/* nova_cpu.c: NOVA CPU simulator | |
Copyright (c) 1993-2001, Robert M. Supnik | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name of Robert M Supnik shall not | |
be used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from Robert M Supnik. | |
cpu Nova central processor | |
10-Aug-01 RMS Removed register in declarations | |
17-Jul-01 RMS Moved function prototype | |
26-Apr-01 RMS Added device enable/disable support | |
05-Mar-01 RMS Added clock calibration | |
22-Dec-00 RMS Added Bruce Ray's second terminal | |
15-Dec-00 RMS Added Charles Owen's CPU bootstrap | |
08-Dec-00 RMS Changes from Bruce Ray | |
-- fixed trap test to include Nova 3 | |
-- fixed DIV and DIVS divide by 0 | |
-- fixed RETN to set SP from FP | |
-- fixed IORST to preserve carry | |
-- added "secret" Nova 4 PSHN/SAVEN instructions | |
-- added plotter support | |
15-Oct-00 RMS Fixed bug in MDV test, added stack, byte, trap instructions | |
14-Apr-98 RMS Changed t_addr to unsigned | |
15-Sep-97 RMS Added read and write breakpoints | |
The register state for the NOVA CPU is: | |
AC[0:3]<0:15> general registers | |
C carry flag | |
PC<0:14> program counter | |
The NOVA has three instruction formats: memory reference, I/O transfer, | |
and operate. The memory reference format is: | |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| 0| op | AC |in| mode| displacement | memory reference | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
<0:4> mnemonic action | |
00000 JMP PC = MA | |
00001 JMS AC3 = PC, PC = MA | |
00010 ISZ M[MA] = M[MA] + 1, skip if M[MA] == 0 | |
00011 DSZ M[MA] = M[MA] - 1, skip if M[MA] == 0 | |
001'n LDA ACn = M[MA] | |
010'n STA M[MA] = ACn | |
<5:7> mode action | |
000 page zero direct MA = zext (IR<8:15>) | |
001 PC relative direct MA = PC + sext (IR<8:15>) | |
010 AC2 relative direct MA = AC2 + sext (IR<8:15>) | |
011 AC3 relative direct MA = AC3 + sext (IR<8:15>) | |
100 page zero indirect MA = M[zext (IR<8:15>)] | |
101 PC relative indirect MA = M[PC + sext (IR<8:15>)] | |
110 AC2 relative indirect MA = M[AC2 + sext (IR<8:15>)] | |
111 AC3 relative indirect MA = M[AC3 + sext (IR<8:15>)] | |
Memory reference instructions can access an address space of 32K words. | |
An instruction can directly reference the first 256 words of memory | |
(called page zero), as well as 256 words relative to the PC, AC2, or | |
AC3; it can indirectly access all 32K words. If an indirect address | |
is in locations 00020-00027, the indirect address is incremented and | |
rewritten to memory before use; if in 00030-00037, decremented and | |
rewritten. | |
*/ | |
/* The I/O transfer format is: | |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| 0 1 1| AC | opcode |pulse| device | I/O transfer | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
The IOT instruction sends the opcode, pulse, and specified AC to the | |
specified I/O device. The device may accept data, provide data, | |
initiate or cancel operations, or skip on status. | |
The operate format is: | |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| 1|srcAC|dstAC| opcode |shift|carry|nl| skip | operate | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
