blob: 702198785e7ddda523d78a2eef3019aa565f4a33 [file] [log] [blame] [raw]
/* sds_cpu.c: SDS 940 CPU simulator
Copyright (c) 2001-2008, Robert M. Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
cpu central processor
rtc real time clock
28-Apr-07 RMS Removed clock initialization
29-Dec-06 RMS Fixed breakpoint variable declarations
16-Aug-05 RMS Fixed C++ declaration and cast problems
07-Nov-04 RMS Added instruction history
01-Mar-03 RMS Added SET/SHOW RTC FREQ support
The system state for the SDS 940 is:
A<0:23> A register
B<0:23> B register
X<0:23> X (index) register
OV overflow indicator
P<0:13> program counter
cpu_mode SDS 930 normal (compatible) mode (0)
SDS 940 monitor mode (1)
SDS 940 user mode (2)
RL1<0:23> user map low
RL2<0:23> user map high
RL4<12:23> monitor map high
EM2<0:2> memory extension, block 2
EM3<0:2> memory extension, block 3
bpt breakpoint switches
The SDS 940 has three instruction format -- memory reference, register change,
and I/O. The memory reference format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 23
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| U| X| P| opcode |IN| address |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
U force user mode addressing (monitor mode only)
X indexed
P opcode is a programmed operator
opcode opcode
IN indirect addressing
address virtual address
Virtual addresses are 14b. Depending on the operating mode (normal, user,
or monitor), virtual addresses are translated to 15b or 16b physical addresses.
normal virtual [000000:017777] are unmapped
EM2 and EM3 extend virtual [020000:037777] to 15b
user RL1 and RL2 map virtual [000000:037777] to 16b
monitor virtual [000000:017777] are unmapped
EM2 extends virtual [020000:027777] to 15b
RL4 maps virtual [030000:037777] to 16b
The register change format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 23
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0| m| 0| opcode | microcoded register change instruction |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The I/O format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 23
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0|CH| 0| opcode |mode | I/O function |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
This routine is the instruction decode routine for the SDS 940.
It is called from the simulator control program to execute
instructions in simulated memory, starting at the simulated PC.
It runs until 'reason' is set non-zero.
General notes:
1. Reasons to stop. The simulator can be stopped by:
HALT instruction
breakpoint encountered
invalid instruction and stop_invins flag set
invalid I/O device and stop_invdev flag set
invalid I/O operation and stop_inviop flag set
I/O error in I/O simulator
indirect loop exceeding limit
EXU loop exceeding limit
mapping exception in interrupt or trap instruction
2. Interrupts. The interrupt structure consists of the following:
int_req interrupt requests (low bit reserved)
api_lvl active interrupt levels
int_reqhi highest interrupt request
api_lvlhi highest interrupt service (0 if none)
ion interrupt enable
ion_defer interrupt defer (one instruction)
3. Channels. The SDS 940 has a channel-based I/O structure. Each
channel is represented by a set of registers. Channels test the
I/O transfer requests from devices, which are kept in xfr_req.
4. Non-existent memory. On the SDS 940, reads to non-existent memory
return zero, and writes are ignored. In the simulator, the
largest possible memory is instantiated and initialized to zero.
Thus, only writes need be checked against actual memory size.
5. Adding I/O devices. These modules must be modified:
sds_defs.h add interrupt, transfer, and alert definitions
sds_io.c add alert dispatches aldisp
sds_sys.c add pointer to data structures to sim_devices
*/
#include "sds_defs.h"
#define PCQ_SIZE 64 /* must be 2**n */
#define PCQ_MASK (PCQ_SIZE - 1)
#define PCQ_ENTRY pcq[pcq_p = (pcq_p - 1) & PCQ_MASK] = pc
#define UNIT_V_MSIZE (UNIT_V_GENIE + 1) /* dummy mask */
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
#define HIST_XCT 1 /* instruction */
#define HIST_INT 2 /* interrupt cycle */
#define HIST_TRP 3 /* trap cycle */
#define HIST_MIN 64
#define HIST_MAX 65536
#define HIST_NOEA 0x40000000
typedef struct {
uint32 typ;
uint32 pc;
uint32 ir;
uint32 a;
uint32 b;
uint32 x;
uint32 ea;
} InstHistory;
uint32 M[MAXMEMSIZE] = { 0 }; /* memory */
uint32 A, B, X; /* registers */
uint32 P; /* program counter */
uint32 OV; /* overflow */
uint32 xfr_req = 0; /* xfr req */
uint32 ion = 0; /* int enable */
uint32 ion_defer = 0; /* int defer */
uint32 int_req = 0; /* int requests */
uint32 int_reqhi = 0; /* highest int request */
uint32 api_lvl = 0; /* api active */
uint32 api_lvlhi = 0; /* highest api active */
t_bool chan_req; /* chan request */
uint32 cpu_mode = NML_MODE; /* normal mode */
uint32 mon_usr_trap = 0; /* mon-user trap */
uint32 EM2 = 2, EM3 = 3; /* extension registers */
uint32 RL1, RL2, RL4; /* relocation maps */
uint32 bpt; /* breakpoint switches */
uint32 alert; /* alert dispatch */
uint32 em2_dyn, em3_dyn; /* extensions, dynamic */
uint32 usr_map[8]; /* user map, dynamic */
uint32 mon_map[8]; /* mon map, dynamic */
int32 ind_lim = 32; /* indirect limit */
int32 exu_lim = 32; /* EXU limit */
int32 cpu_genie = 0; /* Genie flag */
int32 cpu_astop = 0; /* address stop */
int32 stop_invins = 1; /* stop inv inst */
int32 stop_invdev = 1; /* stop inv dev */
int32 stop_inviop = 1; /* stop inv io op */
uint16 pcq[PCQ_SIZE] = { 0 }; /* PC queue */
int32 pcq_p = 0; /* PC queue ptr */
REG *pcq_r = NULL; /* PC queue reg ptr */
int32 hst_p = 0; /* history pointer */
int32 hst_lnt = 0; /* history length */
uint32 hst_exclude = BAD_MODE; /* cpu_mode excluded from history */
InstHistory *hst = NULL; /* instruction history */
int32 rtc_pie = 0; /* rtc pulse ie */
int32 rtc_tps = 60; /* rtc ticks/sec */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_bool cpu_is_pc_a_subroutine_call (t_addr **ret_addrs);
