/* hp2100_cpu1.c: HP 2100/1000 EAU simulator and UIG dispatcher | |
Copyright (c) 2005-2014, Robert M. Supnik | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name of Robert M Supnik shall not be | |
used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from Robert M Supnik. | |
CPU1 Extended arithmetic and optional microcode dispatchers | |
05-Apr-14 JDB Corrected typo in comments for cpu_ops | |
09-May-12 JDB Separated assignments from conditional expressions | |
11-Sep-08 JDB Moved microcode function prototypes to hp2100_cpu1.h | |
05-Sep-08 JDB Moved option-present tests to UIG dispatchers | |
Call "user microcode" dispatcher for unclaimed UIG instructions | |
20-Apr-08 JDB Fixed VIS and SIGNAL to depend on the FPP and HAVE_INT64 | |
28-Nov-07 JDB Added fprint_ops, fprint_regs for debug printouts | |
17-Nov-07 JDB Enabled DIAG as NOP on 1000 F-Series | |
04-Jan-07 JDB Added special DBI dispatcher for non-INT64 diagnostic | |
29-Dec-06 JDB Allows RRR as NOP if 2114 (diag config test) | |
01-Dec-06 JDB Substitutes FPP for firmware FP if HAVE_INT64 | |
16-Oct-06 JDB Generalized operands for F-Series FP types | |
26-Sep-06 JDB Split hp2100_cpu1.c into multiple modules to simplify extensions | |
Added iotrap parameter to UIG dispatchers for RTE microcode | |
22-Feb-05 JDB Removed EXECUTE instruction (is NOP in actual microcode) | |
21-Jan-05 JDB Reorganized CPU option and operand processing flags | |
Split code along microcode modules | |
15-Jan-05 RMS Cloned from hp2100_cpu.c | |
Primary references: | |
- HP 1000 M/E/F-Series Computers Technical Reference Handbook | |
(5955-0282, Mar-1980) | |
- HP 1000 M/E/F-Series Computers Engineering and Reference Documentation | |
(92851-90001, Mar-1981) | |
- Macro/1000 Reference Manual (92059-90001, Dec-1992) | |
- HP 93585A Double Integer Firmware Package Installation and Programming | |
Manual (93585-90007, Feb-1984) | |
Additional references are listed with the associated firmware | |
implementations, as are the HP option model numbers pertaining to the | |
applicable CPUs. | |
This source file contains the Extended Arithmetic Unit simulator and the User | |
Instruction Group (a.k.a. "Macro") dispatcher for the 2100 and 1000 (21MX) | |
CPUs. The UIG simulators reside in separate source files, due to the large | |
number of firmware options available for these machines. Unit flags indicate | |
which options are present in the current system. | |
This module also provides generalized instruction operand processing. | |
The 2100 and 1000 machines were microprogrammable; the 2116/15/14 machines | |
were not. Both user- and HP-written microprograms were supported. The | |
microcode address space of the 2100 encompassed four modules of 256 words | |
each. The 1000 M-series expanded that to sixteen modules, and the 1000 | |
E/F-series expanded that still further to sixty-four modules. Each CPU had | |
its own microinstruction set, although the micromachines of the various 1000 | |
models were similar internally. | |
The UIG instructions were divided into ranges assigned to HP firmware | |
options, reserved for future HP use, and reserved for user microprograms. | |
User microprograms could occupy any range not already used on a given | |
machine, but in practice, some effort was made to avoid the HP-reserved | |
ranges. | |
User microprogram simulation is supported by routing any UIG instruction not | |
allocated to an installed firmware option to a user-firmware dispatcher. | |
Site-specific microprograms may be simulated there. In the absence of such a | |
simulation, an unimplemented instruction stop will occur. | |
Regarding option instruction sets, there was some commonality across CPU | |
types. EAU instructions were identical across all models, and the floating | |
point set was the same on the 2100 and 1000. Other options implemented | |
proper instruction supersets (e.g., the Fast FORTRAN Processor from 2100 to | |