\______/ \___/ \___/ | | | | | |
| | | | | | +--- reverse skip sense | |
| | | | | +--- skip if C == 0 | |
| | | | +--- skip if result == 0 | |
| | | +--- don't load result | |
| | +--- carry in (load as is, | |
| | set to Zero, | |
| | set to One, | |
| | load Complement) | |
| +--- shift (none, | |
| left one, | |
| right one, | |
| byte swap) | |
+--- operation (complement, | |
negate, | |
move, | |
increment, | |
add complement, | |
subtract, | |
add, | |
and) | |
The operate instruction can be microprogrammed to perform operations | |
on the source and destination AC's and the Carry flag. | |
Some notes from Bruce Ray: | |
1. DG uses the value of the autoindex location -before- the | |
modification to determine if additional indirect address | |
levels are to be performed. Most DG emulators conform to | |
this standard, but some vendor machines (i.e. Point 4 Mark 8) | |
do not. | |
2. Infinite indirect references may occur on unmapped systems | |
and can "hang" the hardware. Some DG diagnostics perform | |
10,000s of references during a single instruction. | |
3. Nova 3 adds the following instructions to the standard Nova | |
instruction set: | |
trap instructions | |
stack push/pop instructions | |
save/return instructions | |
stack register manipulation instructions | |
unsigned MUL/DIV | |
4. Nova 4 adds the following instructions to the Nova 3 instruction | |
set: | |
signed MUL/DIV | |
load/store byte | |
secret (undocumented) stack instructions [PSHN, SAVN] | |
5. Nova, Nova 3 and Nova 4 unsigned mul/div instructions are the | |
same instruction code values on all machines. | |
*/ | |
/* This routine is the instruction decode routine for the NOVA. | |
It is called from the simulator control program to execute | |
instructions in simulated memory, starting at the simulated PC. | |
It runs until 'reason' is set non-zero. | |
General notes: | |
1. Reasons to stop. The simulator can be stopped by: | |
HALT instruction | |
breakpoint encountered | |
infinite indirection loop | |
unknown I/O device and STOP_DEV flag set | |
I/O error in I/O simulator | |
2. Interrupts. Interrupts are maintained by four parallel variables: | |
dev_done device done flags | |
dev_disable device interrupt disable flags | |
dev_busy device busy flags | |
int_req interrupt requests | |
In addition, int_req contains the interrupt enable and ION pending | |
flags. If ION and ION pending are set, and at least one interrupt | |
request is pending, then an interrupt occurs. Note that the 16b PIO | |
mask must be mapped to the simulator's device bit mapping. | |
3. Non-existent memory. On the NOVA, reads to non-existent memory | |
return zero, and writes are ignored. In the simulator, the | |
largest possible memory is instantiated and initialized to zero. | |
Thus, only writes need be checked against actual memory size. | |
4. Adding I/O devices. These modules must be modified: | |
nova_defs.h add interrupt request definition | |
nova_cpu.c add IOT mask, PI mask, and routine to dev_table | |
nova_sys.c add pointer to data structures to sim_devices | |
