & 0377; | |
cso_csr = cso_csr & ~CSR_DONE; | |
CLR_INT (CSO); | |
sim_activate (&cso_unit, cso_unit.wait); | |
return; | |
} | |
t_stat cso_svc (UNIT *uptr) | |
{ | |
cso_csr = cso_csr | CSR_DONE; | |
if (cso_csr & CSR_IE) | |
SET_INT (CSO); | |
if ((cso_unit.flags & UNIT_ATT) == 0) | |
return SCPE_OK; | |
if (putc (cso_unit.buf, cso_unit.fileref) == EOF) { | |
sim_perror ("CSO I/O error"); | |
clearerr (cso_unit.fileref); | |
return SCPE_IOERR; | |
} | |
cso_unit.pos = cso_unit.pos + 1; | |
return SCPE_OK; | |
} | |
t_stat cso_reset (DEVICE *dptr) | |
{ | |
cso_unit.buf = 0; | |
cso_csr = CSR_DONE; | |
CLR_INT (CSO); | |
sim_cancel (&cso_unit); /* deactivate unit */ | |
return SCPE_OK; | |
} | |
const char *cso_description (DEVICE *dptr) | |
{ | |
return "console storage output"; | |
} | |
/* SYSD: SSC access mechanisms and devices | |
- IPR space read/write routines | |
- register space read/write routines | |
- SSC local register read/write routines | |
- SSC console storage UART | |
- SSC timers | |
- CMCTL local register read/write routines | |
*/ | |
/* Read/write IPR register space | |
These routines implement the SSC's response to IPR's which are | |
sent off the CPU chip for processing. | |
*/ | |
int32 ReadIPR (int32 rg) | |
{ | |
int32 val; | |
switch (rg) { | |
case MT_ICCS: /* ICCS */ | |
val = iccs_rd (); | |
break; | |
case MT_CSRS: /* CSRS */ | |
val = csrs_rd (); | |
break; | |
case MT_CSRD: /* CSRD */ | |
val = csrd_rd (); | |
break; | |
case MT_CSTS: /* CSTS */ | |
val = csts_rd (); | |
break; | |
case MT_CSTD: /* CSTD */ | |
val = 0; | |
break; | |
case MT_RXCS: /* RXCS */ | |
val = rxcs_rd (); | |
break; | |
case MT_RXDB: /* RXDB */ | |
val = rxdb_rd (); | |
break; | |
case MT_TXCS: /* TXCS */ | |
val = txcs_rd (); | |
break; | |
case MT_TXDB: /* TXDB */ | |
val = 0; | |
break; | |
case MT_TODR: /* TODR */ | |
val = todr_rd (); | |
break; | |
case MT_CADR: /* CADR */ | |
val = CADR & 0xFF; | |
break; | |
case MT_MSER: /* MSER */ | |
val = MSER & 0xFF; | |
break; | |
case MT_CONPC: /* console PC */ | |
val = conpc; | |
break; | |
case MT_CONPSL: /* console PSL */ | |
val = conpsl; | |
break; | |
case MT_SID: /* SID */ | |
val = CVAX_SID | CVAX_UREV; | |
break; | |
default: | |
ssc_bto = ssc_bto | SSCBTO_BTO; /* set BTO */ | |
val = 0; | |
break; | |
} | |
return val; | |
} | |
void WriteIPR (int32 rg, int32 val) | |
{ | |
switch (rg) { | |
case MT_ICCS: /* ICCS */ | |
iccs_wr (val); | |
break; | |
case MT_TODR: /* TODR */ | |
todr_wr (val); | |
break; | |
case MT_CSRS: /* CSRS */ | |
csrs_wr (val); | |
break; | |
case MT_CSRD: /* CSRD */ | |
break; | |
case MT_CSTS: /* CSTS */ | |
csts_wr (val); | |
break; | |
case MT_CSTD: /* CSTD */ | |
cstd_wr (val); | |
break; | |
case MT_RXCS: /* RXCS */ | |
rxcs_wr (val); | |
break; | |
case MT_RXDB: /* RXDB */ | |
break; | |
case MT_TXCS: /* TXCS */ | |
txcs_wr (val); | |
break; | |
case MT_TXDB: /* TXDB */ | |
txdb_wr (val); | |
break; | |
case MT_CADR: /* CADR */ | |
CADR = (val & CADR_RW) | CADR_MBO; | |
break; | |
case MT_MSER: /* MSER */ | |
MSER = MSER & MSER_HM; | |
break; | |
case MT_IORESET: /* IORESET */ | |
ioreset_wr (val); | |
break; | |
case MT_SID: | |
case MT_CONPC: | |
case MT_CONPSL: /* halt reg */ | |
RSVD_OPND_FAULT; | |
default: | |
ssc_bto = ssc_bto | SSCBTO_BTO; /* set BTO */ | |
break; | |
} | |
return; | |
} | |
/* Read/write I/O register space | |
These routines are the 'catch all' for address space map. Any | |
address that doesn't explicitly belong to memory, I/O, or ROM | |
is given to these routines for processing. | |