1000-M to 1000-E to 1000-F) or functional equivalence with differing code | |
points (the 2000 I/O Processor from 2100 to 1000, and the extended-precision | |
floating-point instructions from 1000-E to 1000-F). | |
The 2100 decoded the EAU and UIG sets separately in hardware and supported | |
only the UIG 0 code points. Bits 7-4 of a UIG instruction decoded one of | |
sixteen entry points in the lowest-numbered module after module 0. Those | |
entry points could be used directly (as for the floating-point instructions), | |
or additional decoding based on bits 3-0 could be implemented. | |
The 1000 generalized the instruction decoding to a series of microcoded | |
jumps, based on the bits in the instruction. Bits 15-8 indicated the group | |
of the current instruction: EAU (200, 201, 202, 210, and 211), UIG 0 (212), | |
or UIG 1 (203 and 213). UIG 0, UIG 1, and some EAU instructions were decoded | |
further by selecting one of sixteen modules within the group via bits 7-4. | |
Finally, each UIG module decoded up to sixteen instruction entry points via | |
bits 3-0. Jump tables for all firmware options were contained in the base | |
set, so modules needed only to be concerned with decoding their individual | |
entry points within the module. | |
While the 2100 and 1000 hardware decoded these instruction sets differently, | |
the decoding mechanism of the simulation follows that of the 1000 E/F-series. | |
Where needed, CPU type- or model-specific behavior is simulated. | |
The design of the 1000 microinstruction set was such that executing an | |
instruction for which no microcode was present (e.g., executing a FFP | |
instruction when the FFP firmware was not installed) resulted in a NOP. | |
Under simulation, such execution causes an undefined instruction stop if | |
"stop_inst" is non-zero and a NOP otherwise. | |
*/ | |
#include "hp2100_defs.h" | |
#include "hp2100_cpu.h" | |
#include "hp2100_cpu1.h" | |
/* EAU | |
The Extended Arithmetic Unit (EAU) adds ten instructions with double-word | |
operands, including multiply, divide, shifts, and rotates. Option | |
implementation by CPU was as follows: | |
2114 2115 2116 2100 1000-M 1000-E 1000-F | |
------ ------ ------ ------ ------ ------ ------ | |
N/A 12579A 12579A std std std std | |
The instruction codes are mapped to routines as follows: | |
Instr. Bits | |
Code 15-8 7-4 2116 2100 1000-M 1000-E 1000-F Note | |
------ ---- --- ------ ------ ------ ------ ------ --------------------- | |
100000 200 00 [diag] [diag] [self test] | |
100020 200 01 ASL ASL ASL ASL ASL Bits 3-0 encode shift | |
100040 200 02 LSL LSL LSL LSL LSL Bits 3-0 encode shift | |
100060 200 03 TIMER TIMER [deterministic delay] | |
100100 200 04 RRL RRL RRL RRL RRL Bits 3-0 encode shift | |
100200 200 10 MPY MPY MPY MPY MPY | |
100400 201 xx DIV DIV DIV DIV DIV | |
101020 202 01 ASR ASR ASR ASR ASR Bits 3-0 encode shift | |
101040 202 02 LSR LSR LSR LSR LSR Bits 3-0 encode shift | |
101100 202 04 RRR RRR RRR RRR RRR Bits 3-0 encode shift | |
104200 210 xx DLD DLD DLD DLD DLD | |
104400 211 xx DST DST DST DST DST | |
The remaining codes for bits 7-4 are undefined and will cause a simulator | |
stop if enabled. On a real 1000-M, all undefined instructions in the 200 | |
group decode as MPY, and all in the 202 group decode as NOP. On a real | |
1000-E, instruction patterns 200/05 through 200/07 and 202/03 decode as NOP; | |
all others cause erroneous execution. | |
EAU instruction decoding on the 1000 M-series is convoluted. The JEAU | |
microorder maps IR bits 11, 9-7 and 5-4 to bits 2-0 of the microcode jump | |
address. The map is detailed on page IC-84 of the ERD. | |
The 1000 E/F-series add two undocumented instructions to the 200 group: TIMER | |
and DIAG. These are described in the ERD on page IA 5-5, paragraph 5-7. The | |
M-series executes these as MPY and RRL, respectively. A third instruction, | |
EXECUTE (100120), is also described but was never implemented, and the | |