*/ | |
#include "nova_defs.h" | |
#define INCA(x) (((x) + 1) & AMASK) | |
#define DECA(x) (((x) - 1) & AMASK) | |
#define SEXT(x) (((x) & SIGN)? ((x) | ~DMASK): (x)) | |
#define STK_CHECK(x,y) if (((x) & 0377) < (y)) int_req = int_req | INT_STK | |
#define IND_STEP(x) M[x] & A_IND; \ | |
if (((x) & 077770) == AUTO_INC) \ | |
M[x] = (M[x] + 1) & 0177777; \ | |
else if (((x) & 077770) == AUTO_DEC) \ | |
M[x] = (M[x] - 1) & 0177777; \ | |
x = M[x] & AMASK | |
#define ILL_ADR_FLAG A_IND | |
#define save_ibkpt (cpu_unit.u3) | |
#define UNIT_V_MDV (UNIT_V_UF) /* MDV present */ | |
#define UNIT_MDV (1 << UNIT_V_MDV) | |
#define UNIT_V_STK (UNIT_V_UF+1) /* stack instr */ | |
#define UNIT_STK (1 << UNIT_V_STK) | |
#define UNIT_V_BYT (UNIT_V_UF+2) /* byte instr */ | |
#define UNIT_BYT (1 << UNIT_V_BYT) | |
#define UNIT_IOPT (UNIT_MDV | UNIT_STK | UNIT_BYT) | |
#define UNIT_NOVA3 (UNIT_MDV | UNIT_STK) | |
#define UNIT_NOVA4 (UNIT_MDV | UNIT_STK | UNIT_BYT) | |
#define UNIT_V_MSIZE (UNIT_V_UF+3) /* dummy mask */ | |
#define UNIT_MSIZE (1 << UNIT_V_MSIZE) | |
uint16 M[MAXMEMSIZE] = { 0 }; /* memory */ | |
int32 AC[4] = { 0 }; /* accumulators */ | |
int32 C = 0; /* carry flag */ | |
int32 saved_PC = 0; /* program counter */ | |
int32 SP = 0; /* stack pointer */ | |
int32 FP = 0; /* frame pointer */ | |
int32 SR = 0; /* switch register */ | |
int32 dev_done = 0; /* device done flags */ | |
int32 dev_busy = 0; /* device busy flags */ | |
int32 dev_disable = 0; /* int disable flags */ | |
int32 iot_enb = -1; /* IOT enables */ | |
int32 int_req = 0; /* interrupt requests */ | |
int32 pimask = 0; /* priority int mask */ | |
int32 pwr_low = 0; /* power fail flag */ | |
int32 ind_max = 16; /* iadr nest limit */ | |
int32 stop_dev = 0; /* stop on ill dev */ | |
int32 ibkpt_addr = ILL_ADR_FLAG | AMASK; /* ibreakpoint addr */ | |
int32 old_PC = 0; /* previous PC */ | |
extern int32 sim_int_char; | |
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw); | |
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw); | |
t_stat cpu_reset (DEVICE *dptr); | |
t_stat cpu_svc (UNIT *uptr); | |
t_stat cpu_set_size (UNIT *uptr, int32 value); | |
t_stat cpu_boot (int32 unitno); | |
extern int32 ptr (int32 pulse, int32 code, int32 AC); | |
extern int32 ptp (int32 pulse, int32 code, int32 AC); | |
extern int32 tti (int32 pulse, int32 code, int32 AC); | |
extern int32 tto (int32 pulse, int32 code, int32 AC); | |
extern int32 tti1 (int32 pulse, int32 code, int32 AC); | |
extern int32 tto1 (int32 pulse, int32 code, int32 AC); | |
extern int32 clk (int32 pulse, int32 code, int32 AC); | |
extern int32 plt (int32 pulse, int32 code, int32 AC); | |
extern int32 lpt (int32 pulse, int32 code, int32 AC); | |
extern int32 dsk (int32 pulse, int32 code, int32 AC); | |
extern int32 dkp (int32 pulse, int32 code, int32 AC); | |
extern int32 mta (int32 pulse, int32 code, int32 AC); | |
int32 nulldev (int32 pulse, int32 code, int32 AC); | |
extern t_stat sim_activate (UNIT *uptr, int32 delay); | |
/* IOT dispatch table */ | |
