blob: 04b80d2d7b31b8765dec6a907f1784497336a45d [file] [log] [blame] [raw]
/* pdp8_rx.c: RX8E/RX01 floppy disk simulator
Copyright (c) 1993-2001, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
rx RX8E/RX01 floppy disk
17-Jul-01 RMS Fixed warning from VC++ 6
26-Apr-01 RMS Added device enable/disable support
13-Apr-01 RMS Revised for register arrays
14-Apr-99 RMS Changed t_addr to unsigned
15-Aug-96 RMS Fixed bug in LCD
An RX01 diskette consists of 77 tracks, each with 26 sectors of 128B.
Tracks are numbered 0-76, sectors 1-26. The RX8E can store data in
8b mode or 12b mode. In 8b mode, the controller reads or writes
128 bytes per sector. In 12b mode, the reads or writes 64 12b words
per sector. The 12b words are bit packed into the first 96 bytes
of the sector; the last 32 bytes are zeroed on writes.
*/
#include "pdp8_defs.h"
#define RX_NUMTR 77 /* tracks/disk */
#define RX_M_TRACK 0377
#define RX_NUMSC 26 /* sectors/track */
#define RX_M_SECTOR 0177 /* cf Jones!! */
#define RX_NUMBY 128 /* bytes/sector */
#define RX_NUMWD (RX_NUMBY / 2) /* words/sector */
#define RX_SIZE (RX_NUMTR * RX_NUMSC * RX_NUMBY) /* bytes/disk */
#define RX_NUMDR 2 /* drives/controller */
#define RX_M_NUMDR 01
#define UNIT_V_WLK (UNIT_V_UF) /* write locked */
#define UNIT_WLK (1 << UNIT_V_UF)
#define IDLE 0 /* idle state */
#define RWDS 1 /* rw, sect next */
#define RWDT 2 /* rw, track next */
#define FILL 3 /* fill buffer */
#define EMPTY 4 /* empty buffer */
#define CMD_COMPLETE 5 /* set done next */
#define INIT_COMPLETE 6 /* init compl next */
#define RXCS_V_FUNC 1 /* function */
#define RXCS_M_FUNC 7
#define RXCS_FILL 0 /* fill buffer */
#define RXCS_EMPTY 1 /* empty buffer */
#define RXCS_WRITE 2 /* write sector */
#define RXCS_READ 3 /* read sector */
#define RXCS_RXES 5 /* read status */
#define RXCS_WRDEL 6 /* write del data */
#define RXCS_ECODE 7 /* read error code */
#define RXCS_DRV 0020 /* drive */
#define RXCS_MODE 0100 /* mode */
#define RXCS_MAINT 0200 /* maintenance */
#define RXES_CRC 0001 /* CRC error */
#define RXES_PAR 0002 /* parity error */
#define RXES_ID 0004 /* init done */
#define RXES_WLK 0010 /* write protect */
#define RXES_DD 0100 /* deleted data */
#define RXES_DRDY 0200 /* drive ready */
#define TRACK u3 /* current track */
#define READ_RXDBR ((rx_csr & RXCS_MODE)? AC | (rx_dbr & 0377): rx_dbr)
#define CALC_DA(t,s) (((t) * RX_NUMSC) + ((s) - 1)) * RX_NUMBY
extern int32 int_req, int_enable, dev_done, dev_enb;
int32 rx_tr = 0; /* xfer ready flag */
int32 rx_err = 0; /* error flag */
int32 rx_csr = 0; /* control/status */
int32 rx_dbr = 0; /* data buffer */
int32 rx_esr = 0; /* error status */
int32 rx_ecode = 0; /* error code */
int32 rx_track = 0; /* desired track */
int32 rx_sector = 0; /* desired sector */
int32 rx_state = IDLE; /* controller state */
int32 rx_cwait = 100; /* command time */
int32 rx_swait = 10; /* seek, per track */
int32 rx_xwait = 1; /* tr set time */
int32 rx_stopioe = 1; /* stop on error */
uint8 rx_buf[RX_NUMBY] = { 0 }; /* sector buffer */
int32 bufptr = 0; /* buffer pointer */
t_stat rx_svc (UNIT *uptr);
t_stat rx_reset (DEVICE *dptr);
t_stat rx_boot (int32 unitno);
/* RX8E data structures
rx_dev RX device descriptor
rx_unit RX unit list
rx_reg RX register list
rx_mod RX modifier list
*/
UNIT rx_unit[] = {
{ UDATA (&rx_svc,
UNIT_FIX+UNIT_ATTABLE+UNIT_BUFABLE+UNIT_MUSTBUF, RX_SIZE) },
{ UDATA (&rx_svc,
UNIT_FIX+UNIT_ATTABLE+UNIT_BUFABLE+UNIT_MUSTBUF, RX_SIZE) } };
REG rx_reg[] = {
{ ORDATA (RXCS, rx_csr, 12) },
{ ORDATA (RXDB, rx_dbr, 12) },
{ ORDATA (RXES, rx_esr, 8) },
{ ORDATA (RXERR, rx_ecode, 8) },
{ ORDATA (RXTA, rx_track, 8) },
{ ORDATA (RXSA, rx_sector, 8) },
{ ORDATA (STAPTR, rx_state, 3), REG_RO },
{ ORDATA (BUFPTR, bufptr, 7) },
{ FLDATA (TR, rx_tr, 0) },
