blob: 31cc9ce5fbf8a587671c01fad6d01b6813bbbb38 [file] [log] [blame] [raw]
/* pdp8_mt.c: PDP-8 magnetic tape simulator
Copyright (c) 1993-2001, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
mt TM8E/TU10 magtape
25-Apr-01 RMS Added device enable/disable support
04-Oct-98 RMS V2.4 magtape format
22-Jan-97 RMS V2.3 magtape format
01-Jan-96 RMS Rewritten from TM8-E Maintenance Manual
Magnetic tapes are represented as a series of variable records
of the form:
32b byte count
byte 0
byte 1
:
byte n-2
byte n-1
32b byte count
If the byte count is odd, the record is padded with an extra byte
of junk. File marks are represented by a byte count of 0.
*/
#include "pdp8_defs.h"
#define MT_NUMDR 8 /* #drives */
#define UNIT_V_WLK (UNIT_V_UF + 0) /* write locked */
#define UNIT_WLK (1 << UNIT_V_WLK)
#define UNIT_W_UF 2 /* saved user flags */
#define USTAT u3 /* unit status */
#define UNUM u4 /* unit number */
#define DBSIZE (1 << 12) /* max data cmd */
#define DBMASK (SBSIZE - 1)
/* Command/unit - mt_cu */
#define CU_V_UNIT 9 /* unit */
#define CU_M_UNIT 07
#define CU_PARITY 00400 /* parity select */
#define CU_IEE 00200 /* error int enable */
#define CU_IED 00100 /* done int enable */
#define CU_V_EMA 3 /* ext mem address */
#define CU_M_EMA 07
#define CU_EMA (CU_M_EMA << CU_V_EMA)
#define CU_DTY 00002 /* drive type */
#define CU_UNPAK 00001 /* 6b vs 8b mode */
#define GET_UNIT(x) (((x) >> CU_V_UNIT) & CU_M_UNIT)
#define GET_EMA(x) (((x) & CU_EMA) << (12 - CU_V_EMA))
/* Function - mt_fn */
#define FN_V_FNC 9 /* function */
#define FN_M_FNC 07
#define FN_UNLOAD 00
#define FN_REWIND 01
#define FN_READ 02
#define FN_CMPARE 03
#define FN_WRITE 04
#define FN_WREOF 05
#define FN_SPACEF 06
#define FN_SPACER 07
#define FN_ERASE 00400 /* erase */
#define FN_CRC 00200 /* read CRC */
#define FN_GO 00100 /* go */
#define FN_INC 00040 /* incr mode */
#define FN_RMASK 07740 /* readable bits */
#define GET_FNC(x) (((x) >> FN_V_FNC) & FN_M_FNC)
/* Status - stored in mt_sta or (*) uptr -> USTAT */
#define STA_ERR (04000 << 12) /* error */
#define STA_REW (02000 << 12) /* *rewinding */
#define STA_BOT (01000 << 12) /* *start of tape */
#define STA_REM (00400 << 12) /* *offline */
#define STA_PAR (00200 << 12) /* parity error */
#define STA_EOF (00100 << 12) /* *end of file */
#define STA_RLE (00040 << 12) /* rec lnt error */
#define STA_DLT (00020 << 12) /* data late */
#define STA_EOT (00010 << 12) /* *end of tape */
#define STA_WLK (00004 << 12) /* *write locked */
#define STA_CPE (00002 << 12) /* compare error */
#define STA_ILL (00001 << 12) /* illegal */
#define STA_INC 00010 /* increment error */
#define STA_LAT 00004 /* lateral par error */
#define STA_CRC 00002 /* CRC error */
#define STA_LON 00001 /* long par error */
#define STA_CLR (FN_RMASK | 00020) /* always clear */
#define STA_DYN (STA_REW | STA_BOT | STA_REM | STA_EOF | \
STA_EOT | STA_WLK) /* kept in USTAT */
