blob: 0f4fc77873e0c313c0da6cfebe5ed8c4b2cc5090 [file] [log] [blame] [raw]
/* h316_cpu.c: Honeywell 316/516 CPU simulator
Copyright (c) 1993-2001, Robert M. Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
cpu H316/H516 CPU
03-Nov-01 RMS Fixed NOHSA modifier
30-Nov-01 RMS Added extended SET/SHOW support
The register state for the Honeywell 316/516 CPU is:
AR<1:16> A register
BR<1:16> B register
XR<1:16> X register
PC<1:16> P register (program counter)
Y<1:16> memory address register
MB<1:16> memory data register
C overflow flag
EXT extend mode flag
DP double precision mode flag
SC<1:5> shift count
SR[1:4]<0> sense switches 1-4
The Honeywell 316/516 has six instruction formats: memory reference,
I/O, control, shift, skip, and operate.
The memory reference format is:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|in|xr| op |sc| offset | memory reference
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
<13:10> mnemonic action
0000 (other) see control, shift, skip, operate instructions
0001 JMP P = MA
0010 LDA A = M[MA]
0011 ANA A = A & M[MA]
0100 STA M[MA] = A
0101 ERA A = A ^ M[MA]
0110 ADD A = A + M[MA]
0111 SUB A = A - M[MA]
1000 JST M[MA] = P, P = MA + 1
1001 CAS skip if A == M[MA], double skip if A < M[MA]
1010 IRS M[MA] = M[MA] + 1, skip if M[MA] == 0
1011 IMA A <=> M[MA]
1100 (I/O) see I/O instructions
1101 LDX/STX X = M[MA] (xr = 1), M[MA] = x (xr = 0)
1110 MPY multiply
1111 DIV divide
In non-extend mode, memory reference instructions can access an address
space of 16K words. Multiple levels of indirection are supported, and
each indirect word supplies its own indirect and index bits.
<1,2,7> mode action
0,0,0 sector zero direct MA = IR<8:0>
0,0,1 current direct MA = P<13:9>'IR<8:0>
0,1,0 sector zero indexed MA = IR<8:0> + X
0,1,1 current direct MA = P<13:9>'IR<8:0> + X
1,0,0 sector zero indirect MA = M[IR<8:0>]
1,0,1 current indirect MA = M[P<13:9>'IR<8:0>]
1,1,0 sector zero indirect indexed MA = M[IR<8:0> + X]
1,1,1 current indirect indexed MA = M[MA = P<13:9>'IR<8:0> + X]
In extend mode, memory reference instructions can access an address
space of 32K words. Multiple levels of indirection are supported, but
only post-indexing, based on the original instruction word index flag,
is allowed.
*/
/* The control format is:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0 0 0 0 0 0| opcode | control
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The shift format is:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0 1 0 0 0 0|dr|sz|type | shift count | shift
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | \-+-/
| | |
| | +--------------------- type
| +------------------------- long/A only
+---------------------------- right/left
The skip format is:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 0 0 0 0 0|rv|po|pe|ev|ze|s1|s2|s3|s4|cz| skip
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | |
| | | | | | | | | +- skip if C = 0
| | | | | | | | +---- skip if ssw 4 = 0
| | | | | | | +------- skip if ssw 3 = 0
| | | | | | +---------- skip if ssw 2 = 0
| | | | | +------------- skip if ssw 1 = 0
| | | | +---------------- skip if A == 0
| | | +------------------- skip if A<0> == 0
| | +---------------------- skip if mem par err
| +------------------------- skip if A<15> = 0
+---------------------------- reverse skip sense
The operate format is:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 0 0 0 0| opcode | operate
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The I/O format is:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| op | 1 1 0 0| function | device | I/O transfer
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The IO transfer instruction controls the specified device.
Depending on the opcode, the instruction may set or clear
the device flag, start or stop I/O, or read or write data.
*/
/* This routine is the instruction decode routine for the Honeywell
316/516. It is called from the simulator control program to execute
instructions in simulated memory, starting at the simulated PC.
It runs until 'reason' is set non-zero.
General notes:
1. Reasons to stop. The simulator can be stopped by:
HALT instruction
breakpoint encountered
infinite indirection loop
unimplemented instruction and stop_inst flag set
unknown I/O device and stop_dev flag set
I/O error in I/O simulator
2. Interrupts. Interrupts are maintained by two parallel variables:
dev_ready device ready flags
dev_enable device interrupt enable flags
In addition, dev_ready contains the interrupt enable and interrupt no
defer flags. If interrupt enable and interrupt no defer are set, and
at least one interrupt request is pending, then an interrupt occurs.
The order of flags in these variables corresponds to the order
in the SMK instruction.
3. Non-existent memory. On the H316/516, reads to non-existent memory
return zero, and writes are ignored. In the simulator, the
largest possible memory is instantiated and initialized to zero.
Thus, only writes need be checked against actual memory size.