{ FLDATA (ERR, rx_err, 0) },
{ FLDATA (DONE, dev_done, INT_V_RX) },
{ FLDATA (ENABLE, int_enable, INT_V_RX) },
{ FLDATA (INT, int_req, INT_V_RX) },
{ DRDATA (CTIME, rx_cwait, 24), PV_LEFT },
{ DRDATA (STIME, rx_swait, 24), PV_LEFT },
{ DRDATA (XTIME, rx_xwait, 24), PV_LEFT },
{ FLDATA (FLG0, rx_unit[0].flags, UNIT_V_WLK), REG_HRO },
{ FLDATA (FLG1, rx_unit[1].flags, UNIT_V_WLK), REG_HRO },
{ FLDATA (STOP_IOE, rx_stopioe, 0) },
{ BRDATA (SBUF, rx_buf, 8, 8, RX_NUMBY) },
{ FLDATA (*DEVENB, dev_enb, INT_V_RX), REG_HRO },
{ NULL } };
MTAB rx_mod[] = {
{ UNIT_WLK, 0, "write enabled", "ENABLED", NULL },
{ UNIT_WLK, UNIT_WLK, "write locked", "LOCKED", NULL },
{ 0 } };
DEVICE rx_dev = {
"RX", rx_unit, rx_reg, rx_mod,
RX_NUMDR, 8, 20, 1, 8, 8,
NULL, NULL, &rx_reset,
&rx_boot, NULL, NULL };
/* IOT routine */
int32 rx (int32 pulse, int32 AC)
{
int32 drv;
switch (pulse) { /* decode IR<9:11> */
case 0: /* unused */
break;
case 1: /* LCD */
if (rx_state != IDLE) return AC; /* ignore if busy */
rx_dbr = rx_csr = AC; /* save new command */
dev_done = dev_done & ~INT_RX; /* clear done, int */
int_req = int_req & ~INT_RX;
rx_tr = rx_err = 0; /* clear flags */
bufptr = 0; /* clear buf pointer */
switch ((AC >> RXCS_V_FUNC) & RXCS_M_FUNC) { /* decode command */
case RXCS_FILL:
rx_state = FILL; /* state = fill */
rx_tr = 1; /* xfer is ready */
break;
case RXCS_EMPTY:
rx_state = EMPTY; /* state = empty */
sim_activate (&rx_unit[0], rx_xwait); /* sched xfer */
break;
case RXCS_READ: case RXCS_WRITE: case RXCS_WRDEL:
rx_state = RWDS; /* state = get sector */
rx_tr = 1; /* xfer is ready */
rx_esr = rx_esr & RXES_ID; /* clear errors */
break;
default:
rx_state = CMD_COMPLETE; /* state = cmd compl */
drv = (rx_csr & RXCS_DRV) > 0; /* get drive number */
sim_activate (&rx_unit[drv], rx_cwait); /* sched done */
break; } /* end switch func */
return 0; /* clear AC */
case 2: /* XDR */
switch (rx_state & 07) { /* case on state */
default: /* default */
return READ_RXDBR; /* return data reg */
case EMPTY: /* emptying buffer */
sim_activate (&rx_unit[0], rx_xwait); /* sched xfer */
return READ_RXDBR; /* return data reg */
case RWDS: /* sector */
rx_sector = AC & RX_M_SECTOR; /* save sector */
case FILL: /* fill */
rx_dbr = AC; /* save data */
sim_activate (&rx_unit[0], rx_xwait); /* sched xfer */
break;
case RWDT: /* track */
rx_track = AC & RX_M_TRACK; /* save track */
rx_dbr = AC; /* save data */
drv = (rx_csr & RXCS_DRV) > 0; /* get drive number */
sim_activate (&rx_unit[drv], /* sched done */
rx_swait * abs (rx_track - rx_unit[drv].TRACK));
break; } /* end switch state */
break;
case 3: /* STR */
if (rx_tr != 0) {
rx_tr = 0;
return IOT_SKP + AC; }
break;
case 4: /* SER */
if (rx_err != 0) {
rx_err = 0;
return IOT_SKP + AC; }
break;
case 5: /* SDN */
if ((dev_done & INT_RX) != 0) {
dev_done = dev_done & ~INT_RX;
int_req = int_req & ~INT_RX;
return IOT_SKP + AC; }
break;
case 6: /* INTR */
if (AC & 1) int_enable = int_enable | INT_RX;
else int_enable = int_enable & ~INT_RX;
int_req = INT_UPDATE;
break;
case 7: /* INIT */
rx_reset (&rx_dev); /* reset device */
break; } /* end case pulse */
return AC;
}
/* Unit service; the action to be taken depends on the transfer state:
IDLE Should never get here, treat as unknown command
RWDS Just transferred sector, wait for track, set tr
RWDT Just transferred track, do read or write, finish command
FILL copy dbr to rx_buf[bufptr], advance ptr
if bufptr > max, finish command, else set tr
EMPTY if bufptr > max, finish command, else
copy rx_buf[bufptr] to dbr, advance ptr, set tr
CMD_COMPLETE copy requested data to dbr, finish command
INIT_COMPLETE read drive 0, track 1, sector 1 to buffer, finish command
For RWDT and CMD_COMPLETE, the input argument is the selected drive;
otherwise, it is drive 0.