#define STA_EFLGS (STA_BOT | STA_PAR | STA_RLE | STA_DLT | \
STA_EOT | STA_CPE | STA_ILL | STA_EOF | STA_INC)
/* set error */
#define TUR(u) (!sim_is_active (u)) /* tape unit ready */
extern uint16 M[];
extern int32 int_req, dev_enb, stop_inst;
extern UNIT cpu_unit;
int32 mt_cu = 0; /* command/unit */
int32 mt_fn = 0; /* function */
int32 mt_ca = 0; /* current address */
int32 mt_wc = 0; /* word count */
int32 mt_sta = 0; /* status register */
int32 mt_db = 0; /* data buffer */
int32 mt_done = 0; /* mag tape flag */
int32 mt_time = 10; /* record latency */
int32 mt_stopioe = 1; /* stop on error */
t_stat mt_svc (UNIT *uptr);
t_stat mt_reset (DEVICE *dptr);
t_stat mt_attach (UNIT *uptr, char *cptr);
t_stat mt_detach (UNIT *uptr);
int32 mt_updcsta (UNIT *uptr);
int32 mt_ixma (int32 xma);
t_stat mt_vlock (UNIT *uptr, int32 val);
UNIT *mt_busy (void);
void mt_set_done (void);
/* MT data structures
mt_dev MT device descriptor
mt_unit MT unit list
mt_reg MT register list
mt_mod MT modifier list
*/
UNIT mt_unit[] = {
{ UDATA (&mt_svc, UNIT_ATTABLE + UNIT_DISABLE, 0) },
{ UDATA (&mt_svc, UNIT_ATTABLE + UNIT_DISABLE, 0) },
{ UDATA (&mt_svc, UNIT_ATTABLE + UNIT_DISABLE, 0) },
{ UDATA (&mt_svc, UNIT_ATTABLE + UNIT_DISABLE, 0) },
{ UDATA (&mt_svc, UNIT_ATTABLE + UNIT_DISABLE, 0) },
{ UDATA (&mt_svc, UNIT_ATTABLE + UNIT_DISABLE, 0) },
{ UDATA (&mt_svc, UNIT_ATTABLE + UNIT_DISABLE, 0) },
{ UDATA (&mt_svc, UNIT_ATTABLE + UNIT_DISABLE, 0) } };
REG mt_reg[] = {
{ ORDATA (CMD, mt_cu, 12) },
{ ORDATA (FNC, mt_fn, 12) },
{ ORDATA (CA, mt_ca, 12) },
{ ORDATA (WC, mt_wc, 12) },
{ ORDATA (DB, mt_db, 12) },
{ GRDATA (STA, mt_sta, 8, 12, 12) },
{ ORDATA (STA2, mt_sta, 6) },
{ FLDATA (DONE, mt_done, 0) },
{ FLDATA (INT, int_req, INT_V_MT) },
{ FLDATA (STOP_IOE, mt_stopioe, 0) },
{ DRDATA (TIME, mt_time, 24), PV_LEFT },
{ ORDATA (UST0, mt_unit[0].USTAT, 24) },
{ ORDATA (UST1, mt_unit[1].USTAT, 24) },
{ ORDATA (UST2, mt_unit[2].USTAT, 24) },
{ ORDATA (UST3, mt_unit[3].USTAT, 24) },
{ ORDATA (UST4, mt_unit[4].USTAT, 24) },
{ ORDATA (UST5, mt_unit[5].USTAT, 24) },
{ ORDATA (UST6, mt_unit[6].USTAT, 24) },
{ ORDATA (UST7, mt_unit[7].USTAT, 24) },
{ DRDATA (POS0, mt_unit[0].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS1, mt_unit[1].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS2, mt_unit[2].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS3, mt_unit[3].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS4, mt_unit[4].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS5, mt_unit[5].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS6, mt_unit[6].pos, 31), PV_LEFT + REG_RO },
{ DRDATA (POS7, mt_unit[7].pos, 31), PV_LEFT + REG_RO },