4. Adding I/O devices. These modules must be modified:
h316_defs.h add interrupt request definition
h316_cpu.c add device information table entry
h316_sys.c add sim_devices table entry
*/
#include "h316_defs.h"
#define UNIT_V_MSIZE (UNIT_V_UF) /* dummy mask */
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
#define m7 0001000 /* for generics */
#define m8 0000400
#define m9 0000200
#define m10 0000100
#define m11 0000040
#define m12 0000020
#define m13 0000010
#define m14 0000004
#define m15 0000002
#define m16 0000001
uint16 M[MAXMEMSIZE] = { 0 }; /* memory */
int32 saved_AR = 0; /* A register */
int32 saved_BR = 0; /* B register */
int32 saved_XR = 0; /* X register */
int32 PC = 0; /* P register */
int32 C = 0; /* C register */
int32 ext = 0; /* extend mode */
int32 pme = 0; /* prev mode extend */
int32 extoff_pending = 0; /* extend off pending */
int32 dp = 0; /* double mode */
int32 sc = 0; /* shift count */
int32 ss[4]; /* sense switches */
int32 dev_ready = 0; /* dev ready */
int32 dev_enable = 0; /* dev enable */
int32 ind_max = 8; /* iadr nest limit */
int32 stop_inst = 1; /* stop on ill inst */
int32 stop_dev = 2; /* stop on ill dev */
int32 old_PC = 0; /* previous PC */
int32 dlog = 0; /* debug log */
int32 turnoff = 0;
extern int32 sim_int_char;
extern int32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
extern FILE *sim_log;
extern t_stat fprint_sym (FILE *of, t_addr addr, t_value *val,
UNIT *uptr, int32 sw);
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_set_noext (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
/* CPU data structures
cpu_dev CPU device descriptor
cpu_unit CPU unit descriptor
cpu_reg CPU register list
cpu_mod CPU modifiers list
*/
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK + UNIT_EXT,
MAXMEMSIZE) };
REG cpu_reg[] = {
{ ORDATA (P, PC, 15) },
{ ORDATA (A, saved_AR, 16) },
{ ORDATA (B, saved_BR, 16) },
{ ORDATA (X, XR, 16) },
{ ORDATA (SC, sc, 16) },
{ FLDATA (C, C, 0) },
{ FLDATA (EXT, ext, 0) },
{ FLDATA (PME, pme, 0) },
{ FLDATA (EXT_OFF, extoff_pending, 0) },
{ FLDATA (DP, dp, 0) },
{ FLDATA (SS1, ss[0], 0) },
{ FLDATA (SS2, ss[1], 0) },
{ FLDATA (SS3, ss[2], 0) },
{ FLDATA (SS4, ss[3], 0) },
{ FLDATA (ION, dev_ready, INT_V_ON) },
{ FLDATA (INODEF, dev_ready, INT_V_NODEF) },
{ ORDATA (DEVRDY, dev_ready, 16), REG_RO },
{ ORDATA (DEVENB, dev_enable, 16), REG_RO },
{ FLDATA (MPERDY, dev_ready, INT_V_MPE) },
{ FLDATA (MPEENB, dev_enable, INT_V_MPE) },
{ FLDATA (STOP_INST, stop_inst, 0) },
{ FLDATA (STOP_DEV, stop_dev, 1) },
{ DRDATA (INDMAX, ind_max, 8), REG_NZ + PV_LEFT },
{ ORDATA (OLDP, old_PC, 15), REG_RO },
{ ORDATA (WRU, sim_int_char, 8) },
{ FLDATA (DLOG, dlog, 0) },
{ FLDATA (HEXT, cpu_unit.flags, UNIT_V_EXT), REG_HRO },
{ FLDATA (HSA, cpu_unit.flags, UNIT_V_HSA), REG_HRO },
{ NULL } };
MTAB cpu_mod[] = {
{ UNIT_EXT, 0, "no extend", "NOEXTEND", &cpu_set_noext },
{ UNIT_EXT, UNIT_EXT, "extend", "EXTEND", NULL },
{ UNIT_HSA, 0, "no HSA", "NOHSA", NULL },
{ UNIT_HSA, UNIT_HSA, "HSA", "HSA", NULL },
{ UNIT_MSIZE, 4096, NULL, "4K", &cpu_set_size },
{ UNIT_MSIZE, 8192, NULL, "8K", &cpu_set_size },
{ UNIT_MSIZE, 12288, NULL, "12K", &cpu_set_size },
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size },
{ UNIT_MSIZE, 24576, NULL, "24K", &cpu_set_size },
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size },
{ 0 } };
DEVICE cpu_dev = {
"CPU", &cpu_unit, cpu_reg, cpu_mod,
1, 8, 15, 1, 8, 16,
&cpu_ex, &cpu_dep, &cpu_reset,
NULL, NULL, NULL };
/* I/O dispatch */
int32 undio (int32 op, int32 func, int32 AR);
extern int32 ptrio (int32 op, int32 func, int32 AR);
extern int32 ptpio (int32 op, int32 func, int32 AR);
extern int32 lptio (int32 op, int32 func, int32 AR);