*/
t_stat rx_svc (UNIT *uptr)
{
int32 i, func, byptr;
t_addr da;
t_stat rval;
void rx_done (int32 new_dbr, int32 new_ecode);
#define PTR12(x) (((x) + (x) + (x)) >> 1)
rval = SCPE_OK; /* assume ok */
func = (rx_csr >> RXCS_V_FUNC) & RXCS_M_FUNC; /* get function */
switch (rx_state) { /* case on state */
case IDLE: /* idle */
rx_done (rx_esr, 0); /* done */
break;
case EMPTY: /* empty buffer */
if (rx_csr & RXCS_MODE) { /* 8b xfer? */
if (bufptr >= RX_NUMBY) { /* done? */
rx_done (rx_esr, 0); /* set done */
break; } /* and exit */
rx_dbr = rx_buf[bufptr]; } /* else get data */
else { byptr = PTR12 (bufptr); /* 12b xfer */
if (bufptr >= RX_NUMWD) { /* done? */
rx_done (rx_esr, 0); /* set done */
break; } /* and exit */
rx_dbr = (bufptr & 1)? /* get data */
((rx_buf[byptr] & 017) << 8) | rx_buf[byptr + 1]:
(rx_buf[byptr] << 4) | ((rx_buf[byptr + 1] >> 4) & 017); }
bufptr = bufptr + 1;
rx_tr = 1;
break;
case FILL: /* fill buffer */
if (rx_csr & RXCS_MODE) { /* 8b xfer? */
rx_buf[bufptr] = rx_dbr; /* fill buffer */
bufptr = bufptr + 1;
if (bufptr < RX_NUMBY) rx_tr = 1; /* if more, set xfer */
else rx_done (rx_esr, 0); } /* else done */
else { byptr = PTR12 (bufptr); /* 12b xfer */
if (bufptr & 1) { /* odd or even? */
rx_buf[byptr] = (rx_buf[byptr] & 0360) | ((rx_dbr >> 8) & 017);
rx_buf[byptr + 1] = rx_dbr & 0377; }
else {
rx_buf[byptr] = (rx_dbr >> 4) & 0377;
rx_buf[byptr + 1] = (rx_dbr & 017) << 4; }
bufptr = bufptr + 1;
if (bufptr < RX_NUMWD) rx_tr = 1; /* if more, set xfer */
else { for (i = PTR12 (RX_NUMWD); i < RX_NUMBY; i++)
rx_buf[i] = 0; /* else fill sector */
rx_done (rx_esr, 0); } } /* set done */
break;
case RWDS: /* wait for sector */
rx_tr = 1; /* set xfer ready */
rx_state = RWDT; /* advance state */
break;
case RWDT: /* wait for track */
if (rx_track >= RX_NUMTR) { /* bad track? */
rx_done (rx_esr, 0040); /* done, error */
break; }
uptr -> TRACK = rx_track; /* now on track */
if ((rx_sector == 0) || (rx_sector > RX_NUMSC)) { /* bad sect? */
rx_done (rx_esr, 0070); /* done, error */
break; }
if ((uptr -> flags & UNIT_BUF) == 0) { /* not buffered? */
rx_done (rx_esr, 0110); /* done, error */
rval = SCPE_UNATT; /* return error */
break; }
da = CALC_DA (rx_track, rx_sector); /* get disk address */
if (func == RXCS_WRDEL) rx_esr = rx_esr | RXES_DD; /* del data? */
if (func == RXCS_READ) { /* read? */
for (i = 0; i < RX_NUMBY; i++)
rx_buf[i] = *(((int8 *) uptr -> filebuf) + da + i); }
else { if (uptr -> flags & UNIT_WLK) { /* write and locked? */
rx_esr = rx_esr | RXES_WLK; /* flag error */
rx_done (rx_esr, 0100); /* done, error */
break; }
for (i = 0; i < RX_NUMBY; i++) /* write */
*(((int8 *) uptr -> filebuf) + da + i) = rx_buf[i];
da = da + RX_NUMBY;
if (da > uptr -> hwmark) uptr -> hwmark = da; }
rx_done (rx_esr, 0); /* done */
break;
case CMD_COMPLETE: /* command complete */
if (func == RXCS_ECODE) rx_done (rx_ecode, 0);
else if (uptr -> flags & UNIT_ATT) rx_done (rx_esr | RXES_DRDY, 0);