*/ | |
struct reglink { /* register linkage */ | |
uint32 low; /* low addr */ | |
uint32 high; /* high addr */ | |
int32 (*read)(int32 pa); /* read routine */ | |
void (*write)(int32 pa, int32 val, int32 lnt); /* write routine */ | |
}; | |
struct reglink regtable[] = { | |
{ CQMAPBASE, CQMAPBASE+CQMAPSIZE, &cqmap_rd, &cqmap_wr }, | |
{ ROMBASE, ROMBASE+ROMSIZE+ROMSIZE, &rom_rd, NULL }, | |
{ NVRBASE, NVRBASE+NVRSIZE, &nvr_rd, &nvr_wr }, | |
{ CMCTLBASE, CMCTLBASE+CMCTLSIZE, &cmctl_rd, &cmctl_wr }, | |
{ SSCBASE, SSCBASE+SSCSIZE, &ssc_rd, &ssc_wr }, | |
{ KABASE, KABASE+KASIZE, &ka_rd, &ka_wr }, | |
{ CQBICBASE, CQBICBASE+CQBICSIZE, &cqbic_rd, &cqbic_wr }, | |
{ CQIPCBASE, CQIPCBASE+CQIPCSIZE, &cqipc_rd, &cqipc_wr }, | |
{ CQMBASE, CQMBASE+CQMSIZE, &cqmem_rd, &cqmem_wr }, | |
{ CDGBASE, CDGBASE+CDGSIZE, &cdg_rd, &cdg_wr }, | |
{ 0, 0, NULL, NULL } | |
}; | |
/* ReadReg - read register space | |
Inputs: | |
pa = physical address | |
lnt = length (BWLQ) - ignored | |
Output: | |
longword of data | |
*/ | |
int32 ReadReg (uint32 pa, int32 lnt) | |
{ | |
struct reglink *p; | |
for (p = ®table[0]; p->low != 0; p++) { | |
if ((pa >= p->low) && (pa < p->high) && p->read) | |
return p->read (pa); | |
} | |
ssc_bto = ssc_bto | SSCBTO_BTO | SSCBTO_RWT; | |
MACH_CHECK (MCHK_READ); | |
return 0; | |
} | |
/* ReadRegU - read register space, unaligned | |
Inputs: | |
pa = physical address | |
lnt = length in bytes (1, 2, or 3) | |
Output: | |
returned data, not shifted | |
*/ | |
int32 ReadRegU (uint32 pa, int32 lnt) | |
{ | |
return ReadReg (pa & ~03, L_LONG); | |
} | |
/* WriteReg - write register space | |
Inputs: | |
pa = physical address | |
val = data to write, right justified in 32b longword | |
lnt = length (BWLQ) | |
Outputs: | |
none | |
*/ | |
void WriteReg (uint32 pa, int32 val, int32 lnt) | |
{ | |
struct reglink *p; | |
for (p = ®table[0]; p->low != 0; p++) { | |
if ((pa >= p->low) && (pa < p->high) && p->write) { | |
p->write (pa, val, lnt); | |
return; | |
} | |
} | |
ssc_bto = ssc_bto | SSCBTO_BTO | SSCBTO_RWT; | |
MACH_CHECK (MCHK_WRITE); | |
return; | |
} | |
/* WriteRegU - write register space, unaligned | |
Inputs: | |
pa = physical address | |
val = data to write, right justified in 32b longword | |
lnt = length (1, 2, or 3) | |
Outputs: | |
none | |
*/ | |
void WriteRegU (uint32 pa, int32 val, int32 lnt) | |
{ | |
int32 sc = (pa & 03) << 3; | |
int32 dat = ReadReg (pa & ~03, L_LONG); | |
dat = (dat & ~(insert[lnt] << sc)) | ((val & insert[lnt]) << sc); | |
WriteReg (pa & ~03, dat, L_LONG); | |
return; | |
} | |
/* CMCTL registers | |
CMCTL00 - 15 configure memory banks 00 - 15. Note that they are | |
here merely to entertain the firmware; the actual configuration | |
of memory is unaffected by the settings here. | |
CMCTL16 - error status register | |
CMCTL17 - control/diagnostic status register | |
The CMCTL registers are cleared at power up. | |
*/ | |
int32 cmctl_rd (int32 pa) | |
{ | |
int32 rg = (pa - CMCTLBASE) >> 2; | |
switch (rg) { | |
default: /* config reg */ | |
return cmctl_reg[rg] & CMCNF_MASK; | |
case 16: /* err status */ | |
return cmctl_reg[rg]; | |
case 17: /* csr */ | |
return cmctl_reg[rg] & CMCSR_MASK; | |
case 18: /* KA655X ext mem */ | |
if (MEMSIZE > MAXMEMSIZE) /* more than 128MB? */ | |
return ((int32) MEMSIZE); | |
MACH_CHECK (MCHK_READ); | |
} | |
return 0; | |
} | |
void cmctl_wr (int32 pa, int32 val, int32 lnt) | |
{ | |
int32 i, rg = (pa - CMCTLBASE) >> 2; | |
if (lnt < L_LONG) { /* LW write only */ | |
int32 sc = (pa & 3) << 3; /* shift data to */ | |