extern int32 ttyio (int32 op, int32 func, int32 AR);
extern int32 clkio (int32 op, int32 func, int32 AR);
int32 (*iotab[64])() = {
&undio, &ptrio, &ptpio, &lptio, &ttyio, &undio, &undio, &undio,
&undio, &undio, &undio, &undio, &undio, &undio, &undio, &undio,
&clkio, &undio, &undio, &undio, &undio, &undio, &undio, &undio,
&undio, &undio, &undio, &undio, &undio, &undio, &undio, &undio,
&undio, &undio, &undio, &undio, &undio, &undio, &undio, &undio,
&undio, &undio, &undio, &undio, &undio, &undio, &undio, &undio,
&undio, &undio, &undio, &undio, &undio, &undio, &undio, &undio,
&undio, &undio, &undio, &undio, &undio, &undio, &undio, &undio };
t_stat sim_instr (void)
{
extern int32 sim_interval;
extern UNIT clk_unit;
int32 AR, BR, MB, Y, t1, t2, t3, skip;
unsigned int32 ut;
t_stat reason;
t_stat Ea (int32 inst, int32 *addr);
void Write (int32 val, int32 addr);
int32 Add16 (int32 val1, int32 val2);
int32 Add31 (int32 val1, int32 val2);
int32 Operate (int32 MB, int32 AR);
#define Read(x) M[(x)]
#define GETDBL_S(h,l) (((h) << 15) | ((l) & MMASK))
#define GETDBL_U(h,l) (((h) << 16) | (l))
#define PUTDBL_S(x) AR = ((x) >> 15) & DMASK; \
BR = (BR & SIGN) | ((x) & MMASK)
#define PUTDBL_U(x) AR = ((x) >> 16) & DMASK; \
BR = (x) & DMASK
#define SEXT(x) (((x) & SIGN)? ((x) | ~DMASK): ((x) & DMASK))
#define NEWA(c,n) (ext? (((c) & ~X_AMASK) | ((n) & X_AMASK)): \
(((c) & ~NX_AMASK) | ((n) & NX_AMASK)))
/* Restore register state */
AR = saved_AR & DMASK; /* restore reg */
BR = saved_BR & DMASK;
XR = saved_XR & DMASK;
PC = PC & ((cpu_unit.flags & UNIT_EXT)? X_AMASK: NX_AMASK); /* mask PC */
reason = 0;
turnoff = 0;
sim_rtc_init (clk_unit.wait); /* init calibration */
/* Main instruction fetch/decode loop */
while (reason == 0) { /* loop until halted */
if (sim_interval <= 0) { /* check clock queue */
if (reason = sim_process_event ()) break; }
if ((dev_ready & (INT_PENDING | dev_enable)) > INT_PENDING) { /* int req? */
pme = ext; /* save extend */
if (cpu_unit.flags & UNIT_EXT) ext = 1; /* ext opt? extend on */
dev_ready = dev_ready & ~INT_ON; /* intr off */
turnoff = 0;
if (dlog && sim_log) fprintf (sim_log, "Interrupt\n");
MB = 0120000 | M_INT; } /* inst = JST* 63 */
else { if (sim_brk_summ &&
sim_brk_test (PC, SWMASK ('E'))) { /* breakpoint? */
reason = STOP_IBKPT; /* stop simulation */
break; }
Y = PC; /* set mem addr */
MB = Read (Y); /* fetch instr */
PC = NEWA (Y, Y + 1); /* incr PC */
dev_ready = dev_ready | INT_NODEF; }
sim_interval = sim_interval - 1;
if (dlog && sim_log && !turnoff) { /* cycle log? */
int32 op = I_GETOP (MB) & 017; /* core opcode */
t_value val = MB;
fprintf (sim_log, "A= %06o C= %1o P= %05o (", AR, C, PC);
fprint_sym (sim_log, Y, &val, &cpu_unit, SWMASK ('M'));
fprintf (sim_log, ")");
if ((op == 0) || (op == 014)) fprintf (sim_log, "\n"); }
/* Memory reference instructions */
switch (I_GETOP (MB)) { /* case on <1:6> */
case 001: case 021: case 041: case 061: /* JMP */
if (reason = Ea (MB, &Y)) break; /* eff addr */
old_PC = PC; /* save PC */
PC = NEWA (PC, Y); /* set new PC */
if (dlog && sim_log) { /* logging? */
int32 op = I_GETOP (M[PC]) & 017; /* get target */
if ((op == 014) && (PC == (old_PC - 2))) { /* jmp .-1 to IO? */
turnoff = 1; /* yes, stop */
fprintf (sim_log, "Idle loop detected\n"); }
else turnoff = 0; } /* no, log */
if (extoff_pending) ext = extoff_pending = 0; /* cond ext off */
break;
case 002: case 022: case 042: case 062: /* LDA */
if (reason = Ea (MB, &Y)) break; /* eff addr */
if (dp) { /* double prec? */
AR = Read (Y & ~1); /* get doubleword */
BR = Read (Y | 1);
sc = 0; }
else AR = Read (Y); /* no, get word */
break;
case 003: case 023: case 043: case 063: /* ANA */