else rx_done (rx_esr, 0);
break;
case INIT_COMPLETE: /* init complete */
rx_unit[0].TRACK = 1; /* drive 0 to trk 1 */
rx_unit[1].TRACK = 0; /* drive 1 to trk 0 */
if ((rx_unit[0].flags & UNIT_BUF) == 0) { /* not buffered? */
rx_done (rx_esr | RXES_ID, 0010); /* init done, error */
break; }
da = CALC_DA (1, 1); /* track 1, sector 1 */
for (i = 0; i < RX_NUMBY; i++) /* read sector */
rx_buf[i] = *(((int8 *) uptr -> filebuf) + da + i);
rx_done (rx_esr | RXES_ID | RXES_DRDY, 0); /* set done */
if ((rx_unit[1].flags & UNIT_ATT) == 0) rx_ecode = 0020;
break; } /* end case state */
return IORETURN (rx_stopioe, rval);
}
/* Command complete. Set done and put final value in interface register,
return to IDLE state.
*/
void rx_done (int32 new_dbr, int32 new_ecode)
{
dev_done = dev_done | INT_RX; /* set done */
int_req = INT_UPDATE; /* update ints */
rx_dbr = new_dbr; /* update buffer */
if (new_ecode != 0) { /* test for error */
rx_ecode = new_ecode;
rx_err = 1; }
rx_state = IDLE; /* now idle */
return;
}
/* Reset routine. The RX is one of the few devices that schedules
an I/O transfer as part of its initialization.
*/
t_stat rx_reset (DEVICE *dptr)
{
rx_esr = rx_ecode = 0; /* clear error */
rx_tr = rx_err = 0; /* clear flags */
dev_done = dev_done & ~INT_RX; /* clear done, int */
int_req = int_req & ~INT_RX;
int_enable = int_enable & ~INT_RX;
rx_dbr = rx_csr = 0; /* 12b mode, drive 0 */
sim_cancel (&rx_unit[1]); /* cancel drive 1 */
if (rx_unit[0].flags & UNIT_BUF) { /* attached? */
rx_state = INIT_COMPLETE; /* yes, sched init */
sim_activate (&rx_unit[0], rx_swait * abs (1 - rx_unit[0].TRACK)); }
else rx_done (rx_esr | RXES_ID, 0010); /* no, error */
return SCPE_OK;
}
/* Bootstrap routine */
#define BOOT_START 022
#define BOOT_INST 060
#define BOOT_LEN (sizeof (boot_rom) / sizeof (int))
static const int32 boot_rom[] = {
06755, /* 22, SDN */
05022, /* 23, JMP .-1 */
07126, /* 24, CLL CML RTL ; read command + */
01060, /* 25, TAD UNIT ; unit no */
06751, /* 26, LCD ; load read+unit */
07201, /* 27, CLL IAC ; AC = 1 */
04053, /* 30, JMS 053 ; load sector */
04053, /* 31, JMS 053 ; load track */
07104, /* 32, CLL RAL ; AC = 2 */
06755, /* 33, SDN */
05054, /* 34, JMP 54 */
06754, /* 35, SER */
07450, /* 36, SNA ; more to do? */
07610, /* 37, CLA SKP ; error */
05046, /* 40, JMP 46 ; go empty */
07402, 07402, /* 41-45, HALT ; error */
07402, 07402, 07402,
06751, /* 46, LCD ; load empty */
04053, /* 47, JMS 53 ; get data */
03002, /* 50, DCA 2 ; store */
02050, /* 51, ISZ 50 ; incr store */
05047, /* 52, JMP 47 ; loop until done */
00000, /* 53, 0 */
06753, /* 54, STR */
05033, /* 55, JMP 33 */
06752, /* 56, XDR */
05453, /* 57, JMP I 53 */
07024, /* UNIT, CML RAL ; for unit 1 */
06030 /* 61, KCC */
};
t_stat rx_boot (int32 unitno)
{
int32 i;
extern int32 saved_PC;
extern uint16 M[];
for (i = 0; i < BOOT_LEN; i++) M[BOOT_START + i] = boot_rom[i];
M[BOOT_INST] = unitno? 07024: 07004;
saved_PC = BOOT_START;
return SCPE_OK;
}