t_stat cpu_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
t_stat cpu_set_type (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
t_stat cpu_set_hist (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
t_stat cpu_show_hist (FILE *st, UNIT *uptr, int32 val, CONST void *desc);
t_stat Ea (uint32 wd, uint32 *va);
t_stat EaSh (uint32 wd, uint32 *va);
t_stat Read (uint32 va, uint32 *dat);
t_stat Write (uint32 va, uint32 dat);
void set_dyn_map (void);
uint32 api_findreq (void);
void api_dismiss (void);
uint32 Add24 (uint32 s1, uint32 s2, uint32 cin);
uint32 AddM24 (uint32 s1, uint32 s2);
void Mul48 (uint32 mplc, uint32 mplr);
void Div48 (uint32 dvdh, uint32 dvdl, uint32 dvr);
void RotR48 (uint32 sc);
void ShfR48 (uint32 sc, uint32 sgn);
t_stat one_inst (uint32 inst, uint32 pc, uint32 mode, uint32 *trappc);
void inst_hist (uint32 inst, uint32 pc, uint32 typ);
t_stat rtc_inst (uint32 inst);
t_stat rtc_svc (UNIT *uptr);
t_stat rtc_reset (DEVICE *dptr);
t_stat rtc_set_freq (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
t_stat rtc_show_freq (FILE *st, UNIT *uptr, int32 val, CONST void *desc);
extern t_bool io_init (void);
extern t_stat op_wyim (uint32 inst, uint32 *dat);
extern t_stat op_miwy (uint32 inst, uint32 dat);
extern t_stat op_pin (uint32 *dat);
extern t_stat op_pot (uint32 dat);
extern t_stat op_eomd (uint32 inst);
extern t_stat op_sks (uint32 inst, uint32 *skp);
/* CPU data structures
cpu_dev CPU device descriptor
cpu_unit CPU unit descriptor
cpu_reg CPU register list
cpu_mod CPU modifiers list
*/
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK, MAXMEMSIZE) };
REG cpu_reg[] = {
{ ORDATA (P, P, 14) },
{ ORDATA (A, A, 24) },
{ ORDATA (B, B, 24) },
{ ORDATA (X, X, 24) },
{ FLDATA (OV, OV, 0) },
{ ORDATA (EM2, EM2, 3) },
{ ORDATA (EM3, EM3, 3) },
{ ORDATA (RL1, RL1, 24) },
{ ORDATA (RL2, RL2, 24) },
{ ORDATA (RL4, RL4, 12) },
{ ORDATA (MODE, cpu_mode, 2) },
{ FLDATA (MONUSR, mon_usr_trap, 0) },
{ FLDATA (ION, ion, 0) },
{ FLDATA (INTDEF, ion_defer, 0) },
{ ORDATA (INTREQ, int_req, 32) },
{ ORDATA (APILVL, api_lvl, 32) },
{ DRDATA (INTRHI, int_reqhi, 5) },
{ DRDATA (APILHI, api_lvlhi, 5), REG_RO },
{ ORDATA (XFRREQ, xfr_req, 32) },
{ FLDATA (BPT1, bpt, 3) },
{ FLDATA (BPT2, bpt, 2) },
{ FLDATA (BPT3, bpt, 1) },
{ FLDATA (BPT4, bpt, 0) },
{ ORDATA (ALERT, alert, 6) },
{ FLDATA (STOP_INVINS, stop_invins, 0) },
{ FLDATA (STOP_INVDEV, stop_invdev, 0) },
{ FLDATA (STOP_INVIOP, stop_inviop, 0) },
{ DRDATA (INDLIM, ind_lim, 8), REG_NZ+PV_LEFT },
{ DRDATA (EXULIM, exu_lim, 8), REG_NZ+PV_LEFT },
{ BRDATA (PCQ, pcq, 8, 14, PCQ_SIZE), REG_RO+REG_CIRC },
{ ORDATA (PCQP, pcq_p, 6), REG_HRO },
{ ORDATA (WRU, sim_int_char, 8) },
{ NULL }
};
MTAB cpu_mod[] = {
{ UNIT_GENIE, 0, "standard peripherals", "SDS", &cpu_set_type },
{ UNIT_GENIE, UNIT_GENIE, "Genie peripherals", "GENIE", &cpu_set_type },
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size },
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size },
{ UNIT_MSIZE, 49152, NULL, "48K", &cpu_set_size },
{ UNIT_MSIZE, 65536, NULL, "64K", &cpu_set_size },
{ MTAB_XTD|MTAB_VDV|MTAB_NMO|MTAB_SHP, 0, "HISTORY", "HISTORY",
&cpu_set_hist, &cpu_show_hist },
{ 0 }
};
DEVICE cpu_dev = {
"CPU", &cpu_unit, cpu_reg, cpu_mod,
1, 8, 16, 1, 8, 24,
&cpu_ex, &cpu_dep, &cpu_reset,
NULL, NULL, NULL,
NULL, 0
};
/* Clock data structures
rtc_dev RTC device descriptor
rtc_unit RTC unit
rtc_reg RTC register list
*/
UNIT rtc_unit = { UDATA (&rtc_svc, 0, 0), 16000 };
REG rtc_reg[] = {
{ FLDATA (PIE, rtc_pie, 0) },
{ DRDATA (TIME, rtc_unit.wait, 24), REG_NZ + PV_LEFT },
{ DRDATA (TPS, rtc_tps, 8), PV_LEFT + REG_HRO },
{ NULL }
};
MTAB rtc_mod[] = {
{ MTAB_XTD|MTAB_VDV, 50, NULL, "50HZ",
&rtc_set_freq, NULL, NULL },
{ MTAB_XTD|MTAB_VDV, 60, NULL, "60HZ",
&rtc_set_freq, NULL, NULL },
{ MTAB_XTD|MTAB_VDV, 0, "FREQUENCY", NULL,
NULL, &rtc_show_freq, NULL },
{ 0 }
};
DEVICE rtc_dev = {
"RTC", &rtc_unit, rtc_reg, rtc_mod,
1, 8, 8, 1, 8, 8,
NULL, NULL, &rtc_reset,
NULL, NULL, NULL
};
/* Interrupt tables */
static const uint32 api_mask[32] = {
0xFFFFFFFE, 0xFFFFFFFC, 0xFFFFFFF8, 0xFFFFFFF0,
0xFFFFFFE0, 0xFFFFFFC0, 0xFFFFFF80, 0xFFFFFF00,
0xFFFFFE00, 0xFFFFFC00, 0xFFFFF800, 0xFFFFF000,
0xFFFFE000, 0xFFFFC000, 0xFFFF8000, 0xFFFF0000,
0xFFFE0000, 0xFFFC0000, 0xFFF80000, 0xFFF00000,
0xFFE00000, 0xFFC00000, 0xFF800000, 0xFF000000,
0xFE000000, 0xFC000000, 0xF8000000, 0xF0000000,
0xE0000000, 0xC0000000, 0x80000000, 0x00000000
};
static const uint32 int_vec[32] = {
0, 0, 0, 0,
VEC_FORK, VEC_DRM, VEC_MUXCF,VEC_MUXCO,
VEC_MUXT, VEC_MUXR, VEC_HEOR, VEC_HZWC,
VEC_GEOR, VEC_GZWC, VEC_FEOR, VEC_FZWC,
VEC_EEOR, VEC_EZWC, VEC_DEOR, VEC_DZWC,
VEC_CEOR, VEC_CZWC, VEC_WEOR, VEC_YEOR,
VEC_WZWC, VEC_YZWC, VEC_RTCP, VEC_RTCS,
VEC_IPAR, VEC_CPAR, VEC_PWRF, VEC_PWRO
};
t_stat sim_instr (void)
{
uint32 inst, tinst, pa, save_P, save_mode, trap_P, tmp;
t_stat reason, tr;
/* Restore register state */
if (io_init ()) /* init IO; conflict? */
return SCPE_STOP;
reason = 0;
xfr_req = xfr_req & ~1; /* <0> reserved */
int_req = int_req & ~1; /* <0> reserved */
api_lvl = api_lvl & ~1; /* <0> reserved */
set_dyn_map (); /* set up mapping */
int_reqhi = api_findreq (); /* recalc int req */
chan_req = chan_testact (); /* recalc chan act */
/* Main instruction fetch/decode loop */
while (reason == 0) { /* loop until halted */
if (cpu_astop) { /* debug stop? */
cpu_astop = 0;
return SCPE_STOP;
}
if (sim_interval <= 0) { /* event queue? */
if ((reason = sim_process_event ())) /* process */
break;
int_reqhi = api_findreq (); /* recalc int req */
chan_req = chan_testact (); /* recalc chan act */
}
if (chan_req) { /* channel request? */
if ((reason = chan_process ())) /* process */
break;
int_reqhi = api_findreq (); /* recalc int req */
chan_req = chan_testact (); /* recalc chan act */
}
sim_interval = sim_interval - 1; /* count down */
if (ion && !ion_defer && int_reqhi) { /* int request? */
pa = int_vec[int_reqhi]; /* get vector */
if (pa == 0) { /* bad value? */
reason = STOP_ILLVEC;
break;
}
tinst = ReadP (pa); /* get inst */