if (reason = Ea (MB, &Y)) break; /* eff addr */
AR = AR & Read (Y);
break;
case 004: case 024: case 044: case 064: /* STA */
if (reason = Ea (MB, &Y)) break; /* eff addr */
if (dp) { /* double prec? */
if ((Y & 1) == 0) Write (AR, Y); /* if even, store A */
Write (BR, Y | 1); /* store B */
sc = 0; }
else Write (AR, Y); /* no, store word */
break;
case 005: case 025: case 045: case 065: /* ERA */
if (reason = Ea (MB, &Y)) break; /* eff addr */
AR = AR ^ Read (Y);
break;
case 006: case 026: case 046: case 066: /* ADD */
if (reason = Ea (MB, &Y)) break; /* eff addr */
if (dp) { /* double prec? */
t1 = GETDBL_S (AR, BR); /* get A'B */
t2 = GETDBL_S (Read (Y & ~1), Read (Y | 1));
t1 = Add31 (t1, t2); /* 31b add */
PUTDBL_S (t1);
sc = 0; }
else AR = Add16 (AR, Read (Y)); /* no, 16b add */
break;
case 007: case 027: case 047: case 067: /* SUB */
if (reason = Ea (MB, &Y)) break; /* eff addr */
if (dp) { /* double prec? */
t1 = GETDBL_S (AR, BR); /* get A'B */
t2 = GETDBL_S (Read (Y & ~1), Read (Y | 1));
t1 = Add31 (t1, -t2); /* 31b sub */
PUTDBL_S (t1);
sc = 0; }
else AR = Add16 (AR, (-Read (Y)) & DMASK); /* no, 16b sub */
break;
/* Memory reference instructions */
case 010: case 030: case 050: case 070: /* JST */
if (reason = Ea (MB, &Y)) break; /* eff addr */
MB = NEWA (Read (Y), PC); /* merge old PC */
Write (MB, Y);
old_PC = PC;
PC = NEWA (PC, Y + 1); /* set new PC */
break;
case 011: case 031: case 051: case 071: /* CAS */
if (reason = Ea (MB, &Y)) break; /* eff addr */
MB = Read (Y);
if (AR == MB) PC = NEWA (PC, PC + 1);
else if (SEXT (AR) < SEXT (MB)) PC = NEWA (PC, PC + 2);
break;
case 012: case 032: case 052: case 072: /* IRS */
if (reason = Ea (MB, &Y)) break; /* eff addr */
MB = (Read (Y) + 1) & DMASK; /* incr, rewrite */
Write (MB, Y);
if (MB == 0) PC = NEWA (PC, PC + 1); /* skip if zero */
break;
case 013: case 033: case 053: case 073: /* IMA */
if (reason = Ea (MB, &Y)) break; /* eff addr */
MB = Read (Y);
Write (AR, Y); /* A to mem */
AR = MB; /* mem to A */
break;
case 015: case 055: /* STX */
if (reason = Ea (MB & ~IDX, &Y)) break; /* eff addr */
Write (XR, Y); /* store XR */
break;
case 035: case 075: /* LDX */
if (reason = Ea (MB & ~IDX, &Y)) break; /* eff addr */
XR = Read (Y); /* load XR */
break;
case 016: case 036: case 056: case 076: /* MPY */
if (cpu_unit.flags & UNIT_HSA) { /* installed? */
if (reason = Ea (MB, &Y)) break; /* eff addr */
t1 = SEXT (AR) * SEXT (Read (Y));
PUTDBL_S (t1);
sc = 0; }
else reason = stop_inst;
break;
case 017: case 037: case 057: case 077: /* DIV */
if (cpu_unit.flags & UNIT_HSA) { /* installed? */
if (reason = Ea (MB, &Y)) break; /* eff addr */
t2 = SEXT (Read (Y)); /* divr */
if (t2) { /* divr != 0? */
t1 = GETDBL_S (AR, BR); /* get A'B */
BR = (t1 % t2) & DMASK; /* remainder */
t1 = t1 / t2; /* quotient */
AR = t1 & DMASK;
if ((t1 > MMASK) || (t1 < (-SIGN))) C = 1;
else C = 0;
sc = 0; }
else C = 1; }
else reason = stop_inst;
break;
/* I/O instructions */
case 014: /* OCP */
t2 = iotab[MB & DEVMASK] (ioOCP, I_GETFNC (MB), AR);
reason = t2 >> IOT_V_REASON;
turnoff = 0;
break;
case 034: /* SKS */
t2 = iotab[MB & DEVMASK] (ioSKS, I_GETFNC (MB), AR);
reason = t2 >> IOT_V_REASON;
if (t2 & IOT_SKIP) { /* skip? */
PC = NEWA (PC, PC + 1);
turnoff = 0; }
break;
case 054: /* INA */
if (MB & INCLRA) AR = 0;
t2 = iotab[MB & DEVMASK] (ioINA, I_GETFNC (MB), AR);
reason = t2 >> IOT_V_REASON;
if (t2 & IOT_SKIP) { /* skip? */
PC = NEWA (PC, PC + 1);
turnoff = 0; }
AR = t2 & DMASK; /* data */
break;
case 074: /* OTA */
t2 = iotab[MB & DEVMASK] (ioOTA, I_GETFNC (MB), AR);
reason = t2 >> IOT_V_REASON;
if (t2 & IOT_SKIP) { /* skip? */
PC = NEWA (PC, PC + 1);
turnoff = 0; }
break;
/* Control */
case 000:
if ((MB & 1) == 0) { /* HLT */
reason = STOP_HALT;
break; }
if (MB & m14) { /* SGL, DBL */
if (cpu_unit.flags & UNIT_HSA) dp = (MB & m15)? 1: 0;
else reason = stop_inst; }
if (MB & m13) { /* DXA, EXA */
if (!(cpu_unit.flags & UNIT_EXT)) reason = stop_inst;
else if (MB & m15) { /* EXA */
ext = 1;
extoff_pending = 0; } /* DXA */
else extoff_pending = 1; }
if (MB & m12) /* RMP */
dev_ready = dev_ready & ~INT_MPE;
if (MB & m11) { /* SCA, INK */
if (MB & m15) /* INK */
AR = (C << 15) | (dp << 14) | (pme << 13) | (sc & 037);
else if (cpu_unit.flags & UNIT_HSA) /* SCA */
AR = sc & 037;
else reason = stop_inst; }
else if (MB & m10) { /* NRM */
if (cpu_unit.flags & UNIT_HSA) {
for (sc = 0;
(sc <= 32) && ((AR & SIGN) != ((AR << 1) & SIGN));
sc++) {
AR = (AR & SIGN) | ((AR << 1) & MMASK) |
((BR >> 14) & 1);
BR = (BR & SIGN) | ((BR << 1) & MMASK); }
sc = sc & 037; }
else reason = stop_inst; }
else if (MB & m9) { /* IAB */
sc = BR;
BR = AR;
AR = sc; }
if (MB & m8) /* ENB */
dev_ready = (dev_ready | INT_ON) & ~INT_NODEF;
if (MB & m7) /* INH */
dev_ready = dev_ready & ~INT_ON;
break;
/* Shift
Shifts are microcoded as follows:
op<7> = right/left
op<8> = long/short
op<9> = shift/rotate (rotate bits "or" into new position)
op<10> = logical/arithmetic
If !op<7> && op<10> (right arithmetic), A<1> propagates rightward
If op<7> && op<10> (left arithmetic), C is set if A<1> changes state
If !op<8> && op<10> (long arithmetic), B<1> is skipped
This microcoding "explains" how the 4 undefined opcodes actually work
003 = long arith rotate right, skip B<1>, propagate A<1>,
bits rotated out "or" into A<1>
007 = short arith rotate right, propagate A<1>,
bits rotated out "or" into A<1>
013 = long arith rotate left, skip B<1>, C = overflow
017 = short arith rotate left, C = overflow
*/
case 020:
C = 0; /* clear C */
sc = 0; /* clear sc */
if ((t1 = (-MB) & SHFMASK) == 0) break; /* shift count */
switch (I_GETFNC (MB)) { /* case shift fnc */
case 000: /* LRL */
if (t1 > 32) ut = 0; /* >32? all 0 */
else { ut = GETDBL_U (AR, BR); /* get A'B */
C = (ut >> (t1 - 1)) & 1; /* C = last out */
ut = ut >> t1; } /* log right */
PUTDBL_U (ut); /* store A,B */
break;
case 001: /* LRS */
if (t1 > 31) t1 = 31; /* limit to 31 */
t2 = GETDBL_S (SEXT (AR), BR); /* get A'B signed */
C = (t2 >> (t1 - 1)) & 1; /* C = last out */
t2 = t2 >> t1; /* arith right */
PUTDBL_S (t2); /* store A,B */
break;
case 002: /* LRR */
t2 = t1 % 32; /* mod 32 */
ut = GETDBL_U (AR, BR); /* get A'B */
ut = (ut >> t2) | (ut << (32 - t2)); /* rot right */
C = (ut >> 31) & 1; /* C = A<1> */
PUTDBL_U (ut); /* store A,B */
break;
case 003: /* "long right arot" */
if (reason = stop_inst) break; /* stop on undef? */
for (t2 = 0; t2 < t1; t2++) { /* bit by bit */
C = BR & 1; /* C = last out */
BR = (BR & SIGN) | ((AR & 1) << 14) |
((BR & MMASK) >> 1);
AR = ((AR & SIGN) | (C << 15)) | (AR >> 1); }
break;
case 004: /* LGR */
if (t1 > 16) AR = 0; /* > 16? all 0 */
else { C = (AR >> (t1 - 1)) & 1; /* C = last out */
AR = (AR >> t1) & DMASK; } /* log right */
break;
case 005: /* ARS */
if (t1 > 16) t1 = 16; /* limit to 16 */
C = ((SEXT (AR)) >> (t1 - 1)) & 1; /* C = last out */
AR = ((SEXT (AR)) >> t1) & DMASK; /* arith right */
break;
case 006: /* ARR */
t2 = t1 % 16; /* mod 16 */
AR = ((AR >> t2) | (AR << (16 - t2))) & DMASK;
C = (AR >> 15) & 1; /* C = A<1> */
break;
case 007: /* "short right arot" */
if (reason = stop_inst) break; /* stop on undef? */
for (t2 = 0; t2 < t1; t2++) { /* bit by bit */
C = AR & 1; /* C = last out */
AR = ((AR & SIGN) | (C << 15)) | (AR >> 1); }
break;
/* Shift, continued */
case 010: /* LLL */
if (t1 > 32) ut = 0; /* > 32? all 0 */
else { ut = GETDBL_U (AR, BR); /* get A'B */