val = val << sc; /* proper location */ | |
} | |
switch (rg) { | |
default: /* config reg */ | |
if (val & CMCNF_SRQ) { /* sig request? */ | |
int32 rg_g = rg & ~3; /* group of 4 */ | |
for (i = rg_g; i < (rg_g + 4); i++) { | |
cmctl_reg[i] = cmctl_reg[i] & ~CMCNF_SIG; | |
if (ADDR_IS_MEM (i * MEM_BANK)) | |
cmctl_reg[i] = cmctl_reg[i] | MEM_SIG; | |
} | |
} | |
cmctl_reg[rg] = (cmctl_reg[rg] & ~CMCNF_RW) | (val & CMCNF_RW); | |
break; | |
case 16: /* err status */ | |
cmctl_reg[rg] = cmctl_reg[rg] & ~(val & CMERR_W1C); | |
break; | |
case 17: /* csr */ | |
cmctl_reg[rg] = val & CMCSR_MASK; | |
break; | |
case 18: | |
MACH_CHECK (MCHK_WRITE); | |
} | |
return; | |
} | |
t_stat cpu_show_memory (FILE* st, UNIT* uptr, int32 val, void* desc) | |
{ | |
uint32 memsize = (uint32)(MEMSIZE>>20); | |
uint32 baseaddr = 0; | |
struct { | |
uint32 capacity; | |
char *option; | |
} boards[] = { | |
{ 16, "MS650-BA"}, | |
{ 0, NULL}}; | |
int32 i; | |
while (memsize > 1) { | |
if (baseaddr >= (64<<20)) { | |
fprintf(st, "Memory (@0x%08x): %3d Mbytes (Simulated Extended Memory)\n", baseaddr, memsize); | |
break; | |
} | |
for (i=0; boards[i].capacity > memsize; ++i) | |
; | |
fprintf(st, "Memory (@0x%08x): %3d Mbytes (%s)\n", baseaddr, boards[i].capacity, boards[i].option); | |
memsize -= boards[i].capacity; | |
baseaddr += boards[i].capacity<<20; | |
} | |
return SCPE_OK; | |
} | |
/* KA655 registers */ | |
int32 ka_rd (int32 pa) | |
{ | |
int32 rg = (pa - KABASE) >> 2; | |
switch (rg) { | |
case 0: /* CACR */ | |
return ka_cacr; | |
case 1: /* BDR */ | |
return ka_bdr; | |
} | |
return 0; | |
} | |
void ka_wr (int32 pa, int32 val, int32 lnt) | |
{ | |
int32 rg = (pa - KABASE) >> 2; | |
if ((rg == 0) && ((pa & 3) == 0)) { /* lo byte only */ | |
ka_cacr = (ka_cacr & ~(val & CACR_W1C)) | CACR_FIXED; | |
ka_cacr = (ka_cacr & ~CACR_RW) | (val & CACR_RW); | |
} | |
return; | |
} | |
int32 sysd_hlt_enb (void) | |
{ | |
return ka_bdr & BDR_BRKENB; | |
} | |
/* Cache diagnostic space */ | |
int32 cdg_rd (int32 pa) | |
{ | |
int32 t, row = CDG_GETROW (pa); | |
t = cdg_dat[row]; | |
ka_cacr = ka_cacr & ~CACR_DRO; /* clear diag */ | |
ka_cacr = ka_cacr | | |
(parity ((t >> 24) & 0xFF, 1) << (CACR_V_DPAR + 3)) | | |
(parity ((t >> 16) & 0xFF, 0) << (CACR_V_DPAR + 2)) | | |
(parity ((t >> 8) & 0xFF, 1) << (CACR_V_DPAR + 1)) | | |
(parity (t & 0xFF, 0) << CACR_V_DPAR); | |
return t; | |
} | |
void cdg_wr (int32 pa, int32 val, int32 lnt) | |
{ | |
int32 row = CDG_GETROW (pa); | |
if (lnt < L_LONG) { /* byte or word? */ | |
int32 sc = (pa & 3) << 3; /* merge */ | |
int32 mask = (lnt == L_WORD)? 0xFFFF: 0xFF; | |
int32 t = cdg_dat[row]; | |
val = ((val & mask) << sc) | (t & ~(mask << sc)); | |
} | |
cdg_dat[row] = val; /* store data */ | |
return; | |
} | |
int32 parity (int32 val, int32 odd) | |
{ | |
for ( ; val != 0; val = val >> 1) { | |
if (val & 1) | |
odd = odd ^ 1; | |
} | |
return odd; | |
} | |
/* SSC registers - byte/word merges done in WriteReg */ | |
int32 ssc_rd (int32 pa) | |
{ | |
int32 rg = (pa - SSCBASE) >> 2; | |
switch (rg) { | |
case 0x00: /* base reg */ | |
return ssc_base; | |
case 0x04: /* conf reg */ | |
return ssc_cnf; | |
case 0x08: /* bus timeout */ | |
return ssc_bto; | |
case 0x0C: /* output port */ | |
return ssc_otp & SSCOTP_MASK; | |
case 0x1B: /* TODR */ | |
return todr_rd (); | |
case 0x1C: /* CSRS */ | |
return csrs_rd (); | |
case 0x1D: /* CSRD */ | |
return csrd_rd (); | |
case 0x1E: /* CSTS */ | |
return csts_rd (); | |
case 0x20: /* RXCS */ | |
return rxcs_rd (); | |
case 0x21: /* RXDB */ | |