{ GRDATA (FLG0, mt_unit[0].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG1, mt_unit[1].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG2, mt_unit[2].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG3, mt_unit[3].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG4, mt_unit[4].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG5, mt_unit[5].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG6, mt_unit[6].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG7, mt_unit[7].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ FLDATA (*DEVENB, dev_enb, INT_V_MT), REG_HRO },
{ NULL } };
MTAB mt_mod[] = {
{ UNIT_WLK, 0, "write enabled", "ENABLED", &mt_vlock },
{ UNIT_WLK, UNIT_WLK, "write locked", "LOCKED", &mt_vlock },
{ 0 } };
DEVICE mt_dev = {
"MT", mt_unit, mt_reg, mt_mod,
MT_NUMDR, 10, 31, 1, 8, 8,
NULL, NULL, &mt_reset,
NULL, &mt_attach, &mt_detach };
/* IOT routines */
int32 mt70 (int32 pulse, int32 AC)
{
int32 f;
UNIT *uptr;
uptr = mt_dev.units + GET_UNIT (mt_cu); /* get unit */
switch (pulse) { /* decode IR<9:11> */
case 1: /* LWCR */
mt_wc = AC; /* load word count */
return 0;
case 2: /* CWCR */
mt_wc = 0; /* clear word count */
return AC;
case 3: /* LCAR */
mt_ca = AC; /* load mem address */
return 0;
case 4: /* CCAR */
mt_ca = 0; /* clear mem address */
return AC;
case 5: /* LCMR */
if (mt_busy ()) mt_sta = mt_sta | STA_ILL; /* busy? illegal op */
mt_cu = AC; /* load command reg */
mt_updcsta (mt_dev.units + GET_UNIT (mt_cu));
return 0;
/* MT70, continued */
case 6: /* LFGR */
if (mt_busy ()) mt_sta = mt_sta | STA_ILL; /* busy? illegal op */
mt_fn = AC; /* load function */
if ((mt_fn & FN_GO) == 0) { /* go set? */
mt_updcsta (uptr); /* update status */
return 0; }
f = GET_FNC (mt_fn); /* get function */
if (((uptr -> flags & UNIT_ATT) == 0) || !TUR (uptr) ||
(((f == FN_WRITE) || (f == FN_WREOF)) && (uptr -> flags & UNIT_WLK))
|| (((f == FN_SPACER) || (f == FN_REWIND)) && (uptr -> pos == 0))) {
mt_sta = mt_sta | STA_ILL; /* illegal op error */
mt_set_done (); /* set done */
mt_updcsta (uptr); /* update status */
return 0; }
uptr -> USTAT = uptr -> USTAT & STA_WLK; /* clear status */
if (f == FN_UNLOAD) { /* unload? */
detach_unit (uptr); /* set offline */
uptr -> USTAT = STA_REW | STA_REM; /* rewinding, off */
mt_set_done (); } /* set done */
else if (f == FN_REWIND) { /* rewind */
uptr -> USTAT = uptr -> USTAT | STA_REW; /* rewinding */
mt_set_done (); } /* set done */
else mt_done = 0; /* clear done */
mt_updcsta (uptr); /* update status */
sim_activate (uptr, mt_time); /* start io */
return 0;
case 7: /* LDBR */
if (mt_busy ()) mt_sta = mt_sta | STA_ILL; /* busy? illegal op */
mt_db = AC; /* load buffer */
mt_set_done (); /* set done */
mt_updcsta (uptr); /* update status */
return 0; } /* end switch */
return (stop_inst << IOT_V_REASON) + AC; /* ill inst */
}
/* IOTs, continued */
int32 mt71 (int32 pulse, int32 AC)
{
UNIT *uptr;
uptr = mt_dev.units + GET_UNIT (mt_cu);
switch (pulse) { /* decode IR<9:11> */
case 1: /* RWCR */
return mt_wc; /* read word count */
case 2: /* CLT */
mt_reset (&mt_dev); /* reset everything */
return AC;
case 3: /* RCAR */
return mt_ca; /* read mem address */