C = (ut >> (32 - t1)) & 1; /* C = last out */
ut = ut << t1; } /* log left */
PUTDBL_U (ut); /* store A,B */
break;
case 011: /* LLS */
if (t1 > 31) t1 = 31; /* limit to 31 */
t2 = GETDBL_S (SEXT (AR), BR); /* get A'B */
t3 = t2 << t1; /* "arith" left */
PUTDBL_S (t3); /* store A'B */
if ((t2 >> (31 - t1)) != /* shf out = sgn? */
((AR & SIGN)? -1: 0)) C = 1;
break;
case 012: /* LLR */
t2 = t1 % 32; /* mod 32 */
ut = GETDBL_U (AR, BR); /* get A'B */
ut = (ut << t2) | (ut >> (32 - t2)); /* rot left */
C = ut & 1; /* C = B<16> */
PUTDBL_U (ut); /* store A,B */
break;
case 013: /* "long left arot" */
if (reason = stop_inst) break; /* stop on undef? */
for (t2 = 0; t2 < t1; t2++) { /* bit by bit */
AR = (AR << 1) | ((BR >> 14) & 1);
BR = (BR & SIGN) | ((BR << 1) & MMASK) |
((AR >> 16) & 1);
if ((AR & SIGN) != ((AR >> 1) & SIGN)) C = 1;
AR = AR & DMASK; }
break;
case 014: /* LGL */
if (t1 > 16) AR = 0; /* > 16? all 0 */
else { C = (AR >> (16 - t1)) & 1; /* C = last out */
AR = (AR << t1) & DMASK; } /* log left */
break;
case 015: /* ALS */
if (t1 > 16) t1 = 16; /* limit to 16 */
t2 = SEXT (AR); /* save AR */
AR = (AR << t1) & DMASK; /* "arith" left */
if ((t2 >> (16 - t1)) != /* shf out + sgn */
((AR & SIGN)? -1: 0)) C = 1;
break;
case 016: /* ALR */
t2 = t1 % 16; /* mod 16 */
AR = ((AR << t2) | (AR >> (16 - t2))) & DMASK;
C = AR & 1; /* C = A<16> */
break;
case 017: /* "short left arot" */
if (reason = stop_inst) break; /* stop on undef? */
for (t2 = 0; t2 < t1; t2++) { /* bit by bit */
if ((AR & SIGN) != ((AR << 1) & SIGN)) C = 1;
AR = ((AR << 1) | (AR >> 15)) & DMASK; }
break; } /* end case fnc */
break;
/* Skip */
case 040:
skip = 0;
if (((MB & 000001) && C) || /* SSC */
((MB & 000002) && ss[3]) || /* SS4 */
((MB & 000004) && ss[2]) || /* SS3 */
((MB & 000010) && ss[1]) || /* SS2 */
((MB & 000020) && ss[0]) || /* SS1 */
((MB & 000040) && AR) || /* SNZ */
((MB & 000100) && (AR & 1)) || /* SLN */
((MB & 000200) && (TST_INTREQ (INT_MPE))) || /* SPS */
((MB & 000400) && (AR & SIGN))) skip = 1; /* SMI */
if ((MB & 001000) == 0) skip = skip ^ 1; /* reverse? */
PC = NEWA (PC, PC + skip);
break;
/* Operate */
case 060:
if (MB == 0140024) AR = AR ^ SIGN; /* CHS */
else if (MB == 0140040) AR = 0; /* CRA */
else if (MB == 0140100) AR = AR & ~SIGN; /* SSP */
else if (MB == 0140200) C = 0; /* RCB */
else if (MB == 0140320) { /* CSA */
C = (AR & SIGN) >> 15;
AR = AR & ~SIGN; }
else if (MB == 0140401) AR = AR ^ DMASK; /* CMA */
else if (MB == 0140407) { /* TCA */
AR = (-AR) & DMASK;
sc = 0; }
else if (MB == 0140500) AR = AR | SIGN; /* SSM */
else if (MB == 0140600) C = 1; /* SCB */
else if (MB == 0141044) AR = AR & 0177400; /* CAR */
else if (MB == 0141050) AR = AR & 0377; /* CAL */
else if (MB == 0141140) AR = AR >> 8; /* ICL */
else if (MB == 0141206) AR = Add16 (AR, 1); /* AOA */
else if (MB == 0141216) AR = Add16 (AR, C); /* ACA */
else if (MB == 0141240) AR = (AR << 8) & DMASK; /* ICR */
else if (MB == 0141340) /* ICA */
AR = ((AR << 8) | (AR >> 8)) & DMASK;
else if (reason = stop_inst) break;
else AR = Operate (MB, AR); /* undefined */
break;
} /* end case op */
} /* end while */
saved_AR = AR & DMASK;
saved_BR = BR & DMASK;
saved_XR = XR & DMASK;
return reason;
}
/* Effective address
The effective address calculation consists of three phases:
- base address calculation: 0/pagenumber'displacement
- (extend): indirect address resolution
(non-extend): pre-indexing
- (extend): post-indexing
(non-extend): indirect address/post-indexing resolution
In extend mode, address calculations are carried out to 16b
and masked to 15b at exit. In non-extend mode, address bits
<1:2> are preserved by the NEWA macro; address bit <1> is
masked at exit.