return rxdb_rd (); | |
case 0x22: /* TXCS */ | |
return txcs_rd (); | |
case 0x40: /* T0CSR */ | |
return tmr_csr[0]; | |
case 0x41: /* T0INT */ | |
return tmr_tir_rd (0, FALSE); | |
case 0x42: /* T0NI */ | |
return tmr_tnir[0]; | |
case 0x43: /* T0VEC */ | |
return tmr_tivr[0]; | |
case 0x44: /* T1CSR */ | |
return tmr_csr[1]; | |
case 0x45: /* T1INT */ | |
return tmr_tir_rd (1, FALSE); | |
case 0x46: /* T1NI */ | |
return tmr_tnir[1]; | |
case 0x47: /* T1VEC */ | |
return tmr_tivr[1]; | |
case 0x4C: /* ADS0M */ | |
return ssc_adsm[0]; | |
case 0x4D: /* ADS0K */ | |
return ssc_adsk[0]; | |
case 0x50: /* ADS1M */ | |
return ssc_adsm[1]; | |
case 0x51: /* ADS1K */ | |
return ssc_adsk[1]; | |
} | |
return 0; | |
} | |
void ssc_wr (int32 pa, int32 val, int32 lnt) | |
{ | |
int32 rg = (pa - SSCBASE) >> 2; | |
if (lnt < L_LONG) { /* byte or word? */ | |
int32 sc = (pa & 3) << 3; /* merge */ | |
int32 mask = (lnt == L_WORD)? 0xFFFF: 0xFF; | |
int32 t = ssc_rd (pa); | |
val = ((val & mask) << sc) | (t & ~(mask << sc)); | |
} | |
switch (rg) { | |
case 0x00: /* base reg */ | |
ssc_base = (val & SSCBASE_RW) | SSCBASE_MBO; | |
break; | |
case 0x04: /* conf reg */ | |
ssc_cnf = ssc_cnf & ~(val & SSCCNF_W1C); | |
ssc_cnf = (ssc_cnf & ~SSCCNF_RW) | (val & SSCCNF_RW); | |
break; | |
case 0x08: /* bus timeout */ | |
ssc_bto = ssc_bto & ~(val & SSCBTO_W1C); | |
ssc_bto = (ssc_bto & ~SSCBTO_RW) | (val & SSCBTO_RW); | |
break; | |
case 0x0C: /* output port */ | |
ssc_otp = val & SSCOTP_MASK; | |
break; | |
case 0x1B: /* TODR */ | |
todr_wr (val); | |
break; | |
case 0x1C: /* CSRS */ | |
csrs_wr (val); | |
break; | |
case 0x1E: /* CSTS */ | |
csts_wr (val); | |
break; | |
case 0x1F: /* CSTD */ | |
cstd_wr (val); | |
break; | |
case 0x20: /* RXCS */ | |
rxcs_wr (val); | |
break; | |
case 0x22: /* TXCS */ | |
txcs_wr (val); | |
break; | |
case 0x23: /* TXDB */ | |
txdb_wr (val); | |
break; | |
case 0x40: /* T0CSR */ | |
tmr_csr_wr (0, val); | |
break; | |
case 0x42: /* T0NI */ | |
tmr_tnir[0] = val; | |
break; | |
case 0x43: /* T0VEC */ | |
tmr_tivr[0] = val & TMR_VEC_MASK; | |
break; | |
case 0x44: /* T1CSR */ | |
tmr_csr_wr (1, val); | |
break; | |
case 0x46: /* T1NI */ | |
tmr_tnir[1] = val; | |
break; | |
case 0x47: /* T1VEC */ | |
tmr_tivr[1] = val & TMR_VEC_MASK; | |
break; | |
case 0x4C: /* ADS0M */ | |
ssc_adsm[0] = val & SSCADS_MASK; | |
break; | |
case 0x4D: /* ADS0K */ | |
ssc_adsk[0] = val & SSCADS_MASK; | |
break; | |
case 0x50: /* ADS1M */ | |
ssc_adsm[1] = val & SSCADS_MASK; | |
break; | |
case 0x51: /* ADS1K */ | |
ssc_adsk[1] = val & SSCADS_MASK; | |
break; | |
} | |
return; | |
} | |
/* Programmable timers | |
The SSC timers, which increment at 1Mhz, cannot be accurately | |
simulated due to the overhead that would be required for 1M | |
clock events per second. Instead, a gross hack is used. When | |
a timer is started, the clock interval is inspected. | |
if (int < 0 and small) then testing timer, count instructions. | |
Small is determined by when the requested interval is less | |
than the size of a 100hz system clock tick. | |
if (int >= 0 or large) then counting a real interval, schedule | |
clock events at 100Hz using calibrated line clock delay | |
and when the remaining time value gets small enough, behave | |
like the small case above. | |
If the interval register is read, then its value between events | |
is interpolated using the current instruction count versus the | |
count when the most recent event started, the result is scaled | |
to the calibrated system clock, unless the interval being timed | |