save_mode = cpu_mode; /* save mode */
cpu_mode = MON_MODE; /* switch to mon */
if (hst_lnt) /* record inst */
inst_hist (tinst, P, HIST_INT);
if (pa != VEC_RTCP) { /* normal intr? */
tr = one_inst (tinst, P, save_mode, &tmp); /* exec intr inst */
if (tr) { /* stop code? */
cpu_mode = save_mode; /* restore mode */
reason = (tr > 0)? tr: STOP_MMINT;
break;
}
api_lvl = api_lvl | (1u << int_reqhi); /* set level active */
api_lvlhi = int_reqhi; /* elevate api */
}
else { /* clock intr */
tr = rtc_inst (tinst); /* exec RTC inst */
cpu_mode = save_mode; /* restore mode */
if (tr) { /* stop code? */
reason = (tr > 0)? tr: STOP_MMINT;
break;
}
int_req = int_req & ~INT_RTCP; /* clr clkp intr */
}
int_reqhi = api_findreq (); /* recalc int req */
}
else { /* normal instr */
if (sim_brk_summ) {
static uint32 bmask[] = {SWMASK ('E') | SWMASK ('N'),
SWMASK ('E') | SWMASK ('M'),
SWMASK ('E') | SWMASK ('U')};
uint32 btyp;
btyp = sim_brk_test (P, bmask[cpu_mode]);
if (btyp) {
if (btyp & SWMASK ('E')) /* unqualified breakpoint? */
reason = STOP_IBKPT; /* stop simulation */
else if (btyp & BRK_TYP_DYN_STEPOVER) /* stepover breakpoint? */
reason = STOP_DBKPT; /* stop simulation */
else switch (btyp) { /* qualified breakpoint */
case SWMASK ('M'): /* monitor mode */
reason = STOP_MBKPT; /* stop simulation */
break;
case SWMASK ('N'): /* normal (SDS 930) mode */
reason = STOP_NBKPT; /* stop simulation */
break;
case SWMASK ('U'): /* user mode */
reason = STOP_UBKPT; /* stop simulation */
break;
}
sim_interval++; /* don't count non-executed instruction */
break;
}
}
reason = Read (save_P = P, &inst); /* get instr */
P = (P + 1) & VA_MASK; /* incr PC */
if (reason == SCPE_OK) { /* fetch ok? */
ion_defer = 0; /* clear ion */
if (hst_lnt)
inst_hist (inst, save_P, HIST_XCT);
reason = one_inst (inst, save_P, cpu_mode, &trap_P); /* exec inst */
if (reason > 0) { /* stop code? */
if (reason != STOP_HALT)
P = save_P;
if (reason == STOP_IONRDY)
reason = 0;
}
} /* end if r == 0 */
if (reason < 0) { /* mm (fet or ex)? */
int8 op;
pa = -reason; /* get vector */
if (reason == MM_MONUSR) /* record P of user-mode */
save_P = P; /* transition point */
tinst = ReadP (pa); /* get inst */
op = I_GETOP (tinst);
if (op != BRM && op != BRU) { /* not BRM or BRU? */
reason = STOP_TRPINS; /* fatal err */
break;
}
save_mode = cpu_mode; /* save mode */
cpu_mode = MON_MODE; /* switch to mon */
mon_usr_trap = 0;
if (hst_lnt)
inst_hist (tinst, save_P, HIST_TRP);
/* Use previously recorded trap address if memory acccess trap.
Will differ from save_P if trapped instruction was a branch.
See page 17 of 940 reference manual for additional info.
*/
tr = one_inst (tinst, (reason == MM_NOACC)?
trap_P: save_P, save_mode, &tmp); /* trap address */
if (tr) { /* stop code? */
cpu_mode = save_mode; /* restore mode */
P = save_P; /* restore PC */
reason = (tr > 0)? tr: STOP_MMTRP;
break;
}
reason = 0; /* defang */
} /* end if reason */
} /* end else int */
} /* end while */
/* Simulation halted */
pcq_r->qptr = pcq_p; /* update pc q ptr */
return reason;
}
/* Simulate one instruction */
t_stat one_inst (uint32 inst, uint32 pc, uint32 mode, uint32 *trappc)
{
uint32 op, shf_op, va, dat;
uint32 old_A, old_B, old_X;
int32 i, exu_cnt, sc;
t_stat r;
*trappc = pc; /* default trap pc to pc */
exu_cnt = 0; /* init EXU count */
EXU_LOOP:
op = I_GETOP (inst); /* get opcode */
if (inst & I_POP) { /* POP? */
dat = (EM3 << 18) | (EM2 << 15) | I_IND | pc; /* data to save */
switch (cpu_mode)
{
case NML_MODE:
dat = (OV << 23) | dat; /* ov in <0> */
WriteP (0, dat);
break;
case USR_MODE:
if (inst & I_USR) { /* SYSPOP? */
dat = I_USR | (OV << 21) | dat; /* ov in <2> */
WriteP (0, dat);
cpu_mode = MON_MODE; /* set mon mode */
}
else { /* normal POP */
dat = (OV << 23) | dat; /* ov in <0> */
if ((r = Write (0, dat)))
return r;
}
break;
case MON_MODE:
dat = (OV << 21) | dat; /* ov in <2> */
WriteP (0, dat); /* store return */
break;
}
PCQ_ENTRY; /* save PC */
P = 0100 | op; /* new PC */
OV = 0; /* clear ovflo */
return SCPE_OK; /* end POP */
}
switch (op) { /* case on opcode */
/* Loads and stores */
case LDA:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &A))) /* get operand */
return r;
break;
case LDB:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &B))) /* get operand */
return r;
break;
case LDX:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &X))) /* get operand */
return r;
break;
case STA:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Write (va, A))) /* write operand */
return r;
break;
case STB:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Write (va, B))) /* write operand */
return r;
break;
case STX:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Write (va, X))) /* write operand */
return r;
break;
case EAX:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if (cpu_mode != MON_MODE) /* normal or user? */
X = (X & ~VA_MASK) | (va & VA_MASK); /* only 14b */
else X = (X & ~XVA_MASK) | (va & XVA_MASK); /* mon, 15b */
break;
case XMA:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
if ((r = Write (va, A))) /* write A */
return r;
A = dat; /* load A */
break;
/* Arithmetic and logical */
case ADD:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
A = Add24 (A, dat, 0); /* add */
break;
case ADC:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
OV = 0; /* clear overflow */
A = Add24 (A, dat, X >> 23); /* add with carry */
break;
case SUB:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
A = Add24 (A, dat ^ DMASK, 1); /* subtract */
break;
case SUC:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
OV = 0; /* clear overflow */
A = Add24 (A, dat ^ DMASK, X >> 23); /* sub with carry */
break;
case ADM:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
dat = AddM24 (dat, A); /* mem + A */
if ((r = Write (va, dat))) /* rewrite */
return r;
break;
case MIN:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
dat = AddM24 (dat, 1); /* mem + 1 */
if ((r = Write (va, dat))) /* rewrite */
return r;
break;