E/F-series microcode execute a NOP for this instruction code. | |
Notes: | |
1. Under simulation, TIMER, DIAG, and EXECUTE cause undefined instruction | |
stops if the CPU is set to 21xx. DIAG and EXECUTE also cause stops on | |
the 1000-M. TIMER does not, because it is used by several HP programs | |
to differentiate between M- and E/F-series machines. | |
2. DIAG is not implemented under simulation. On the E/F, it performs a | |
destructive test of all installed memory. Because of this, it is only | |
functional if the machine is halted, i.e., if the instruction is | |
executed with the INSTR STEP button. If it is executed in a program, | |
the result is NOP. | |
3. RRR is permitted and executed as NOP if the CPU is a 2114, as the | |
presence of the EAU is tested by the diagnostic configurator to | |
differentiate between 2114 and 2100/1000 CPUs. | |
*/ | |
t_stat cpu_eau (uint32 IR, uint32 intrq) | |
{ | |
t_stat reason = SCPE_OK; | |
OPS op; | |
uint32 rs, qs, sc, v1, v2, t; | |
int32 sop1, sop2; | |
if ((cpu_unit.flags & UNIT_EAU) == 0) /* option installed? */ | |
if ((UNIT_CPU_MODEL == UNIT_2114) && (IR == 0101100)) /* 2114 and RRR 16? */ | |
return SCPE_OK; /* allowed as NOP */ | |
else | |
return stop_inst; /* fail */ | |
switch ((IR >> 8) & 0377) { /* decode IR<15:8> */ | |
case 0200: /* EAU group 0 */ | |
switch ((IR >> 4) & 017) { /* decode IR<7:4> */ | |
case 000: /* DIAG 100000 */ | |
if ((UNIT_CPU_MODEL != UNIT_1000_E) && /* must be 1000 E-series */ | |
(UNIT_CPU_MODEL != UNIT_1000_F)) /* or 1000 F-series */ | |
return stop_inst; /* trap if not */ | |
break; /* DIAG is NOP unless halted */ | |
case 001: /* ASL 100020-100037 */ | |
sc = (IR & 017)? (IR & 017): 16; /* get sc */ | |
O = 0; /* clear ovflo */ | |
while (sc-- != 0) { /* bit by bit */ | |
t = BR << 1; /* shift B */ | |
BR = (BR & SIGN) | (t & 077777) | (AR >> 15); | |
AR = (AR << 1) & DMASK; | |
if ((BR ^ t) & SIGN) O = 1; | |
} | |
break; | |
case 002: /* LSL 100040-100057 */ | |
sc = (IR & 017)? (IR & 017): 16; /* get sc */ | |
BR = ((BR << sc) | (AR >> (16 - sc))) & DMASK; | |
AR = (AR << sc) & DMASK; /* BR'AR lsh left */ | |
break; | |
case 003: /* TIMER 100060 */ | |
if (UNIT_CPU_TYPE != UNIT_TYPE_1000) /* must be 1000 */ | |
return stop_inst; /* trap if not */ | |
if (UNIT_CPU_MODEL == UNIT_1000_M) /* 1000 M-series? */ | |
goto MPY; /* decode as MPY */ | |
BR = (BR + 1) & DMASK; /* increment B */ | |
if (BR) PC = err_PC; /* if !=0, repeat */ | |
break; | |
case 004: /* RRL 100100-100117 */ | |
sc = (IR & 017)? (IR & 017): 16; /* get sc */ | |
t = BR; /* BR'AR rot left */ | |
BR = ((BR << sc) | (AR >> (16 - sc))) & DMASK; | |
AR = ((AR << sc) | (t >> (16 - sc))) & DMASK; | |
break; | |
case 010: /* MPY 100200 (OP_K) */ | |
MPY: | |
reason = cpu_ops (OP_K, op, intrq); /* get operand */ | |
if (reason == SCPE_OK) { /* successful eval? */ | |
sop1 = SEXT (AR); /* sext AR */ | |
sop2 = SEXT (op[0].word); /* sext mem */ | |
sop1 = sop1 * sop2; /* signed mpy */ | |
BR = (sop1 >> 16) & DMASK; /* to BR'AR */ | |
AR = sop1 & DMASK; | |
O = 0; /* no overflow */ | |
} | |
break; | |
default: /* others undefined */ | |
return stop_inst; | |
} | |
break; | |
case 0201: /* DIV 100400 (OP_K) */ | |
reason = cpu_ops (OP_K, op, intrq); /* get operand */ | |
if (reason != SCPE_OK) /* eval failed? */ | |
break; | |
rs = qs = BR & SIGN; /* save divd sign */ | |
if (rs) { /* neg? */ | |
AR = (~AR + 1) & DMASK; /* make B'A pos */ | |
BR = (~BR + (AR == 0)) & DMASK; /* make divd pos */ | |
} | |
v2 = op[0].word; /* divr = mem */ | |
if (v2 & SIGN) { /* neg? */ | |
v2 = (~v2 + 1) & DMASK; /* make divr pos */ | |
qs = qs ^ SIGN; /* sign of quotient */ | |
} | |
if (BR >= v2) O = 1; /* divide work? */ | |
else { /* maybe... */ | |
O = 0; /* assume ok */ | |
v1 = (BR << 16) | AR; /* 32b divd */ | |
AR = (v1 / v2) & DMASK; /* quotient */ | |
BR = (v1 % v2) & DMASK; /* remainder */ | |
if (AR) { /* quotient > 0? */ | |