case 4: /* RMSR */
return ((mt_updcsta (uptr) >> 12) & 07777); /* read status */
case 5: /* RCMR */
return mt_cu; /* read command */
case 6: /* RFSR */
return (((mt_fn & FN_RMASK) | (mt_updcsta (uptr) & ~FN_RMASK))
& 07777); /* read function */
case 7: /* RDBR */
return mt_db; } /* read data buffer */
return (stop_inst << IOT_V_REASON) + AC; /* ill inst */
}
int32 mt72 (int32 pulse, int32 AC)
{
UNIT *uptr;
uptr = mt_dev.units + GET_UNIT (mt_cu); /* get unit */
switch (pulse) { /* decode IR<9:11> */
case 1: /* SKEF */
return (mt_sta & STA_ERR)? IOT_SKP + AC: AC;
case 2: /* SKCB */
return (!mt_busy ())? IOT_SKP + AC: AC;
case 3: /* SKJD */
return mt_done? IOT_SKP + AC: AC;
case 4: /* SKTR */
return (TUR (uptr))? IOT_SKP + AC: AC;
case 5: /* CLF */
if (TUR (uptr)) mt_reset (&mt_dev); /* if TUR, zap */
else { mt_sta = 0; /* clear status */
mt_done = 0; /* clear done */
mt_updcsta (uptr); } /* update status */
return AC; } /* end switch */
return (stop_inst << IOT_V_REASON) + AC; /* ill inst */
}
/* Unit service
If rewind done, reposition to start of tape, set status
else, do operation, set done, interrupt
*/
t_stat mt_svc (UNIT *uptr)
{
int32 f, i, p, u, err, wc, xma;
t_stat rval;
t_mtrlnt tbc, cbc;
uint16 c, c1, c2;
uint8 dbuf[(2 * DBSIZE)];
static t_mtrlnt bceof = { 0 };
u = uptr -> UNUM; /* get unit number */
if (uptr -> USTAT & STA_REW) { /* rewind? */
uptr -> pos = 0; /* update position */
if (uptr -> flags & UNIT_ATT) /* still on line? */
uptr -> USTAT = (uptr -> USTAT & STA_WLK) | STA_BOT;
else uptr -> USTAT = STA_REM;
if (u == GET_UNIT (mt_cu)) { /* selected? */
mt_set_done (); /* set done */
mt_updcsta (uptr); } /* update status */
return SCPE_OK; }
if ((uptr -> flags & UNIT_ATT) == 0) { /* if not attached */
uptr -> USTAT = STA_REM; /* unit off line */
mt_sta = mt_sta | STA_ILL; /* illegal operation */
mt_set_done (); /* set done */
mt_updcsta (uptr); /* update status */
return IORETURN (mt_stopioe, SCPE_UNATT); }
f = GET_FNC (mt_fn); /* get command */
if (((f == FN_WRITE) || (f == FN_WREOF)) && (uptr -> flags & UNIT_WLK)) {
mt_sta = mt_sta | STA_ILL; /* illegal operation */
mt_set_done (); /* set done */
mt_updcsta (uptr); /* update status */
return SCPE_OK; }
err = 0;
rval = SCPE_OK;
xma = GET_EMA (mt_cu) + mt_ca; /* get mem addr */
wc = 010000 - mt_wc; /* get wc */
switch (f) { /* case on function */
/* Unit service, continued */
case FN_READ: /* read */
case FN_CMPARE: /* read/compare */
fseek (uptr -> fileref, uptr -> pos, SEEK_SET);
fxread (&tbc, sizeof (t_mtrlnt), 1, uptr -> fileref);
if ((err = ferror (uptr -> fileref)) || /* error or eof? */
(feof (uptr -> fileref))) {
uptr -> USTAT = uptr -> USTAT | STA_EOT | STA_RLE;
break; }
if (tbc == 0) { /* tape mark? */
uptr -> USTAT = uptr -> USTAT | STA_EOF | STA_RLE;
uptr -> pos = uptr -> pos + sizeof (t_mtrlnt);
break; }
cbc = (mt_cu & CU_UNPAK)? wc: wc * 2; /* expected bc */