case MUL:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
Mul48 (A, dat); /* multiply */
break;
case DIV:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
Div48 (A, B, dat); /* divide */
break;
case ETR:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
A = A & dat; /* and */
break;
case MRG:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
A = A | dat; /* or */
break;
case EOR:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
A = A ^ dat; /* xor */
break;
/* Skips */
case SKE:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
if (A == dat) /* if A = op, skip */
P = (P + 1) & VA_MASK;
break;
case SKG:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
if (SXT (A) > SXT (dat)) /* if A > op, skip */
P = (P + 1) & VA_MASK;
break;
case SKM:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
if (((A ^ dat) & B) == 0) /* if A = op masked */
P = (P + 1) & VA_MASK;
break;
case SKA:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
if ((A & dat) == 0) /* if !(A & op), skip */
P = (P + 1) & VA_MASK;
break;
case SKB:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
if ((B & dat) == 0) /* if !(B & op), skip */
P = (P + 1) & VA_MASK;
break;
case SKN:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
if (dat & SIGN) /* if op < 0, skip */
P = (P + 1) & VA_MASK;
break;
case SKR:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
dat = AddM24 (dat, DMASK); /* decr operand */
if ((r = Write (va, dat))) /* rewrite */
return r;
if (dat & SIGN) /* if op < 0, skip */
P = (P + 1) & VA_MASK;
break;
case SKD:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
if (SXT_EXP (B) < SXT_EXP (dat)) { /* B < dat? */
X = (dat - B) & DMASK; /* X = dat - B */
P = (P + 1) & VA_MASK; /* skip */
}
else X = (B - dat) & DMASK; /* X = B - dat */
break;
/* Control */
case NOP:
break;
case HLT:
if (cpu_mode == USR_MODE) /* priv inst */
return MM_PRVINS;
return STOP_HALT; /* halt CPU */
case EXU:
exu_cnt = exu_cnt + 1; /* count chained EXU */
if (exu_cnt > exu_lim) /* too many? */
return STOP_EXULIM;
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
inst = dat;
goto EXU_LOOP;
case BRU:
if ((cpu_mode == NML_MODE) && (inst & I_IND))
api_dismiss (); /* normal-mode BRU*, dism */
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
{
if (r == MM_NOACC)
*trappc = va & VA_MASK; /* use target as trap adr */
return r;
}
PCQ_ENTRY;
P = va & VA_MASK; /* branch */
if ((va & VA_USR) && (cpu_mode == MON_MODE)) { /* user ref from mon. mode? */
cpu_mode = USR_MODE; /* transition to user mode */
if (mon_usr_trap)
return MM_MONUSR;
}
break;
case BRX:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
X = (X + 1) & DMASK; /* incr X */
if (X & I_IND) { /* bit 9 set? */
if ((r = Read (va, &dat))) /* test dest access */
{
if (r == MM_NOACC)
*trappc = va & VA_MASK; /* use target as trap adr */
return r;
}
PCQ_ENTRY;
P = va & VA_MASK; /* branch */
if ((va & VA_USR) && (cpu_mode == MON_MODE)) { /* user ref from mon. mode? */
cpu_mode = USR_MODE; /* transition to user mode */
if (mon_usr_trap)
return MM_MONUSR;
}
}
break;
case BRM:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
dat = (EM3 << 18) | (EM2 << 15) | pc; /* form return word */
if (cpu_mode == MON_MODE) /* monitor mode? */
dat = dat | ((mode == USR_MODE) << 23) | (OV << 21);
else dat = dat | (OV << 23); /* normal or user */
if ((r = Write (va, dat))) /* write ret word */
{
if (r == MM_NOACC)
*trappc = va & VA_MASK; /* use target as trap adr */
return r;
}
PCQ_ENTRY;
P = (va + 1) & VA_MASK; /* branch */
if ((va & VA_USR) && (cpu_mode == MON_MODE)) { /* user ref from mon. mode? */
cpu_mode = USR_MODE; /* transition to user mode */
if (mon_usr_trap)
return MM_MONUSR;
}
break;
case BRR:
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
{
if (r == MM_NOACC)
*trappc = va & VA_MASK; /* use target as trap adr */
return r;
}
PCQ_ENTRY;
P = (dat + 1) & VA_MASK; /* branch */
if (cpu_mode == MON_MODE) { /* monitor mode? */
OV = OV | ((dat >> 21) & 1); /* restore OV */
if ((va & VA_USR) | (dat & I_USR)) { /* mode change? */
cpu_mode = USR_MODE;
if (mon_usr_trap)
return MM_MONUSR;
}
}
else OV = OV | ((dat >> 23) & 1); /* restore OV */
break;
case BRI:
if (cpu_mode == USR_MODE) /* priv inst */
return MM_PRVINS;
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
{
if (r == MM_NOACC)
*trappc = va & VA_MASK; /* use target as trap adr */
return r;
}
api_dismiss (); /* dismiss hi api */
PCQ_ENTRY;
P = dat & VA_MASK; /* branch */
if (cpu_mode == MON_MODE) { /* monitor mode? */
OV = (dat >> 21) & 1; /* restore OV */
if ((va & VA_USR) | (dat & I_USR)) { /* mode change? */
cpu_mode = USR_MODE;
if (mon_usr_trap)
return MM_MONUSR;
}
}
else OV = (dat >> 23) & 1; /* restore OV */
break;
/* Register change (microprogrammed) */
case RCH:
old_A = A; /* save orig reg */
old_B = B;
old_X = X;
if (inst & 000001211) { /* A change? */
if (inst & 01000)
dat = (~old_A + 1) & DMASK; /* CNA */
else dat = 0;
if (inst & 00200)
dat = dat | old_X;
if (inst & 00010)
dat = dat | old_B;
if (inst & 00100)
A = (A & ~EXPMASK) | (dat & EXPMASK);
else A = dat;
}
if (inst & 000000046) { /* B change? */
if (inst & 00040)
dat = old_X;
else dat = 0;
if (inst & 00004)
dat = dat | old_A;
if (inst & 00100)
B = (B & ~EXPMASK) | (dat & EXPMASK);
else B = dat;
}
if (inst & 020000420) { /* X change? */
if (inst & 00400)
dat = old_A;
else dat = 0;
if (inst & 00020)
dat = dat | old_B;
if (inst & 00100)
X = SXT_EXP (dat) & DMASK;
else X = dat;
}
break;
/* Overflow instruction */
case OVF:
if ((inst & 0100) && !OV)
P = (P + 1) & VA_MASK;
if (inst & 0001)
OV = 0;
if ((inst & 0010) && (((X >> 1) ^ X) & EXPS))
OV = 1;
break;
/* Shifts */
case RSH:
if ((r = EaSh (inst, &va))) /* decode eff addr */
return r;
shf_op = I_GETSHFOP (va); /* get eff op */
sc = va & I_SHFMSK; /* get eff count */
switch (shf_op) { /* case on sub-op */
case 00: /* right arithmetic */
if (sc)
ShfR48 (sc, (A & SIGN)? DMASK: 0);
break;
case 04: /* right cycle */
sc = sc % 48; /* mod 48 */
if (sc)
RotR48 (sc);
break;
case 05: /* right logical */
if (sc)