if (qs) AR = (~AR + 1) & DMASK; /* apply quo sign */ | |
if ((AR ^ qs) & SIGN) O = 1; /* still wrong? ovflo */ | |
} | |
if (rs) BR = (~BR + 1) & DMASK; /* apply rem sign */ | |
} | |
break; | |
case 0202: /* EAU group 2 */ | |
switch ((IR >> 4) & 017) { /* decode IR<7:4> */ | |
case 001: /* ASR 101020-101037 */ | |
sc = (IR & 017)? (IR & 017): 16; /* get sc */ | |
AR = ((BR << (16 - sc)) | (AR >> sc)) & DMASK; | |
BR = (SEXT (BR) >> sc) & DMASK; /* BR'AR ash right */ | |
O = 0; | |
break; | |
case 002: /* LSR 101040-101057 */ | |
sc = (IR & 017)? (IR & 017): 16; /* get sc */ | |
AR = ((BR << (16 - sc)) | (AR >> sc)) & DMASK; | |
BR = BR >> sc; /* BR'AR log right */ | |
break; | |
case 004: /* RRR 101100-101117 */ | |
sc = (IR & 017)? (IR & 017): 16; /* get sc */ | |
t = AR; /* BR'AR rot right */ | |
AR = ((AR >> sc) | (BR << (16 - sc))) & DMASK; | |
BR = ((BR >> sc) | (t << (16 - sc))) & DMASK; | |
break; | |
default: /* others undefined */ | |
return stop_inst; | |
} | |
break; | |
case 0210: /* DLD 104200 (OP_D) */ | |
reason = cpu_ops (OP_D, op, intrq); /* get operand */ | |
if (reason == SCPE_OK) { /* successful eval? */ | |
AR = (op[0].dword >> 16) & DMASK; /* load AR */ | |
BR = op[0].dword & DMASK; /* load BR */ | |
} | |
break; | |
case 0211: /* DST 104400 (OP_A) */ | |
reason = cpu_ops (OP_A, op, intrq); /* get operand */ | |
if (reason == SCPE_OK) { /* successful eval? */ | |
WriteW (op[0].word, AR); /* store AR */ | |
WriteW ((op[0].word + 1) & VAMASK, BR); /* store BR */ | |
} | |
break; | |
default: /* should never get here */ | |
return SCPE_IERR; /* bad call from cpu_instr */ | |
} | |
return reason; | |
} | |
/* UIG 0 | |
The first User Instruction Group (UIG) encodes firmware options for the 2100 | |
and 1000. Instruction codes 105000-105377 are assigned to microcode options | |
as follows: | |
Instructions Option Name 2100 1000-M 1000-E 1000-F | |
------------- -------------------------- ------ ------ ------ ------ | |
105000-105362 2000 I/O Processor opt - - - | |
105000-105137 Floating Point opt std std std | |
105200-105237 Fast FORTRAN Processor opt opt opt std | |
105240-105257 RTE-IVA/B Extended Memory - - opt opt | |
105240-105257 RTE-6/VM Virtual Memory - - opt opt | |
105300-105317 Distributed System - - opt opt | |
105320-105337 Double Integer - - opt - | |
105320-105337 Scientific Instruction Set - - - std | |
105340-105357 RTE-6/VM Operating System - - opt opt | |
If the 2100 IOP is installed, the only valid UIG instructions are IOP | |
instructions, as the IOP used the full 2100 microcode addressing space. The | |
IOP dispatcher remaps the 2100 codes to 1000 codes for execution. | |
The F-Series moved the three-word extended real instructions from the FFP | |
range to the base floating-point range and added four-word double real and | |
two-word double integer instructions. The double integer instructions | |
occupied some of the vacated extended real instruction codes in the FFP, with | |
the rest assigned to the floating-point range. Consequently, many | |
instruction codes for the F-Series are different from the E-Series. | |
Implementation notes: | |
1. Product 93585A, available from the "Specials" group, added double integer | |
microcode to the E-Series. The instruction codes were different from | |
those in the F-Series to avoid conflicting with the E-Series FFP. | |
2. To run the double-integer instructions diagnostic in the absence of | |
64-bit integer support (and therefore of F-Series simulation), a special | |
DBI dispatcher may be enabled by defining ENABLE_DIAG during compilation. | |
This dispatcher will remap the F-Series DBI instructions to the E-Series | |
codes, so that the F-Series diagnostic may be run. Because several of | |
the F-Series DBI instruction codes replace M/E-Series FFP codes, this | |
dispatcher will only operate if FFP is disabled. | |
Note that enabling the dispatcher will produce non-standard FP behavior. | |