tbc = MTRL (tbc); /* ignore error flag */
if (tbc != cbc) mt_sta = mt_sta | STA_RLE; /* wrong size? */
if (tbc < cbc) { /* record small? */
cbc = tbc; /* use smaller */
wc = (mt_cu & CU_UNPAK)? cbc: (cbc + 1) / 2; }
i = fxread (dbuf, sizeof (int8), cbc, uptr -> fileref);
for ( ; i < cbc; i++) dbuf[i] = 0; /* fill with 0's */
err = ferror (uptr -> fileref);
for (i = p = 0; i < wc; i++) { /* copy buffer */
xma = mt_ixma (xma); /* increment xma */
if (mt_cu & CU_UNPAK) c = dbuf[p++];
else { c1 = dbuf[p++] & 077;
c2 = dbuf[p++] & 077;
c = (c1 << 6) | c2; }
if ((f == FN_READ) && MEM_ADDR_OK (xma)) M[xma] = c;
else if ((f == FN_CMPARE) && (M[xma] != c)) {
mt_sta = mt_sta | STA_CPE;
break; } }
mt_wc = (mt_wc + wc) & 07777; /* update wc */
uptr -> pos = uptr -> pos + ((tbc + 1) & ~1) + /* update tape pos */
(2 * sizeof (t_mtrlnt));
break;
case FN_WRITE: /* write */
fseek (uptr -> fileref, uptr -> pos, SEEK_SET);
tbc = (mt_cu & CU_UNPAK)? wc: wc * 2;
fxwrite (&tbc, sizeof (t_mtrlnt), 1, uptr -> fileref);
for (i = p = 0; i < wc; i++) { /* copy buf to tape */
xma = mt_ixma (xma); /* incr mem addr */
if (mt_cu & CU_UNPAK) dbuf[p++] = M[xma] & 0377;
else { dbuf[p++] = (M[xma] >> 6) & 077;
dbuf[p++] = M[xma] & 077; } }
fxwrite (dbuf, sizeof (int8), (tbc + 1) & ~1, uptr -> fileref);
fxwrite (&tbc, sizeof (t_mtrlnt), 1, uptr -> fileref);
err = ferror (uptr -> fileref);
mt_wc = 0;
uptr -> pos = uptr -> pos + ((tbc + 1) & ~1) + /* update tape pos */
(2 * sizeof (t_mtrlnt));
break;
case FN_WREOF:
fseek (uptr -> fileref, uptr -> pos, SEEK_SET);
fxwrite (&bceof, sizeof (t_mtrlnt), 1, uptr -> fileref); /* write eof */
err = ferror (uptr -> fileref);
uptr -> pos = uptr -> pos + sizeof (t_mtrlnt); /* update tape pos */
break;
/* Unit service, continued */
case FN_SPACEF: /* space forward */
do { mt_wc = (mt_wc + 1) & 07777; /* incr wc */
fseek (uptr -> fileref, uptr -> pos, SEEK_SET);
fxread (&tbc, sizeof (t_mtrlnt), 1, uptr -> fileref);
if ((err = ferror (uptr -> fileref)) || /* error or eof? */
feof (uptr -> fileref)) {
uptr -> USTAT = uptr -> USTAT | STA_EOT;
break; }
if (tbc == 0) { /* zero bc? */
uptr -> USTAT = uptr -> USTAT | STA_EOF;
uptr -> pos = uptr -> pos + sizeof (t_mtrlnt);
break; }
uptr -> pos = uptr -> pos + ((MTRL (tbc) + 1) & ~1) +
(2 * sizeof (t_mtrlnt)); }
while (mt_wc != 0);
break;
case FN_SPACER: /* space reverse */
if (uptr -> pos == 0) { /* at BOT? */
uptr -> USTAT = uptr -> USTAT | STA_BOT;
break; }
do { mt_wc = (mt_wc + 1) & 07777; /* incr wc */
fseek (uptr -> fileref, uptr -> pos - sizeof (t_mtrlnt),
SEEK_SET);
fxread (&tbc, sizeof (t_mtrlnt), 1, uptr -> fileref);
if ((err = ferror (uptr -> fileref)) || /* error or eof? */
feof (uptr -> fileref)) {
uptr -> USTAT = uptr -> USTAT | STA_BOT;
uptr -> pos = 0;
break; }
if (tbc == 0) { /* start of prv file? */
uptr -> USTAT = uptr -> USTAT | STA_EOF;
uptr -> pos = uptr -> pos - sizeof (t_mtrlnt);
break; }