is less than a calibrated system clock tick (or the calibrated | |
clock is running very slowly) at which time the result will be | |
the elapsed instruction count. | |
The powerup TOY Test sometimes fails its tolerance test. This was | |
due to varying system load causing varying calibration values to be | |
used at different times while referencing the TIR. While timing long | |
intervals, we now synchronize the stepping (and calibration) of the | |
system tick with the opportunity to reference the value. This gives | |
precise tolerance measurement values (when interval timers are used | |
to measure the system clock), regardless of other load issues on the | |
host system which might cause varying values of the system clock's | |
calibration factor. | |
*/ | |
int32 tmr_tir_rd (int32 tmr, t_bool interp) | |
{ | |
uint32 delta; | |
if (interp || (tmr_csr[tmr] & TMR_CSR_RUN)) { /* interp, running? */ | |
delta = sim_grtime () - tmr_sav[tmr]; /* delta inst */ | |
if ((tmr_inc[tmr] == TMR_INC) && /* scale large int */ | |
(tmr_poll > TMR_INC)) | |
delta = (uint32) ((((double) delta) * TMR_INC) / tmr_poll); | |
if (delta >= tmr_inc[tmr]) | |
delta = tmr_inc[tmr] - 1; | |
return tmr_tir[tmr] + delta; | |
} | |
return tmr_tir[tmr]; | |
} | |
void tmr_csr_wr (int32 tmr, int32 val) | |
{ | |
if ((tmr < 0) || (tmr > 1)) | |
return; | |
if ((val & TMR_CSR_RUN) == 0) { /* clearing run? */ | |
sim_cancel (&sysd_unit[tmr]); /* cancel timer */ | |
if (tmr_csr[tmr] & TMR_CSR_RUN) /* run 1 -> 0? */ | |
tmr_tir[tmr] = tmr_tir_rd (tmr, TRUE); /* update itr */ | |
} | |
tmr_csr[tmr] = tmr_csr[tmr] & ~(val & TMR_CSR_W1C); /* W1C csr */ | |
tmr_csr[tmr] = (tmr_csr[tmr] & ~TMR_CSR_RW) | /* new r/w */ | |
(val & TMR_CSR_RW); | |
if (val & TMR_CSR_XFR) /* xfr set? */ | |
tmr_tir[tmr] = tmr_tnir[tmr]; | |
if (val & TMR_CSR_RUN) { /* run? */ | |
if (val & TMR_CSR_XFR) /* new tir? */ | |
sim_cancel (&sysd_unit[tmr]); /* stop prev */ | |
if (!sim_is_active (&sysd_unit[tmr])) /* not running? */ | |
tmr_sched (tmr); /* activate */ | |
} | |
else if (val & TMR_CSR_SGL) { /* single step? */ | |
tmr_incr (tmr, 1); /* incr tmr */ | |
if (tmr_tir[tmr] == 0) /* if ovflo, */ | |
tmr_tir[tmr] = tmr_tnir[tmr]; /* reload tir */ | |
} | |
if ((tmr_csr[tmr] & (TMR_CSR_DON | TMR_CSR_IE)) != /* update int */ | |
(TMR_CSR_DON | TMR_CSR_IE)) { | |
if (tmr) | |
CLR_INT (TMR1); | |
else CLR_INT (TMR0); | |
} | |
return; | |
} | |
/* Unit service */ | |
t_stat tmr_svc (UNIT *uptr) | |
{ | |
int32 tmr = uptr - sysd_dev.units; /* get timer # */ | |
tmr_incr (tmr, tmr_inc[tmr]); /* incr timer */ | |
return SCPE_OK; | |
} | |
/* Timer increment */ | |
void tmr_incr (int32 tmr, uint32 inc) | |
{ | |
uint32 new_tir = tmr_tir[tmr] + inc; /* add incr */ | |
if (new_tir < tmr_tir[tmr]) { /* ovflo? */ | |
tmr_tir[tmr] = 0; /* now 0 */ | |
if (tmr_csr[tmr] & TMR_CSR_DON) /* done? set err */ | |
tmr_csr[tmr] = tmr_csr[tmr] | TMR_CSR_ERR; | |
else tmr_csr[tmr] = tmr_csr[tmr] | TMR_CSR_DON; /* set done */ | |
if (tmr_csr[tmr] & TMR_CSR_STP) /* stop? */ | |
tmr_csr[tmr] = tmr_csr[tmr] & ~TMR_CSR_RUN; /* clr run */ | |
if (tmr_csr[tmr] & TMR_CSR_RUN) { /* run? */ | |
tmr_tir[tmr] = tmr_tnir[tmr]; /* reload */ | |
tmr_sched (tmr); /* reactivate */ | |
} | |
if (tmr_csr[tmr] & TMR_CSR_IE) { /* set int req */ | |
if (tmr) | |
SET_INT (TMR1); | |
else SET_INT (TMR0); | |
} | |
} | |
else { | |
tmr_tir[tmr] = new_tir; /* no, upd tir */ | |
if (tmr_csr[tmr] & TMR_CSR_RUN) /* still running? */ | |
tmr_sched (tmr); /* reactivate */ | |
} | |
return; | |