For example, any code in the range 105000-105017 normally would execute a | |
FAD instruction. With the dispatcher enabled, 105014 would execute a | |
.DAD, while the other codes would execute a FAD. Therefore, ENABLE_DIAG | |
should only be used to run the diagnostic and is not intended for general | |
use. | |
3. Any instruction not claimed by an installed option will be sent to the | |
user microcode dispatcher. | |
*/ | |
t_stat cpu_uig_0 (uint32 IR, uint32 intrq, uint32 iotrap) | |
{ | |
if ((cpu_unit.flags & UNIT_IOP) && /* I/O Processor? */ | |
(UNIT_CPU_TYPE == UNIT_TYPE_2100)) /* and 2100 CPU? */ | |
return cpu_iop (IR, intrq); /* dispatch to IOP */ | |
#if !defined (HAVE_INT64) && defined (ENABLE_DIAG) /* special DBI diagnostic dispatcher */ | |
if (((cpu_unit.flags & UNIT_FFP) == 0) && /* FFP absent? */ | |
(cpu_unit.flags & UNIT_DBI)) /* and DBI present? */ | |
switch (IR & 0377) { | |
case 0014: /* .DAD 105014 */ | |
return cpu_dbi (0105321, intrq); | |
case 0034: /* .DSB 105034 */ | |
return cpu_dbi (0105327, intrq); | |
case 0054: /* .DMP 105054 */ | |
return cpu_dbi (0105322, intrq); | |
case 0074: /* .DDI 105074 */ | |
return cpu_dbi (0105325, intrq); | |
case 0114: /* .DSBR 105114 */ | |
return cpu_dbi (0105334, intrq); | |
case 0134: /* .DDIR 105134 */ | |
return cpu_dbi (0105326, intrq); | |
case 0203: /* .DNG 105203 */ | |
return cpu_dbi (0105323, intrq); | |
case 0204: /* .DCO 105204 */ | |
return cpu_dbi (0105324, intrq); | |
case 0210: /* .DIN 105210 */ | |
return cpu_dbi (0105330, intrq); | |
case 0211: /* .DDE 105211 */ | |
return cpu_dbi (0105331, intrq); | |
case 0212: /* .DIS 105212 */ | |
return cpu_dbi (0105332, intrq); | |
case 0213: /* .DDS 105213 */ | |
return cpu_dbi (0105333, intrq); | |
} /* otherwise, continue */ | |
#endif /* end of special DBI dispatcher */ | |
switch ((IR >> 4) & 017) { /* decode IR<7:4> */ | |
case 000: /* 105000-105017 */ | |
case 001: /* 105020-105037 */ | |
case 002: /* 105040-105057 */ | |
case 003: /* 105060-105077 */ | |
case 004: /* 105100-105117 */ | |
case 005: /* 105120-105137 */ | |
if (cpu_unit.flags & UNIT_FP) /* FP option installed? */ | |
#if defined (HAVE_INT64) /* int64 support available */ | |
return cpu_fpp (IR, intrq); /* Floating Point Processor */ | |
#else /* int64 support unavailable */ | |
return cpu_fp (IR, intrq); /* Firmware Floating Point */ | |
#endif /* end of int64 support */ | |
else | |
break; | |
case 010: /* 105200-105217 */ | |
case 011: /* 105220-105237 */ | |
if (cpu_unit.flags & UNIT_FFP) /* FFP option installed? */ | |
return cpu_ffp (IR, intrq); /* Fast FORTRAN Processor */ | |
else | |
break; | |
case 012: /* 105240-105257 */ | |
if (cpu_unit.flags & UNIT_VMAOS) /* VMA/OS option installed? */ | |
return cpu_rte_vma (IR, intrq); /* RTE-6 VMA */ | |
else if (cpu_unit.flags & UNIT_EMA) /* EMA option installed? */ | |
return cpu_rte_ema (IR, intrq); /* RTE-4 EMA */ | |
else | |
break; | |
case 014: /* 105300-105317 */ | |
if (cpu_unit.flags & UNIT_DS) /* DS option installed? */ | |
return cpu_ds (IR, intrq); /* Distributed System */ | |
else | |
break; | |
case 015: /* 105320-105337 */ | |
#if defined (HAVE_INT64) /* int64 support available */ | |
if (UNIT_CPU_MODEL == UNIT_1000_F) /* F-series? */ | |
return cpu_sis (IR, intrq); /* Scientific Instruction is standard */ | |
else /* M/E-series */ | |
#endif /* end of int64 support */ | |
if (cpu_unit.flags & UNIT_DBI) /* DBI option installed? */ | |
return cpu_dbi (IR, intrq); /* Double integer */ | |
else | |
break; | |
case 016: /* 105340-105357 */ | |
if (cpu_unit.flags & UNIT_VMAOS) /* VMA/OS option installed? */ | |
return cpu_rte_os (IR, intrq, iotrap); /* RTE-6 OS */ | |
else | |
break; | |
} | |
return cpu_user (IR, intrq); /* try user microcode */ | |
} | |
/* UIG 1 | |
The second User Instruction Group (UIG) encodes firmware options for the | |
1000. Instruction codes 101400-101777 and 105400-105777 are assigned to | |
microcode options as follows ("x" is "1" or "5" below): | |