ShfR48 (sc, 0);
break;
default:
CRETINS; /* invalid inst */
break;
} /* end case shf op */
break;
case LSH:
if ((r = EaSh (inst, &va))) /* decode eff addr */
return r;
shf_op = I_GETSHFOP (va); /* get eff op */
sc = va & I_SHFMSK; /* get eff count */
switch (shf_op) { /* case on sub-op */
case 00: /* left arithmetic */
dat = A; /* save sign */
if (sc > 48)
sc = 48;
for (i = 0; i < sc; i++) { /* loop */
A = ((A << 1) | (B >> 23)) & DMASK;
B = (B << 1) & DMASK;
if ((A ^ dat) & SIGN)
OV = 1;
}
break;
case 02: /* normalize */
if (sc > 48)
sc = 48;
for (i = 0; i < sc; i++) { /* until max count */
if ((A ^ (A << 1)) & SIGN)
break;
A = ((A << 1) | (B >> 23)) & DMASK;
B = (B << 1) & DMASK;
}
X = (X - i) & DMASK;
break;
case 04: /* left cycle */
sc = sc % 48; /* mod 48 */
if (sc) /* rotate */
RotR48 (48 - sc);
break;
case 06: /* cycle normalize */
if (sc > 48)
sc = 48;
for (i = 0; i < sc; i++) { /* until max count */
if ((A ^ (A << 1)) & SIGN)
break;
old_A = A; /* cyclic shift */
A = ((A << 1) | (B >> 23)) & DMASK;
B = ((B << 1) | (old_A >> 23)) & DMASK;
}
X = (X - i) & DMASK;
break;
default:
CRETINS; /* invalid inst */
break;
} /* end case shf op */
break;
/* I/O instructions */
case MIW: case MIY:
if (cpu_mode == USR_MODE) /* priv inst */
return MM_PRVINS;
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
if ((r = op_miwy (inst, dat))) /* process inst */
return r;
int_reqhi = api_findreq (); /* recalc int req */
chan_req = chan_testact (); /* recalc chan act */
break;
case WIM: case YIM:
if (cpu_mode == USR_MODE) /* priv inst */
return MM_PRVINS;
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = op_wyim (inst, &dat))) /* process inst */
return r;
if ((r = Write (va, dat)))
return r; /* write result */
int_reqhi = api_findreq (); /* recalc int req */
chan_req = chan_testact (); /* recalc chan act */
break;
case EOM: case EOD:
if (cpu_mode == USR_MODE) /* priv inst */
return MM_PRVINS;
if ((r = op_eomd (inst))) /* process inst */
return r;
int_reqhi = api_findreq (); /* recalc int req */
chan_req = chan_testact (); /* recalc chan act */
ion_defer = 1;
break;
case POT:
if (cpu_mode == USR_MODE) /* priv inst */
return MM_PRVINS;
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
if ((r = op_pot (dat))) /* process inst */
return r;
int_reqhi = api_findreq (); /* recalc int req */
chan_req = chan_testact (); /* recalc chan act */
break;
case PIN:
if (cpu_mode == USR_MODE) /* priv inst */
return MM_PRVINS;
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = op_pin (&dat))) /* process inst */
return r;
if ((r = Write (va, dat))) /* write result */
return r;
int_reqhi = api_findreq (); /* recalc int req */
chan_req = chan_testact (); /* recalc chan act */
break;
case SKS:
if (cpu_mode == USR_MODE) /* priv inst */
return MM_PRVINS;
if ((r = op_sks (inst, &dat))) /* process inst */
return r;
if (dat)
P = (P + 1) & VA_MASK;
break;
default:
if (cpu_mode == USR_MODE) /* priv inst */
return MM_PRVINS;
CRETINS; /* invalid inst */
break;
}
return SCPE_OK;
}
/* Effective address calculation */
t_stat Ea (uint32 inst, uint32 *addr)
{
int32 i;
uint32 wd = inst; /* homeable */
uint32 va = wd & XVA_MASK; /* initial va */
t_stat r;
for (i = 0; i < ind_lim; i++) { /* count indirects */
if (wd & I_IDX)
va = (va & VA_USR) | ((va + X) & VA_MASK);
*addr = va;
if ((wd & I_IND) == 0) { /* end of ind chain? */
if (hst_lnt) /* record */
hst[hst_p].ea = *addr;
return SCPE_OK;
}
if ((r = Read (va, &wd))) /* read ind; fails? */
return r;
va = (va & VA_USR) | (wd & XVA_MASK);
}
return STOP_INDLIM; /* too many indirects */
}
/* Effective address calculation for shifts - direct indexing is 9b */
t_stat EaSh (uint32 inst, uint32 *addr)
{
int32 i;
uint32 wd = inst; /* homeable */
uint32 va = wd & XVA_MASK; /* initial va */
t_stat r;
for (i = 0; i < ind_lim; i++) { /* count indirects */
if ((wd & I_IND) == 0) { /* end of ind chain? */
if (wd & I_IDX) /* 9b indexing */
*addr = (va & (VA_MASK & ~I_SHFMSK)) | ((va + X) & I_SHFMSK);
else *addr = va & VA_MASK;
if (hst_lnt) /* record */
hst[hst_p].ea = *addr;
return SCPE_OK;
}
if (wd & I_IDX)
va = (va & VA_USR) | ((va + X) & VA_MASK);
if ((r = Read (va, &wd))) /* read ind; fails? */
return r;
va = (va & VA_USR) | (wd & XVA_MASK);
}
return STOP_INDLIM; /* too many indirects */
}
/* Read word from virtual address */
t_stat Read (uint32 va, uint32 *dat)
{
uint32 pgn, map, pa;
if (cpu_mode == NML_MODE) { /* normal? */
va = va & VA_MASK; /* ignore user */
if (va < 020000) /* first 8K: 1 for 1 */
pa = va;
else if (va < 030000) /* next 4K: ext EM2 */
pa = va + em2_dyn;
else pa = va + em3_dyn; /* next 4K: ext EM3 */
}
else if ((cpu_mode == USR_MODE) || (va & VA_USR)) { /* user mapping? */
pgn = VA_GETPN (va); /* get page no */
map = usr_map[pgn]; /* get map entry */
if (map == MAP_PROT) /* prot? no access */
return MM_NOACC;
pa = (map & ~MAP_PROT) | (va & VA_POFF); /* map address */
}
else {
pgn = VA_GETPN (va); /* mon, get page no */
map = mon_map[pgn]; /* get map entry */
if (map & MAP_PROT)
return MM_NOACC; /* prot? no access */
pa = map | (va & VA_POFF); /* map address */
}
*dat = M[pa]; /* return word */
return SCPE_OK;
}
/* Write word to virtual address */
t_stat Write (uint32 va, uint32 dat)
{
uint32 pgn, map, pa;
if (cpu_mode == NML_MODE) { /* normal? */
va = va & VA_MASK; /* ignore user */
if (va < 020000) /* first 8K: 1 for 1 */
pa = va;
else if (va < 030000) /* next 4K: ext EM2 */
pa = va + em2_dyn;
else pa = va + em3_dyn; /* next 4K: ext EM3 */
}
else if ((cpu_mode == USR_MODE) || (va & VA_USR)) { /* user mapping? */
pgn = VA_GETPN (va); /* get page no */
map = usr_map[pgn]; /* get map entry */
if (map & MAP_PROT) { /* protected page? */
if (map == MAP_PROT) /* zero? no access */
return MM_NOACC;
else return MM_WRITE; /* else, write prot */
}
pa = map | (va & VA_POFF); /* map address */
}
else {
pgn = VA_GETPN (va); /* mon, get page no */
map = mon_map[pgn]; /* get map entry */
if (map & MAP_PROT) /* prot? no access */
return MM_NOACC;
pa = map | (va & VA_POFF); /* map address */