} | |
/* Timer scheduling */ | |
void tmr_sched (int32 tmr) | |
{ | |
int32 clk_time = sim_activate_time (&clk_unit) - 1; | |
int32 tmr_time; | |
tmr_sav[tmr] = sim_grtime (); /* save intvl base */ | |
if (tmr_tir[tmr] > (0xFFFFFFFFu - TMR_INC)) { /* short interval? */ | |
tmr_inc[tmr] = (~tmr_tir[tmr] + 1); /* inc = interval */ | |
tmr_time = tmr_inc[tmr]; | |
} | |
else { | |
tmr_inc[tmr] = TMR_INC; /* usec/interval */ | |
tmr_time = tmr_poll; | |
} | |
if (tmr_time == 0) | |
tmr_time = 1; | |
if ((tmr_inc[tmr] == TMR_INC) && (tmr_time > clk_time)) { | |
/* Align scheduled event to be identical to the event for the next clock | |
tick. This lets us always see a consistent calibrated value, both for | |
this scheduling, AND for any query of the current timer register that | |
may happen in tmr_tir_rd (). This presumes that sim_activate will | |
queue the interval timer behind the event for the clock tick. */ | |
tmr_inc[tmr] = (uint32) (((double) clk_time * TMR_INC) / tmr_poll); | |
tmr_time = clk_time; | |
sim_clock_coschedule (&sysd_unit[tmr], tmr_time); | |
} | |
else | |
sim_activate (&sysd_unit[tmr], tmr_time); | |
return; | |
} | |
int32 tmr0_inta (void) | |
{ | |
return tmr_tivr[0]; | |
} | |
int32 tmr1_inta (void) | |
{ | |
return tmr_tivr[1]; | |
} | |
char *tmr_description (DEVICE *dptr) | |
{ | |
return "non-volatile memory"; | |
} | |
/* Machine check */ | |
int32 machine_check (int32 p1, int32 opc, int32 cc, int32 delta) | |
{ | |
int32 i, st1, st2, p2, hsir, acc; | |
if (in_ie) /* in exc? panic */ | |
ABORT (STOP_INIE); | |
if (p1 & 0x80) /* mref? set v/p */ | |
p1 = p1 + mchk_ref; | |
p2 = mchk_va + 4; /* save vap */ | |
for (i = hsir = 0; i < 16; i++) { /* find hsir */ | |
if ((SISR >> i) & 1) | |
hsir = i; | |
} | |
st1 = ((((uint32) opc) & 0xFF) << 24) | | |
(hsir << 16) | | |
((CADR & 0xFF) << 8) | | |
(MSER & 0xFF); | |
st2 = 0x00C07000 + (delta & 0xFF); | |
cc = intexc (SCB_MCHK, cc, 0, IE_SVE); /* take exception */ | |
acc = ACC_MASK (KERN); /* in kernel mode */ | |
in_ie = 1; | |
SP = SP - 20; /* push 5 words */ | |
Write (SP, 16, L_LONG, WA); /* # bytes */ | |
Write (SP + 4, p1, L_LONG, WA); /* mcheck type */ | |
Write (SP + 8, p2, L_LONG, WA); /* address */ | |
Write (SP + 12, st1, L_LONG, WA); /* state 1 */ | |
Write (SP + 16, st2, L_LONG, WA); /* state 2 */ | |
in_ie = 0; | |
return cc; | |
} | |
/* Console entry */ | |
int32 con_halt (int32 code, int32 cc) | |
{ | |
int32 temp; | |
conpc = PC; /* save PC */ | |
conpsl = ((PSL | cc) & 0xFFFF00FF) | CON_HLTINS; /* PSL, param */ | |
temp = (PSL >> PSL_V_CUR) & 0x7; /* get is'cur */ | |
if (temp > 4) /* invalid? */ | |
conpsl = conpsl | CON_BADPSL; | |
else STK[temp] = SP; /* save stack */ | |
if (mapen) /* mapping on? */ | |
conpsl = conpsl | CON_MAPON; | |
mapen = 0; /* turn off map */ | |
SP = IS; /* set SP from IS */ | |
PSL = PSL_IS | PSL_IPL1F; /* PSL = 41F0000 */ | |
JUMP (ROMBASE); /* PC = 20040000 */ | |
return 0; /* new cc = 0 */ | |
} | |
/* Special boot command - linked into SCP by initial reset | |
Syntax: BOOT {CPU} | |
*/ | |
t_stat vax_boot (int32 flag, char *ptr) | |
{ | |
char gbuf[CBUFSIZE]; | |
get_glyph (ptr, gbuf, 0); /* get glyph */ | |
if (gbuf[0] && strcmp (gbuf, "CPU")) | |
return SCPE_ARG; /* Only can specify CPU device */ | |
return run_cmd (flag, "CPU"); | |
} | |
/* Bootstrap */ | |
t_stat cpu_boot (int32 unitno, DEVICE *dptr) | |
{ | |
t_stat r; | |
PC = ROMBASE; | |
PSL = PSL_IS | PSL_IPL1F; | |
conpc = 0; | |
conpsl = PSL_IS | PSL_IPL1F | CON_PWRUP; | |
if (rom == NULL) | |
return SCPE_IERR; | |