Instructions Option Name 1000-M 1000-E 1000-F | |
------------- ---------------------------- ------ ------ ------ | |
10x400-10x437 2000 IOP opt opt opt | |
10x460-10x477 2000 IOP opt opt opt | |
10x460-10x477 Vector Instruction Set - - opt | |
10x520-10x537 Distributed System opt - - | |
10x600-10x617 SIGNAL/1000 Instruction Set - - opt | |
10x700-10x737 Dynamic Mapping System opt opt std | |
10x740-10x777 Extended Instruction Group std std std | |
Only 1000 systems execute these instructions. | |
Implementation notes: | |
1. The Distributed System (DS) microcode was mapped to different instruction | |
ranges for the M-Series and the E/F-Series. The sequence of instructions | |
was identical, though, so we remap the former range to the latter before | |
dispatching. | |
2. Any instruction not claimed by an installed option will be sent to the | |
user microcode dispatcher. | |
*/ | |
t_stat cpu_uig_1 (uint32 IR, uint32 intrq, uint32 iotrap) | |
{ | |
if (UNIT_CPU_TYPE != UNIT_TYPE_1000) /* 1000 execution? */ | |
return stop_inst; /* no, so trap */ | |
switch ((IR >> 4) & 017) { /* decode IR<7:4> */ | |
case 000: /* 105400-105417 */ | |
case 001: /* 105420-105437 */ | |
if (cpu_unit.flags & UNIT_IOP) /* IOP option installed? */ | |
return cpu_iop (IR, intrq); /* 2000 I/O Processor */ | |
else | |
break; | |
case 003: /* 105460-105477 */ | |
#if defined (HAVE_INT64) /* int64 support available */ | |
if (cpu_unit.flags & UNIT_VIS) /* VIS option installed? */ | |
return cpu_vis (IR, intrq); /* Vector Instruction Set */ | |
else | |
#endif /* end of int64 support */ | |
if (cpu_unit.flags & UNIT_IOP) /* IOP option installed? */ | |
return cpu_iop (IR, intrq); /* 2000 I/O Processor */ | |
else | |
break; | |
case 005: /* 105520-105537 */ | |
if (cpu_unit.flags & UNIT_DS) { /* DS option installed? */ | |
IR = IR ^ 0000620; /* remap to 105300-105317 */ | |
return cpu_ds (IR, intrq); /* Distributed System */ | |
} | |
else | |
break; | |
#if defined (HAVE_INT64) /* int64 support available */ | |
case 010: /* 105600-105617 */ | |
if (cpu_unit.flags & UNIT_SIGNAL) /* SIGNAL option installed? */ | |
return cpu_signal (IR, intrq); /* SIGNAL/1000 Instructions */ | |
else | |
break; | |
#endif /* end of int64 support */ | |
case 014: /* 105700-105717 */ | |
case 015: /* 105720-105737 */ | |
if (cpu_unit.flags & UNIT_DMS) /* DMS option installed? */ | |
return cpu_dms (IR, intrq); /* Dynamic Mapping System */ | |
else | |
break; | |
case 016: /* 105740-105757 */ | |
case 017: /* 105760-105777 */ | |
return cpu_eig (IR, intrq); /* Extended Instruction Group */ | |
} | |
return cpu_user (IR, intrq); /* try user microcode */ | |
} | |
/* Read a multiple-precision operand value. */ | |
OP ReadOp (uint32 va, OPSIZE precision) | |
{ | |
OP operand; | |
uint32 i; | |
if (precision == in_s) | |
operand.word = ReadW (va); /* read single integer */ | |
else if (precision == in_d) | |
operand.dword = ReadW (va) << 16 | /* read double integer */ | |
ReadW ((va + 1) & VAMASK); /* merge high and low words */ | |
else | |
for (i = 0; i < (uint32) precision; i++) { /* read fp 2 to 5 words */ | |
operand.fpk[i] = ReadW (va); | |
va = (va + 1) & VAMASK; | |
} | |
return operand; | |
} | |
/* Write a multiple-precision operand value. */ | |
void WriteOp (uint32 va, OP operand, OPSIZE precision) | |
{ | |
uint32 i; | |
if (precision == in_s) | |
WriteW (va, operand.word); /* write single integer */ | |
else if (precision == in_d) { | |
WriteW (va, (operand.dword >> 16) & DMASK); /* write double integer */ | |
WriteW ((va + 1) & VAMASK, operand.dword & DMASK); /* high word, then low word */ | |
} | |
else | |
for (i = 0; i < (uint32) precision; i++) { /* write fp 2 to 5 words */ | |
WriteW (va, operand.fpk[i]); | |
va = (va + 1) & VAMASK; | |
} | |
return; | |
} | |
/* Get instruction operands. | |
Operands for a given instruction are specifed by an "operand pattern" | |