uptr -> pos = uptr -> pos - ((MTRL (tbc) + 1) & ~1) -
(2 * sizeof (t_mtrlnt));
if (uptr -> pos == 0) { /* at BOT? */
uptr -> USTAT = uptr -> USTAT | STA_BOT;
break; } }
while (mt_wc != 0);
break; } /* end case */
/* Unit service, continued */
if (err != 0) { /* I/O error */
mt_sta = mt_sta | STA_PAR | STA_CRC; /* flag error */
perror ("MT I/O error");
rval = SCPE_IOERR;
clearerr (uptr -> fileref); }
mt_cu = (mt_cu & ~CU_EMA) | ((xma >> (12 - CU_V_EMA)) & CU_EMA);
mt_ca = xma & 07777; /* update mem addr */
mt_set_done (); /* set done */
mt_updcsta (uptr); /* update status */
return IORETURN (mt_stopioe, rval);
}
/* Update controller status */
int32 mt_updcsta (UNIT *uptr)
{
mt_sta = (mt_sta & ~(STA_DYN | STA_ERR | STA_CLR)) | (uptr -> USTAT & STA_DYN);
if (mt_sta & STA_EFLGS) mt_sta = mt_sta | STA_ERR;
if (((mt_sta & STA_ERR) && (mt_cu & CU_IEE)) ||
(mt_done && (mt_cu & CU_IED))) int_req = int_req | INT_MT;
else int_req = int_req & ~INT_MT;
return mt_sta;
}
/* Test if controller busy */
UNIT *mt_busy (void)
{
int32 u;
UNIT *uptr;
for (u = 0; u < MT_NUMDR; u++) { /* loop thru units */
uptr = mt_dev.units + u;
if (sim_is_active (uptr) && ((uptr -> USTAT & STA_REW) == 0))
return uptr; }
return NULL;
}
/* Increment extended memory address */
int32 mt_ixma (int32 xma) /* incr extended ma */
{
int32 v;
v = ((xma + 1) & 07777) | (xma & 070000); /* wrapped incr */
if (mt_fn & FN_INC) { /* increment mode? */
if (xma == 077777) mt_sta = mt_sta | STA_INC; /* at limit? error */
else v = xma + 1; } /* else 15b incr */
return v;
}
/* Set done */
void mt_set_done (void)
{
mt_done = 1; /* set done */
mt_fn = mt_fn & ~(FN_CRC | FN_GO | FN_INC); /* clear func<4:6> */
return;
}
/* Reset routine */
t_stat mt_reset (DEVICE *dptr)
{
int32 u;
UNIT *uptr;
mt_cu = mt_fn = mt_wc = mt_ca = mt_db = mt_sta = mt_done = 0;
int_req = int_req & ~INT_MT; /* clear interrupt */
for (u = 0; u < MT_NUMDR; u++) { /* loop thru units */
uptr = mt_dev.units + u;
uptr -> UNUM = u; /* init drive number */
sim_cancel (uptr); /* cancel activity */
if (uptr -> flags & UNIT_ATT) uptr -> USTAT =
((uptr -> pos)? 0: STA_BOT) |
((uptr -> flags & UNIT_WLK)? STA_WLK: 0);
else uptr -> USTAT = STA_REM; }
return SCPE_OK;
}
/* Attach routine */
t_stat mt_attach (UNIT *uptr, char *cptr)
{
t_stat r;
r = attach_unit (uptr, cptr);
if (r != SCPE_OK) return r;
uptr -> USTAT = STA_BOT | ((uptr -> flags & UNIT_WLK)? STA_WLK: 0);
if (uptr -> UNUM == GET_UNIT (mt_cu)) mt_updcsta (uptr);
return r;
}
/* Detach routine */
t_stat mt_detach (UNIT* uptr)
{
if (!sim_is_active (uptr)) uptr -> USTAT = STA_REM;
if (uptr -> UNUM == GET_UNIT (mt_cu)) mt_updcsta (uptr);
return detach_unit (uptr);
}
/* Write lock/enable routine */
t_stat mt_vlock (UNIT *uptr, int32 val)
{
if ((uptr -> flags & UNIT_ATT) && val) uptr -> USTAT = uptr -> USTAT | STA_WLK;
else uptr -> USTAT = uptr -> USTAT & ~STA_WLK;
if (uptr -> UNUM == GET_UNIT (mt_cu)) mt_updcsta (uptr);
return SCPE_OK;
}