if (*rom == 0) { /* no boot? */ | |
r = cpu_load_bootcode (BOOT_CODE_FILENAME, BOOT_CODE_ARRAY, BOOT_CODE_SIZE, TRUE, 0); | |
if (r != SCPE_OK) | |
return r; | |
rom_wr_B (ROMBASE+4, sys_model ? 1 : 2); /* Set Magic Byte to determine system type */ | |
} | |
sysd_powerup (); | |
return SCPE_OK; | |
} | |
t_stat sysd_set_halt (UNIT *uptr, int32 val, char *cptr, void *desc) | |
{ | |
ka_hltenab = val; | |
if (ka_hltenab) | |
ka_bdr |= BDR_BRKENB; | |
else | |
ka_bdr &= ~BDR_BRKENB; | |
return SCPE_OK; | |
} | |
t_stat sysd_show_halt (FILE *st, UNIT *uptr, int32 val, void *desc) | |
{ | |
fprintf(st, "%s", ka_hltenab ? "NOAUTOBOOT" : "AUTOBOOT"); | |
return SCPE_OK; | |
} | |
/* SYSD reset */ | |
t_stat sysd_reset (DEVICE *dptr) | |
{ | |
int32 i; | |
if (sim_switches & SWMASK ('P')) sysd_powerup (); /* powerup? */ | |
for (i = 0; i < 2; i++) { | |
tmr_csr[i] = tmr_tnir[i] = tmr_tir[i] = 0; | |
tmr_inc[i] = tmr_sav[i] = 0; | |
sim_cancel (&sysd_unit[i]); | |
} | |
csi_csr = 0; | |
csi_unit.buf = 0; | |
sim_cancel (&csi_unit); | |
CLR_INT (CSI); | |
cso_csr = CSR_DONE; | |
cso_unit.buf = 0; | |
sim_cancel (&cso_unit); | |
CLR_INT (CSO); | |
sim_vm_cmd = vax_cmd; | |
return SCPE_OK; | |
} | |
/* SYSD powerup */ | |
t_stat sysd_powerup (void) | |
{ | |
int32 i; | |
for (i = 0; i < (CMCTLSIZE >> 2); i++) | |
cmctl_reg[i] = 0; | |
for (i = 0; i < 2; i++) { | |
tmr_tivr[i] = 0; | |
ssc_adsm[i] = ssc_adsk[i] = 0; | |
} | |
ka_cacr = 0; | |
ssc_base = SSCBASE; | |
ssc_cnf = ssc_cnf & SSCCNF_BLO; | |
ssc_bto = 0; | |
ssc_otp = 0; | |
return SCPE_OK; | |
} | |
t_stat sysd_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) | |
{ | |
fprintf (st, "System Devices (SYSD)\n\n"); | |
fprintf (st, "The system devices are the system-specific facilities implemented in the CVAX\n"); | |
fprintf (st, "chip, the KA655 CPU board, the CMCTL memory controller, and the SSC\n"); | |
fprintf (st, "system support chip. Note that the simulation of these devices is incomplete\n"); | |
fprintf (st, "and is intended strictly to allow the patched bootstrap and console code to\n"); | |
fprintf (st, "run.\n"); | |
fprint_reg_help (st, dptr); | |
fprintf (st, "\nBDR<7> is the halt-enabled switch. It controls how the console firmware\n"); | |
fprintf (st, "responds to a BOOT command, a kernel halt (if option CONHALT is set), or a\n"); | |
fprintf (st, "console halt (BREAK typed on the console terminal). If BDR<7> is set, the\n"); | |
fprintf (st, "onsole firmware responds to all these conditions by entering its interactive\n"); | |
fprintf (st, "command mode. If BDR<7> is clear, the console firmware boots the operating\n"); | |
fprintf (st, "system in response to these conditions. This bit can be set and cleared by\n"); | |
fprintf (st, "the command \"SET CPU AUTOBOOT\" (clearing the flag) and \"SET CPU NOAUTOBOOT\"\n"); | |
fprintf (st, "setting the flag. The default value is set.\n"); | |
return SCPE_OK; | |
} | |
const char *sysd_description (DEVICE *dptr) | |
{ | |
return "system devices"; | |
} | |
t_stat cpu_set_model (UNIT *uptr, int32 val, char *cptr, void *desc) | |
{ | |
char gbuf[CBUFSIZE]; | |
if ((cptr == NULL) || (!*cptr)) | |
return SCPE_ARG; | |
cptr = get_glyph (cptr, gbuf, 0); | |
if (MATCH_CMD(gbuf, "VAXSERVER") == 0) { | |
sys_model = 0; | |
strcpy (sim_name, "VAXServer 3900 (KA655)"); | |
} | |
else if (MATCH_CMD(gbuf, "MICROVAX") == 0) { | |
sys_model = 1; | |
strcpy (sim_name, "MicroVAX 3900 (KA655)"); | |
#if defined(USE_SIM_VIDEO) && defined(HAVE_LIBSDL) | |
vc_dev.flags = vc_dev.flags | DEV_DIS; /* disable QVSS */ | |