consisting of flags indicating the types and storage methods. The pattern | |
directs how each operand is to be retrieved and whether the operand value or | |
address is returned in the operand array. | |
Typically, a microcode simulation handler will define an OP_PAT array, with | |
each element containing an operand pattern corresponding to the simulated | |
instruction. Operand patterns are defined in the header file accompanying | |
this source file. After calling this function with the appropriate operand | |
pattern and a pointer to an array of OPs, operands are decoded and stored | |
sequentially in the array. | |
The following operand encodings are defined: | |
Code Operand Description Example Return | |
------ ---------------------------------------- ----------- ------------ | |
OP_NUL No operand present [inst] None | |
OP_IAR Integer constant in A register LDA I Value of I | |
[inst] | |
... | |
I DEC 0 | |
OP_JAB Double integer constant in A/B registers DLD J Value of J | |
[inst] | |
... | |
J DEC 0,0 | |
OP_FAB 2-word FP constant in A/B registers DLD F Value of F | |
[inst] | |
... | |
F DEC 0.0 | |
OP_CON Inline 1-word constant [inst] Value of C | |
C DEC 0 | |
... | |
OP_VAR Inline 1-word variable [inst] Address of V | |
V BSS 1 | |
... | |
OP_ADR Inline address [inst] Address of A | |
DEF A | |
... | |
A EQU * | |
OP_ADK Address of integer constant [inst] Value of K | |
DEF K | |
... | |
K DEC 0 | |
OP_ADD Address of double integer constant [inst] Value of D | |
DEF D | |
... | |
D DEC 0,0 | |
OP_ADF Address of 2-word FP constant [inst] Value of F | |
DEF F | |
... | |
F DEC 0.0 | |
OP_ADX Address of 3-word FP constant [inst] Value of X | |
DEF X | |
... | |
X DEX 0.0 | |
OP_ADT Address of 4-word FP constant [inst] Value of T | |
DEF T | |
... | |
T DEY 0.0 | |
OP_ADE Address of 5-word FP constant [inst] Value of E | |
DEF E | |
... | |
E DEC 0,0,0,0,0 | |
Address operands, i.e., those having a DEF to the operand, will be resolved | |
to direct addresses. If an interrupt is pending and more than three levels | |
of indirection are used, the routine returns without completing operand | |
retrieval (the instruction will be retried after interrupt servicing). | |
Addresses are always resolved in the current DMS map. | |
An operand pattern consists of one or more operand encodings, corresponding | |
to the operands required by a given instruction. Values are returned in | |
sequence to the operand array. | |
*/ | |
t_stat cpu_ops (OP_PAT pattern, OPS op, uint32 irq) | |
{ | |
t_stat reason = SCPE_OK; | |
OP_PAT flags; | |
uint32 i, MA; | |
for (i = 0; i < OP_N_F; i++) { | |
flags = pattern & OP_M_FLAGS; /* get operand pattern */ | |
if (flags >= OP_ADR) { /* address operand? */ | |
reason = resolve (ReadW (PC), &MA, irq); /* resolve indirects */ | |
if (reason != SCPE_OK) /* resolution failed? */ | |
return reason; | |
} | |
switch (flags) { | |
case OP_NUL: /* null operand */ | |
return reason; /* no more, so quit */ | |
case OP_IAR: /* int in A */ | |
(*op++).word = AR; /* get one-word value */ | |
break; | |
case OP_JAB: /* dbl-int in A/B */ | |
(*op++).dword = (AR << 16) | BR; /* get two-word value */ | |
break; | |
case OP_FAB: /* 2-word FP in A/B */ | |
(*op).fpk[0] = AR; /* get high FP word */ | |
(*op++).fpk[1] = BR; /* get low FP word */ | |
break; | |
case OP_CON: /* inline constant operand */ | |
*op++ = ReadOp (PC, in_s); /* get value */ | |
break; | |
case OP_VAR: /* inline variable operand */ | |
(*op++).word = PC; /* get pointer to variable */ | |
break; | |
case OP_ADR: /* inline address operand */ | |
(*op++).word = MA; /* get address */ | |
break; | |
case OP_ADK: /* address of int constant */ | |
*op++ = ReadOp (MA, in_s); /* get value */ | |
break; | |
case OP_ADD: /* address of dbl-int constant */ | |
*op++ = ReadOp (MA, in_d); /* get value */ | |
break; | |
case OP_ADF: /* address of 2-word FP const */ | |
*op++ = ReadOp (MA, fp_f); /* get value */ | |
break; | |
case OP_ADX: /* address of 3-word FP const */ | |