*/
t_stat Ea (int32 IR, int32 *addr)
{
int32 i = 0;
int32 Y = IR & (IA | DISP); /* ind + disp */
if (IR & SC) Y = ((PC - 1) & PAGENO) | Y; /* cur sec? + pageno */
if (ext) { /* extend mode? */
for (i = 0; (i < ind_max) && (Y & IA); i++) { /* resolve ind addr */
Y = Read (Y & X_AMASK); } /* get ind addr */
if (IR & IDX) Y = Y + XR; /* post-index */
} /* end if ext */
else { /* non-extend */
Y = NEWA (PC, Y + ((IR & IDX)? XR: 0)); /* pre-index */
for (i = 0; (i < ind_max) && (IR & IA); i++) { /* resolve ind addr */
IR = Read (Y & X_AMASK); /* get ind addr */
Y = NEWA (Y, IR + ((IR & IDX)? XR: 0)); } /* post-index */
} /* end else */
*addr = Y = Y & X_AMASK; /* return addr */
if (dlog && sim_log && !turnoff) /* cycle log? */
fprintf (sim_log, " EA= %06o [%06o]\n", Y, M[Y]);
if (i >= ind_max) return STOP_IND; /* too many ind? */
return SCPE_OK;
}
/* Write memory */
void Write (int32 val, int32 addr)
{
if (((addr == 0) || (addr >= 020)) && MEM_ADDR_OK (addr))
M[addr] = val;
return;
}
/* Add */
int32 Add16 (int32 v1, int32 v2)
{
int32 r = v1 + v2;
C = 0;
if (((v1 ^ ~v2) & (v1 ^ r)) & SIGN) C = 1;
return (r & DMASK);
}
int32 Add31 (int32 v1, int32 v2)
{
int32 r = v1 + v2;
C = 0;
if (((v1 ^ ~v2) & (v1 ^ r)) & (1u << 30)) C = 1;
return r;
}
/* Unimplemented I/O device */
int32 undio (int32 op, int32 fnc, int32 val)
{
return ((stop_dev << IOT_V_REASON) | val);
}
/* Undefined operate instruction. This code is reached when the
opcode does not correspond to a standard operate instruction.
It simulates the behavior of the actual logic.
An operate instruction executes in 4 or 6 phases. A 'normal'
instruction takes 4 phases:
t1 t1
t2/tlate t2/t2 extended into t3
t3/tlate t3
t4 t4
A '1.5 cycle' instruction takes 6 phases:
t1 t1
t2/tlate t2/t2 extended into t3
t3/tlate t3
t2/tlate 'special' t2/t2 extended into t3
t3/tlate t3
t4 t4
The key signals, by phase, are the following
tlate EASTL enable A to sum leg 1 (else 0)
(((m12+m16)x!azzzz)+(m9+m11+azzzz)
EASBM enable 0 to sum leg 2 (else 177777)
(m9+m11+azzzz)
JAMKN jam carry network to 0 = force XOR
((m12+m16)x!azzzz)
EIKI7 force carry into adder
((m15x(C+!m13))x!JAMKN)
t3 CLDTR set D to 177777 (always)
ESDTS enable adder sum to D (always)
SETAZ enable repeat cycle = set azzzz
(m8xm15)
if azzzz {
t2 CLATR clear A register (due to azzzz)
EDAHS enable D high to A high register (due to azzzz)
EDALS enable D low to A low register (due to azzzz)
tlate, t3 as above
}
t4 CLATR clear A register
(m11+m15+m16)
CLA1R clear A1 register
(m10+m14)
EDAHS enable D high to A high register
((m11xm14)+m15+m16)
EDALS enable D low to A low register
((m11xm13)+m15+m16)
ETAHS enable D transposed to A high register
(m9xm11)
ETALS enable D transposed to A low register
(m10xm11)
EDA1R enable D1 to A1 register
((m8xm10)+m14)
CBITL clear C, conditionally set C from adder output
(m9x!m11)
CBITG conditionally set C if D1
(m10xm12xD1)
CBITE unconditionally set C
(m8xm9)
*/
int32 Operate (int32 MB, int32 AR)
{
int32 D, jamkn, eiki7, easbm, eastl, setaz;
int32 clatr, cla1r, edahs, edals, etahs, etals, eda1r;
int32 cbitl, cbitg, cbite;
int32 aleg, bleg, ARx;
/* Phase tlate */
ARx = AR; /* default */
jamkn = (MB & (m12+m16)) != 0; /* m12+m16 */