lk_dev.flags = lk_dev.flags | DEV_DIS; /* disable keyboard */ | |
vs_dev.flags = vs_dev.flags | DEV_DIS; /* disable mouse */ | |
reset_all (0); /* reset everything */ | |
#endif | |
} | |
else if (MATCH_CMD(gbuf, "VAXSTATION") == 0) { | |
#if defined(USE_SIM_VIDEO) && defined(HAVE_LIBSDL) | |
strcpy (sim_name, "VAXStation 3900 (KA655)"); | |
sys_model = 1; | |
vc_dev.flags = vc_dev.flags & ~DEV_DIS; /* enable QVSS */ | |
lk_dev.flags = lk_dev.flags & ~DEV_DIS; /* enable keyboard */ | |
vs_dev.flags = vs_dev.flags & ~DEV_DIS; /* enable mouse */ | |
reset_all (0); /* reset everything */ | |
#else | |
return sim_messagef(SCPE_ARG, "Simulator built without Graphic Device Support"); | |
#endif | |
} | |
else | |
return SCPE_ARG; | |
return SCPE_OK; | |
} | |
t_stat cpu_print_model (FILE *st) | |
{ | |
fprintf (st, "%s 3900 (KA655)", (sys_model ? "MicroVAX" : "VAXServer")); | |
return SCPE_OK; | |
} | |
t_stat cpu_model_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) | |
{ | |
fprintf (st, "Notes on memory size:\n\n"); | |
fprintf (st, "- The real KA655 CPU only supported 16MB to 64MB of memory. The simulator\n"); | |
fprintf (st, " implements a KA655\"X\", which increases supported memory to 512MB.\n"); | |
fprintf (st, "- The firmware (ka655x.bin) contains code to determine the size of extended\n"); | |
fprintf (st, " memory and set up the PFN bit map accordingly. Other than setting up the\n"); | |
fprintf (st, " PFN bit map, the firmware does not recognize extended memory and will\n"); | |
fprintf (st, " behave as though memory size was 64MB.\n"); | |
fprintf (st, "- If memory size is being reduced, and the memory being truncated contains\n"); | |
fprintf (st, " non-zero data, the simulator asks for confirmation. Data in the truncated\n"); | |
fprintf (st, " portion of memory is lost.\n"); | |
fprintf (st, "- If the simulator is running VMS, the operating system may have a SYSGEN\n"); | |
fprintf (st, " parameter set called PHYSICAL PAGES (viewable with\n"); | |
fprintf (st, " \"MCR SYSGEN SHOW PHYSICALPAGES\"). PHYSICALPAGES limits the maximum\n"); | |
fprintf (st, " number of physical pages of memory the OS will recognize. If it is set\n"); | |
fprintf (st, " to a lower value than the new memory size of the machine, then only the\n"); | |
fprintf (st, " first PHYSICALPAGES of memory will be recognized, otherwise the actual size\n"); | |
fprintf (st, " of the extended memory will be realized by VMS upon each boot. Some users\n"); | |
fprintf (st, " and/or sites may specify the PHYSICALPAGES parameter in the input file to\n"); | |
fprintf (st, " AUTOGEN (SYS$SYSTEM:MODPARAMS.DAT). If PHYSICALPAGES is specified there,\n"); | |
fprintf (st, " it will have to be adjusted before running AUTOGEN to recognize more memory.\n"); | |
fprintf (st, " The default value for PHYSICALPAGES is 1048576, which describes 512MB of RAM.\n\n"); | |
fprintf (st, "Initial memory size is 16MB.\n\n"); | |
fprintf (st, "The CPU supports the BOOT command and is the only VAX device to do so. Note\n"); | |
fprintf (st, "that the behavior of the bootstrap depends on the capabilities of the console\n"); | |
fprintf (st, "terminal emulator. If the terminal window supports full VT100 emulation\n"); | |
fprintf (st, "(including Multilanguage Character Set support), the bootstrap will ask the\n"); | |
fprintf (st, "user to specify the language; otherwise, it will default to English.\n\n"); | |
fprintf (st, "The simulator is booted with the BOOT command:\n\n"); | |
fprintf (st, " sim> BOOT\n\n"); | |
return SCPE_OK; | |
} |