}
if (MEM_ADDR_OK (pa))
M[pa] = dat;
return SCPE_OK;
}
/* Relocate addr for console access */
uint32 RelocC (int32 va, int32 sw)
{
uint32 mode = cpu_mode;
uint32 pa, pgn, map;
if (sw & SWMASK ('N')) /* -n: normal */
mode = NML_MODE;
else if (sw & SWMASK ('X')) /* -x: mon */
mode = MON_MODE;
else if (sw & SWMASK ('U')) { /* -u: user */
mode = USR_MODE;
}
else if (!(sw & SWMASK ('V'))) /* -v: curr */
return va;
set_dyn_map ();
if (mode == NML_MODE) { /* normal? */
if (va < 020000) /* first 8K: 1 for 1 */
pa = va;
else if (va < 030000) /* next 4K: ext EM2 */
pa = va + em2_dyn;
else pa = va + em3_dyn; /* next 4K: ext EM3 */
}
else {
pgn = VA_GETPN (va); /* get page no */
map = (mode == USR_MODE)? usr_map[pgn]: mon_map[pgn]; /* get map entry */
if (map == MAP_PROT) /* no access page? */
return MAXMEMSIZE + 1;
pa = (map & ~MAP_PROT) | (va & VA_POFF); /* map address */
}
return pa;
}
/* Arithmetic routines */
uint32 Add24 (uint32 s1, uint32 s2, uint32 cin)
{
uint32 t = s1 + s2 + cin; /* add with carry in */
if (t > DMASK) /* carry to X<0> */
X = X | SIGN;
else X = X & ~SIGN;
if (((s1 ^ ~s2) & (s1 ^ t)) /* overflow */
& SIGN) OV = 1;
return t & DMASK;
}
uint32 AddM24 (uint32 s1, uint32 s2)
{
uint32 t = s1 + s2; /* add */
if (((s1 ^ ~s2) & (s1 ^ t)) & SIGN) /* overflow */
OV = 1;
return t & DMASK;
}
void Mul48 (uint32 s1, uint32 s2)
{
uint32 a = ABS (s1);
uint32 b = ABS (s2);
uint32 hi, md, lo, t, u;
if ((a == 0) || (b == 0)) { /* ops zero? */
A = B = 0;
return;
}
t = a >> 12; /* split op1 */
a = a & 07777;
u = b >> 12; /* split op2 */
b = b & 07777;
md = (a * u) + (b * t); /* cross product */
lo = (a * b) + ((md & 07777) << 12); /* low result */
hi = (t * u) + (md >> 12) + (lo >> 24); /* hi result */
A = ((hi << 1) & DMASK) | ((lo & DMASK) >> 23);
B = (lo << 1) & DMASK;
if ((s1 ^ s2) & SIGN) {
B = ((B ^ DMASK) + 1) & DMASK;
A = ((A ^ DMASK) + (B == 0)) & DMASK;
}
else if (A & SIGN)
OV = 1;
return;
}
/* Divide - the SDS 940 uses a non-restoring divide. The algorithm
runs even for overflow cases. Hence it must be emulated precisely
to give the right answers for diagnostics. If the dividend is
negative, AB are 2's complemented starting at B<22>, and B<23>
is unchanged. */
void Div48 (uint32 ar, uint32 br, uint32 m)
{
int32 i;
uint32 quo = 0; /* quotient */
uint32 dvdh = ar, dvdl = br; /* dividend */
uint32 dvr = ABS (m); /* make dvr pos */
if (TSTS (dvdh)) { /* dvd < 0? */
dvdl = (((dvdl ^ DMASK) + 2) & (DMASK & ~1)) | /* 23b negate */
(dvdl & 1); /* low bit unch */
dvdh = ((dvdh ^ DMASK) + (dvdl <= 1)) & DMASK;
}
if ((dvdh > dvr) || /* divide fail? */
((dvdh == dvr) && dvdl) ||
((dvdh == dvr) && !TSTS (ar ^ m)))
OV = 1;
dvdh = (dvdh - dvr) & DMASK; /* initial sub */
for (i = 0; i < 23; i++) { /* 23 iterations */
quo = (quo << 1) | ((dvdh >> 23) ^ 1); /* quo bit = ~sign */
dvdh = ((dvdh << 1) | (dvdl >> 23)) & DMASK; /* shift divd */
dvdl = (dvdl << 1) & DMASK;
if (quo & 1) /* test ~sign */
dvdh = (dvdh - dvr) & DMASK; /* sign was +, sub */
else dvdh = (dvdh + dvr) & DMASK; /* sign was -, add */
}
quo = quo << 1; /* shift quo */
if (dvdh & SIGN) /* last op -? restore */
dvdh = (dvdh + dvr) & DMASK;
else quo = quo | 1; /* +, set quo bit */
if (TSTS (ar ^ m)) /* sign of quo */
A = NEG (quo);
else A = quo; /* A = quo */
if (TSTS (ar)) /* sign of rem */
B = NEG (dvdh);
else B = dvdh; /* B = rem */
return;
}
void RotR48 (uint32 sc)
{
uint32 t = A;
if (sc >= 24) {
sc = sc - 24;
A = ((B >> sc) | (A << (24 - sc))) & DMASK;
B = ((t >> sc) | (B << (24 - sc))) & DMASK;
}
else {
A = ((A >> sc) | (B << (24 - sc))) & DMASK;
B = ((B >> sc) | (t << (24 - sc))) & DMASK;
}
return;
}
void ShfR48 (uint32 sc, uint32 sgn)
{
if (sc >= 48)
A = B = sgn;
if (sc >= 24) {
sc = sc - 24;
B = ((A >> sc) | (sgn << (24 - sc))) & DMASK;
A = sgn;
}
else {
B = ((B >> sc) | (A << (24 - sc))) & DMASK;
A = ((A >> sc) | (sgn << (24 - sc))) & DMASK;
}
return;
}
/* POT routines for RL1, RL2, RL4 */
t_stat pot_RL1 (uint32 num, uint32 *dat)
{
RL1 = *dat;
set_dyn_map ();
return SCPE_OK;
}
t_stat pot_RL2 (uint32 num, uint32 *dat)
{
RL2 = *dat;
set_dyn_map ();
return SCPE_OK;
}
t_stat pot_RL4 (uint32 num, uint32 *dat)
{
RL4 = (*dat) & 03737;
set_dyn_map ();
return SCPE_OK;
}
/* Map EM2, EM3, RL1, RL2, RL4 to dynamic forms
EM2, EM3 - left shifted 12, base virtual address subtracted
RL1, RL2 - page left shifted 11
RL3 - filled in as 1 to 1 map
RL4 - EM2 or page left shifted 11, PROT bit inserted
*/
void set_dyn_map (void)
{
em2_dyn = ((EM2 & 07) << 12) - 020000;
em3_dyn = ((EM3 & 07) << 12) - 030000;
usr_map[0] = (RL1 >> 7) & (MAP_PROT | MAP_PAGE);
usr_map[1] = (RL1 >> 1) & (MAP_PROT | MAP_PAGE);
usr_map[2] = (RL1 << 5) & (MAP_PROT | MAP_PAGE);
usr_map[3] = (RL1 << 11) & (MAP_PROT | MAP_PAGE);
usr_map[4] = (RL2 >> 7) & (MAP_PROT | MAP_PAGE);
usr_map[5] = (RL2 >> 1) & (MAP_PROT | MAP_PAGE);
usr_map[6] = (RL2 << 5) & (MAP_PROT | MAP_PAGE);
usr_map[7] = (RL2 << 11) & (MAP_PROT | MAP_PAGE);
mon_map[0] = (0 << VA_V_PN);
mon_map[1] = (1 << VA_V_PN);
mon_map[2] = (2 << VA_V_PN);
mon_map[3] = (3 << VA_V_PN);
mon_map[4] = ((EM2 & 07) << 12);
mon_map[5] = ((EM2 & 07) << 12) + (1 << VA_V_PN);
mon_map[6] = (RL4 << 5) & MAP_PAGE;
mon_map[7] = (RL4 << 11) & MAP_PAGE;
if (mon_map[6] == 0)
mon_map[6] = MAP_PROT;
if (mon_map[7] == 0)
mon_map[7] = MAP_PROT;
return;
}
/* Recalculate api requests */
uint32 api_findreq (void)
{
uint32 i, t;
t = (int_req & ~1) & api_mask[api_lvlhi]; /* unmasked int */
for (i = 31; t && (i > 0); i--) { /* find highest */
if ((t >> i) & 1)
return i;
}
return 0; /* none */
}
/* Dismiss highest priority interrupt */
void api_dismiss (void)
{
uint32 i, t;
t = 1u << api_lvlhi; /* highest active */
int_req = int_req & ~t; /* clear int req */
api_lvl = api_lvl & ~t; /* clear api level */
api_lvlhi = 0; /* assume all clear */
for (i = 31; api_lvl && (i > 0); i--) { /* find highest api */
if ((api_lvl >> i) & 1) { /* bit set? */
api_lvlhi = i; /* record level */
break; /* done */
}
}
int_reqhi = api_findreq (); /* recalc intreq */
return;