*op++ = ReadOp (MA, fp_x); /* get value */ | |
break; | |
case OP_ADT: /* address of 4-word FP const */ | |
*op++ = ReadOp (MA, fp_t); /* get value */ | |
break; | |
case OP_ADE: /* address of 5-word FP const */ | |
*op++ = ReadOp (MA, fp_e); /* get value */ | |
break; | |
default: | |
return SCPE_IERR; /* not implemented */ | |
} | |
if (flags >= OP_CON) /* operand after instruction? */ | |
PC = (PC + 1) & VAMASK; /* yes, so bump to next */ | |
pattern = pattern >> OP_N_FLAGS; /* move next pattern into place */ | |
} | |
return reason; | |
} | |
/* Print operands to the debug device. | |
The values of an operand array are printed to the debug device. The types of | |
the operands are specified by an operand pattern. Typically, the operand | |
pattern is the same one that was used to fill the array originally. | |
*/ | |
void fprint_ops (OP_PAT pattern, OPS op) | |
{ | |
OP_PAT flags; | |
uint32 i; | |
for (i = 0; i < OP_N_F; i++) { | |
flags = pattern & OP_M_FLAGS; /* get operand pattern */ | |
switch (flags) { | |
case OP_NUL: /* null operand */ | |
return; /* no more, so quit */ | |
case OP_IAR: /* int in A */ | |
case OP_CON: /* inline constant operand */ | |
case OP_VAR: /* inline variable operand */ | |
case OP_ADR: /* inline address operand */ | |
case OP_ADK: /* address of int constant */ | |
fprintf (sim_deb, | |
", op[%d] = %06o", | |
i, op[i].word); | |
break; | |
case OP_JAB: /* dbl-int in A/B */ | |
case OP_ADD: /* address of dbl-int constant */ | |
fprintf (sim_deb, | |
", op[%d] = %011o", | |
i, op[i].dword); | |
break; | |
case OP_FAB: /* 2-word FP in A/B */ | |
case OP_ADF: /* address of 2-word FP const */ | |
fprintf (sim_deb, | |
", op[%d] = (%06o, %06o)", | |
i, op[i].fpk[0], op[i].fpk[1]); | |
break; | |
case OP_ADX: /* address of 3-word FP const */ | |
fprintf (sim_deb, | |
", op[%d] = (%06o, %06o, %06o)", | |
i, op[i].fpk[0], op[i].fpk[1], | |
op[i].fpk[2]); | |
break; | |
case OP_ADT: /* address of 4-word FP const */ | |
fprintf (sim_deb, | |
", op[%d] = (%06o, %06o, %06o, %06o)", | |
i, op[i].fpk[0], op[i].fpk[1], | |
op[i].fpk[2], op[i].fpk[3]); | |
break; | |
case OP_ADE: /* address of 5-word FP const */ | |
fprintf (sim_deb, | |
", op[%d] = (%06o, %06o, %06o, %06o, %06o)", | |
i, op[i].fpk[0], op[i].fpk[1], | |
op[i].fpk[2], op[i].fpk[3], op[i].fpk[4]); | |
break; | |
default: | |
fprintf (sim_deb, "UNKNOWN OPERAND TYPE"); /* not implemented */ | |
} | |
pattern = pattern >> OP_N_FLAGS; /* move next pattern into place */ | |
} | |
} | |
/* Print CPU registers to the debug device. | |
One or more CPU registers may be printed to the debug output device, which | |
must be valid before calling. | |
*/ | |
void fprint_regs (char *caption, uint32 regs, uint32 base) | |
{ | |
static uint32 ARX, BRX, PRL; /* static so addresses are constant */ | |
static const char *reg_names[] = { "CIR", "A", "B", "E", "X", "Y", "O", "P", "return" }; | |
static const uint32 *reg_ptrs[] = { &intaddr, &ARX, &BRX, &E, &XR, &YR, &O, &PC, &PRL }; | |
static const char *formats[] = { "%02o", "%06o", "%06o", "%01o", "%06o", "%06o", "%01o", "%06o", "P+%d" }; | |
static char format[20] = " %s = "; /* base format string */ | |
static const int eos = 6; /* length of base format string */ | |
uint32 i; | |
t_bool first = TRUE; /* first-time through flag */ | |
ARX = AR; /* copy 16-bit value to static variable */ | |
BRX = BR; /* copy 16-bit value to static variable */ | |
PRL = PC - base; /* compute value in static variable */ | |
for (i = 0; i < REG_COUNT; i++) { | |
if (regs & 1) { /* register requested? */ | |
if (first) /* first time? */ | |
fputs (caption, sim_deb); /* print caption */ | |
else | |
fputc (',', sim_deb); /* print separator */ | |
strcpy (&format[eos], formats[i]); /* copy format specifier */ | |
fprintf (sim_deb, format, reg_names[i], *reg_ptrs[i]); | |
first = FALSE; | |
} | |
regs = regs >> 1; /* align next register flag */ | |
} | |
return; | |
} |