easbm = (MB & (m9+m11)) != 0; /* m9+m11 */
eastl = jamkn || easbm; /* m9+m11+m12+m16 */
setaz = (MB & (m8+m15)) == (m8+m15); /* m8xm15*/
eiki7 = (MB & m15) && (C || !(MB & m13)); /* cin */
aleg = eastl? AR: 0; /* a input */
bleg = easbm? 0: DMASK; /* b input */
if (jamkn) D = aleg ^ bleg; /* jammin? xor */
else D = (aleg + bleg + eiki7) & DMASK; /* else add */
/* Possible repeat at end of tlate - special t2, repeat tlate */
if (setaz) {
ARx = D; /* forced: t2 */
aleg = ARx; /* forced: tlate */
bleg = 0; /* forced */
jamkn = 0; /* forced */
D = (aleg + bleg + eiki7) & DMASK; /* forced add */
sc = 0; } /* ends repeat */
/* Phase t4 */
clatr = (MB & (m11+m15+m16)) != 0; /* m11+m15+m16 */
cla1r = (MB & (m10+m14)) != 0; /* m10+m14 */
edahs = ((MB & (m11+m14)) == (m11+m14)) || /* (m11xm14)+m15+m16 */
(MB & (m15+m16));
edals = ((MB & (m11+m13)) == (m11+m13)) || /* (m11xm13)+m15+m16 */
(MB & (m15+m16));
etahs = (MB & (m9+m11)) == (m9+m11); /* m9xm11 */
etals = (MB & (m10+m11)) == (m10+m11); /* m10xm11 */
eda1r = ((MB & (m8+m10)) == (m8+m10)) || (MB & m14); /* (m8xm10)+m14 */
cbitl = (MB & (m9+m11)) == m9; /* m9x!m11 */
cbite = (MB & (m8+m9)) == (m8+m9); /* m8xm9 */
cbitg = (MB & (m10+m12)) == (m10+m12); /* m10xm12 */
if (clatr) ARx = 0; /* clear A */
if (cla1r) ARx = ARx & ~SIGN; /* clear A1 */
if (edahs) ARx = ARx | (D & 0177400); /* D hi to A hi */
if (edals) ARx = ARx | (D & 0000377); /* D lo to A lo */
if (etahs) ARx = ARx | ((D << 8) & 0177400); /* D lo to A hi */
if (etals) ARx = ARx | ((D >> 8) & 0000377); /* D hi to A lo */
if (eda1r) ARx = ARx | (D & SIGN); /* D1 to A1 */
if (cbitl) { /* ovflo to C */
/* Overflow calculation. Cases:
aleg bleg cin overflow
0 x x can't overflow
A 0 0 can't overflow
A -1 1 can't overflow
A 0 1 overflow if 77777 -> 100000
A -1 0 overflow if 100000 -> 77777
*/
if (!jamkn &&
((bleg && !eiki7 && (D == 0077777)) ||
(!bleg && eiki7 && (D == 0100000)))) C = 1;
else C = 0; }
if (cbite || (cbitg && (D & SIGN))) C = 1; /* C = 1 */
return ARx;
}
/* Reset routines */
t_stat cpu_reset (DEVICE *dptr)
{
saved_AR = saved_BR = saved_XR = 0;
C = 0;
dp = 0;
ext = pme = extoff_pending = 0;
dev_ready = dev_ready & ~INT_PENDING;
dev_enable = 0;
sim_brk_types = sim_brk_dflt = SWMASK ('E');
return SCPE_OK;
}
/* Memory examine */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
int32 d;
if (addr >= MEMSIZE) return SCPE_NXM;
if (addr == 0) d = saved_XR;
else d = M[addr];
if (vptr != NULL) *vptr = d & DMASK;
return SCPE_OK;
}
/* Memory deposit */
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
if (addr == 0) saved_XR = val & DMASK;
else M[addr] = val & DMASK;
return SCPE_OK;
}
/* Option processors */
t_stat cpu_set_noext (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (MEMSIZE > (NX_AMASK + 1)) return SCPE_ARG;
return SCPE_OK;
}
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 mc = 0;
t_addr i;
if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 07777) != 0) ||
(((cpu_unit.flags & UNIT_EXT) == 0) && (val > (NX_AMASK + 1))))
return SCPE_ARG;
for (i = val; i < MEMSIZE; i++) mc = mc | M[i];
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
return SCPE_OK;
MEMSIZE = val;
for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0;
return SCPE_OK;
}