}
/* Reset routine */
t_stat cpu_reset (DEVICE *dptr)
{
OV = 0;
EM2 = 2;
EM3 = 3;
RL1 = RL2 = RL4 = 0;
ion = ion_defer = 0;
cpu_mode = NML_MODE;
mon_usr_trap = 0;
int_req = 0;
int_reqhi = 0;
api_lvl = 0;
api_lvlhi = 0;
alert = 0;
pcq_r = find_reg ("PCQ", NULL, dptr);
if (pcq_r)
pcq_r->qptr = 0;
else return SCPE_IERR;
sim_brk_dflt = SWMASK ('E');
sim_brk_types = SWMASK ('E') | SWMASK ('M') | SWMASK ('N') | SWMASK ('U');
sim_vm_is_subroutine_call = cpu_is_pc_a_subroutine_call;
return SCPE_OK;
}
/* For Next command, determine if should use breakpoints
to step over a subroutine branch or POP or SYSPOP. Return
TRUE if so with a list of addresses where dynamic (temporary)
breakpoints should be set.
*/
typedef enum Next_Case { /* Next Next Atomic Next Forward */
Next_BadOp = 0, /* FALSE FALSE FALSE */
Next_Branch, /* FALSE EA FALSE */
Next_BRM, /* P+1,P+2,P+3 EA+1,P+1,P+2,P+3 P+1,P+2,P+3 */
Next_BRX, /* FALSE EA,P+1 P+1 */
Next_Simple, /* FALSE P+1 P+1 */
Next_POP, /* P+1,P+2 100+OP,P+1,P+2 P+1,P+2 */
Next_Skip, /* P+1,P+2 P+1,P+2 P+1,P+2 */
Next_EXU /* ?? ?? ?? */
} Next_Case;
Next_Case Op_Cases[64] = {
Next_BadOp, Next_Branch, Next_Simple, Next_BadOp, /* HLT BRU EOM ... */
Next_BadOp, Next_BadOp, Next_Simple, Next_BadOp, /* ... ... EOD ... */
Next_Simple, Next_Branch, Next_Simple, Next_Simple, /* MIY BRI MIW POT */
Next_Simple, Next_BadOp, Next_Simple, Next_Simple, /* ETR ... MRG EOR */
Next_Simple, Next_BadOp, Next_Simple, Next_EXU, /* NOP ... ROV EXU */
Next_BadOp, Next_BadOp, Next_BadOp, Next_BadOp, /* ... ... ... ... */
Next_Simple, Next_BadOp, Next_Simple, Next_Simple, /* YIM ... WIM PIN */
Next_BadOp, Next_Simple, Next_Simple, Next_Simple, /* ... STA STB STX */
Next_Skip, Next_BRX, Next_BadOp, Next_BRM, /* SKS BRX ... BRM */
Next_BadOp, Next_BadOp, Next_Simple, Next_BadOp, /* ... ... RCH ... */
Next_Skip, Next_Branch, Next_Skip, Next_Skip, /* SKE BRR SKB SKN */
Next_Simple, Next_Simple, Next_Simple, Next_Simple, /* SUB ADD SUC ADC */
Next_Skip, Next_Simple, Next_Simple, Next_Simple, /* SKR MIN XMA ADM */
Next_Simple, Next_Simple, Next_Simple, Next_Simple, /* MUL DIV RSH LSH */
Next_Skip, Next_Simple, Next_Skip, Next_Skip, /* SKM LDX SKA SKG */
Next_Skip, Next_Simple, Next_Simple, Next_Simple }; /* SKD LDB LDA EAX */
t_bool cpu_is_pc_a_subroutine_call (t_addr **ret_addrs)
{
static t_addr returns[10];
uint32 inst;
Next_Case op_case;
int32 atomic, forward;
t_addr *return_p;
uint32 va;
int32 exu_cnt = 0;
*ret_addrs = return_p = returns;
atomic = sim_switches & SWMASK('A');
forward = sim_switches & SWMASK('F');
if (Read (P, &inst) != SCPE_OK) /* get instruction */
return FALSE;
Exu_Loop:
if (I_POP & inst) { /* determine inst case */
if ((inst & ((I_M_OP << I_V_OP) | I_USR)) == 047000000)
op_case = Next_BRM; /* Treat SBRM like BRM */
else
op_case = Next_POP;
}
else
op_case = Op_Cases[I_GETOP(inst)];
switch (op_case) {
case Next_BadOp:
break;
case Next_BRM:
*return_p++ = (P + 1) & VA_MASK;
*return_p++ = (P + 2) & VA_MASK;
*return_p++ = (P + 3) & VA_MASK;
if (atomic) {
if (Ea (inst, &va) != SCPE_OK)
return FALSE;
*return_p++ = (va + 1) & VA_MASK;
}
break;
case Next_Branch:
if (atomic) {
if (Ea (inst, &va) != SCPE_OK)
return FALSE;
*return_p++ = va & VA_MASK;
}
break;
case Next_BRX:
if (atomic) {
if (Ea (inst, &va) != SCPE_OK)
return FALSE;
*return_p++ = va & VA_MASK;
}
/* -- fall through to Next_Simple case -- */
case Next_Simple:
if (atomic || forward)
*return_p++ = (P + 1) & VA_MASK;
break;
case Next_POP:
if (atomic)
*return_p++ = 0100 + I_GETOP(inst);
/* -- fall through to Next_Skip case -- */
case Next_Skip:
*return_p++ = (P + 1) & VA_MASK;
*return_p++ = (P + 2) & VA_MASK;
break;
case Next_EXU: /* execute inst at EA */
if (++exu_cnt > exu_lim) /* too many? */
return FALSE;
if (Ea (inst, &va) != SCPE_OK) /* decode eff addr */
return FALSE;
if (Read (va, &inst) != SCPE_OK) /* get operand */
return FALSE;
goto Exu_Loop;
}
if (return_p == returns) /* if no cases added, */
return FALSE; /* return FALSE */
else
*return_p = (t_addr)0; /* else append terminator */
return TRUE; /* and return TRUE */
}
/* Memory examine */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
uint32 pa;
pa = RelocC (addr, sw);
if (pa > MAXMEMSIZE)
return SCPE_REL;
if (pa >= MEMSIZE)
return SCPE_NXM;
if (vptr != NULL)
*vptr = M[pa] & DMASK;
return SCPE_OK;
}
/* Memory deposit */
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
uint32 pa;
pa = RelocC (addr, sw);
if (pa > MAXMEMSIZE)
return SCPE_REL;
if (pa >= MEMSIZE)
return SCPE_NXM;
M[pa] = val & DMASK;
return SCPE_OK;
}
/* Set memory size */
t_stat cpu_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
int32 mc = 0;
uint32 i;
if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 037777) != 0))
return SCPE_ARG;
for (i = val; i < MEMSIZE; i++)
mc = mc | M[i];
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
return SCPE_OK;
MEMSIZE = val;
for (i = MEMSIZE; i < MAXMEMSIZE; i++)
M[i] = 0;
return SCPE_OK;
}
/* Set system type (1 = Genie, 0 = standard) */
t_stat cpu_set_type (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
extern t_stat drm_reset (DEVICE *dptr);
extern DEVICE drm_dev, mux_dev, muxl_dev;
extern UNIT drm_unit, mux_unit;
extern DIB mux_dib;
if ((cpu_unit.flags & UNIT_GENIE) == (uint32) val)
return SCPE_OK;
if ((drm_unit.flags & UNIT_ATT) || /* attached? */
(mux_unit.flags & UNIT_ATT)) /* can't do it */
return SCPE_NOFNC;
if (val) { /* Genie? */
drm_dev.flags = drm_dev.flags & ~DEV_DIS; /* enb drum */
mux_dev.flags = mux_dev.flags & ~DEV_DIS; /* enb mux */
muxl_dev.flags = muxl_dev.flags & ~DEV_DIS;
mux_dib.dev = DEV3_GMUX; /* Genie mux */
}
else {
drm_dev.flags = drm_dev.flags | DEV_DIS; /* dsb drum */
mux_dib.dev = DEV3_SMUX; /* std mux */
return drm_reset (&drm_dev);
}
return SCPE_OK;
}
/* The real time clock runs continuously; therefore, it only has
a unit service routine and a reset routine. The service routine
sets an interrupt that invokes the clock counter. The clock counter
is a "one instruction interrupt", and only MIN/SKR are valid.
*/
t_stat rtc_svc (UNIT *uptr)
{
if (rtc_pie) /* set pulse intr */
int_req = int_req | INT_RTCP;
rtc_unit.wait = sim_rtcn_calb (rtc_tps, TMR_RTC); /* calibrate */
sim_activate (&rtc_unit, rtc_unit.wait); /* reactivate */
return SCPE_OK;
}
/* Clock interrupt instruction */
t_stat rtc_inst (uint32 inst)
{
uint32 op, dat, val, va;
t_stat r;
op = I_GETOP (inst); /* get opcode */
if (op == MIN) /* incr */
val = 1;
else if (op == SKR) /* decr */
val = DMASK;
else return STOP_RTCINS; /* can't do it */
if ((r = Ea (inst, &va))) /* decode eff addr */
return r;
if ((r = Read (va, &dat))) /* get operand */
return r;
dat = AddM24 (dat, val); /* mem +/- 1 */
if ((r = Write (va, dat))) /* rewrite */
return r;
if ((op == MIN && dat == 0) || (dat & SIGN)) /* set clk sync int */
int_req = int_req | INT_RTCS;
return SCPE_OK;
}
/* Clock reset */
t_stat rtc_reset (DEVICE *dptr)
{
rtc_pie = 0; /* disable pulse */
rtc_unit.wait = sim_rtcn_init (rtc_unit.wait, TMR_RTC); /* initialize clock calibration */
sim_activate (&rtc_unit, rtc_unit.wait); /* activate unit */
return SCPE_OK;
}
/* Set frequency */
t_stat rtc_set_freq (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
if (cptr)
return SCPE_ARG;
if ((val != 50) && (val != 60))
return SCPE_IERR;
rtc_tps = val;
return SCPE_OK;
}
/* Show frequency */
t_stat rtc_show_freq (FILE *st, UNIT *uptr, int32 val, CONST void *desc)
{
fprintf (st, (rtc_tps == 50)? "50Hz": "60Hz");
return SCPE_OK;
}
/* Record history */
void inst_hist (uint32 ir, uint32 pc, uint32 tp)
{
if (cpu_mode == hst_exclude)
return;
hst_p = (hst_p + 1); /* next entry */
if (hst_p >= hst_lnt)
hst_p = 0;
hst[hst_p].typ = tp | (OV << 4) | (cpu_mode << 5);
hst[hst_p].pc = pc;
hst[hst_p].ir = ir;
hst[hst_p].a = A;
hst[hst_p].b = B;
hst[hst_p].x = X;
hst[hst_p].ea = HIST_NOEA;
return;
}
/* Set history */
t_stat cpu_set_hist (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
int32 i, lnt;
t_stat r;
if (cptr == NULL) {
for (i = 0; i < hst_lnt; i++)
hst[i].typ = 0;
hst_p = 0;
return SCPE_OK;
}
lnt = (int32) get_uint (cptr, 10, HIST_MAX, &r);
if ((r != SCPE_OK) || (lnt && (lnt < HIST_MIN)))
return SCPE_ARG;
hst_p = 0;
if (sim_switches & SWMASK('M'))
hst_exclude = MON_MODE;
else if (sim_switches & SWMASK('N'))
hst_exclude = NML_MODE;
else if (sim_switches & SWMASK('U'))
hst_exclude = USR_MODE;
else
hst_exclude = BAD_MODE;
if (hst_lnt) {
free (hst);
hst_lnt = 0;
hst = NULL;
}
if (lnt) {
hst = (InstHistory *) calloc (lnt, sizeof (InstHistory));
if (hst == NULL)
return SCPE_MEM;
hst_lnt = lnt;
}
return SCPE_OK;
}
/* Show history */
t_stat cpu_show_hist (FILE *st, UNIT *uptr, int32 val, CONST void *desc)
{
int32 ov, k, di, lnt;
const char *cptr = (const char *) desc;
t_stat r;
t_value sim_eval;
InstHistory *h;
static const char *cyc[] = { " ", " ", "INT", "TRP" };
static const char *modes = "NMU?";
if (hst_lnt == 0) /* enabled? */
return SCPE_NOFNC;
if (cptr) {
lnt = (int32) get_uint (cptr, 10, hst_lnt, &r);
if ((r != SCPE_OK) || (lnt == 0))
return SCPE_ARG;
}
else lnt = hst_lnt;
di = hst_p - lnt; /* work forward */
if (di < 0)
di = di + hst_lnt;
fprintf (st, "CYC PC MD OV A B X EA IR\n\n");
for (k = 0; k < lnt; k++) { /* print specified */
h = &hst[(++di) % hst_lnt]; /* entry pointer */
if (h->typ) { /* instruction? */
ov = (h->typ >> 4) & 1; /* overflow */
fprintf (st, "%s %05o %c %o %08o %08o %08o ", cyc[h->typ & 3],
h->pc, modes[(h->typ >> 5) & 3], ov, h->a, h->b, h->x);
if (h->ea & HIST_NOEA)
fprintf (st, " ");
else fprintf (st, "%05o ", h->ea);
sim_eval = h->ir;
if ((fprint_sym (st, h->pc, &sim_eval, &cpu_unit, SWMASK ('M'))) > 0)
fprintf (st, "(undefined) %08o", h->ir);
fputc ('\n', st); /* end line */
} /* end else instruction */
} /* end for */
return SCPE_OK;
}