struct ndev dev_table[64] = { | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, /* 0 - 7 */ | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ INT_TTI, PI_TTI, &tti }, { INT_TTO, PI_TTO, &tto }, /* 10 - 17 */ | |
{ INT_PTR, PI_PTR, &ptr }, { INT_PTP, PI_PTP, &ptp }, | |
{ INT_CLK, PI_CLK, &clk }, { INT_PLT, PI_PLT, &plt }, | |
{ 0, 0, &nulldev }, { INT_LPT, PI_LPT, &lpt }, | |
{ INT_DSK, PI_DSK, &dsk }, { 0, 0, &nulldev }, /* 20 - 27 */ | |
{ INT_MTA, PI_MTA, &mta }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, /* 30 - 37 */ | |
{ 0, 0, &nulldev }, {INT_DKP, PI_DKP, &dkp }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, /* 40 - 47 */ | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ INT_TTI1, PI_TTI1, &tti1 }, { INT_TTO1, PI_TTO1, &tto1 }, /* 50 - 57 */ | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, /* 60 - 67 */ | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, /* 70 - 77 */ | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, | |
{ 0, 0, &nulldev }, { 0, 0, &nulldev } }; | |
/* CPU data structures | |
cpu_dev CPU device descriptor | |
cpu_unit CPU unit descriptor | |
cpu_reg CPU register list | |
cpu_mod CPU modifiers list | |
*/ | |
UNIT cpu_unit = { UDATA (&cpu_svc, UNIT_FIX + UNIT_BINK + UNIT_MDV, | |
MAXMEMSIZE) }; | |
REG cpu_reg[] = { | |
{ ORDATA (PC, saved_PC, 15) }, | |
{ ORDATA (AC0, AC[0], 16) }, | |
{ ORDATA (AC1, AC[1], 16) }, | |
{ ORDATA (AC2, AC[2], 16) }, | |
{ ORDATA (AC3, AC[3], 16) }, | |
{ FLDATA (C, C, 16) }, | |
{ ORDATA (SP, SP, 16) }, | |
{ ORDATA (FP, FP, 16) }, | |
{ ORDATA (SR, SR, 16) }, | |
{ ORDATA (PI, pimask, 16) }, | |
{ FLDATA (ION, int_req, INT_V_ION) }, | |
{ FLDATA (ION_DELAY, int_req, INT_V_NO_ION_PENDING) }, | |
{ FLDATA (STKOVF, int_req, INT_V_STK) }, | |
{ FLDATA (PWR, pwr_low, 0) }, | |
{ ORDATA (INT, int_req, INT_V_ION+1), REG_RO }, | |
{ ORDATA (BUSY, dev_busy, INT_V_ION+1), REG_RO }, | |
{ ORDATA (DONE, dev_done, INT_V_ION+1), REG_RO }, | |
{ ORDATA (DISABLE, dev_disable, INT_V_ION+1), REG_RO }, | |
{ FLDATA (STOP_DEV, stop_dev, 0) }, | |
{ FLDATA (MDV, cpu_unit.flags, UNIT_V_MDV), REG_HRO }, | |
{ FLDATA (ISTK, cpu_unit.flags, UNIT_V_STK), REG_HRO }, | |
{ FLDATA (IBYT, cpu_unit.flags, UNIT_V_BYT), REG_HRO }, | |
{ DRDATA (INDMAX, ind_max, 16), REG_NZ + PV_LEFT }, | |
{ ORDATA (OLDPC, old_PC, 15), REG_RO }, | |
{ ORDATA (BREAK, ibkpt_addr, 16) }, | |
{ ORDATA (WRU, sim_int_char, 8) }, | |
{ ORDATA (IOTENB, iot_enb, 32), REG_HRO }, | |
{ NULL } }; | |
MTAB cpu_mod[] = { | |
{ UNIT_IOPT, UNIT_NOVA4, "NOVA4", "NOVA4", NULL }, | |
{ UNIT_IOPT, UNIT_NOVA3, "NOVA3", "NOVA3", NULL }, | |
{ UNIT_IOPT, UNIT_MDV, "MDV", "MDV", NULL }, | |
{ UNIT_IOPT, 0, "none", "NONE", NULL }, | |
{ UNIT_MSIZE, 4096, NULL, "4K", &cpu_set_size }, | |
{ UNIT_MSIZE, 8192, NULL, "8K", &cpu_set_size }, | |
{ UNIT_MSIZE, 12288, NULL, "12K", &cpu_set_size }, | |
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size }, | |
{ UNIT_MSIZE, 20480, NULL, "20K", &cpu_set_size }, | |
{ UNIT_MSIZE, 24576, NULL, "24K", &cpu_set_size }, | |
{ UNIT_MSIZE, 28672, NULL, "28K", &cpu_set_size }, | |
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size }, | |
{ 0 } }; | |
DEVICE cpu_dev = { | |
"CPU", &cpu_unit, cpu_reg, cpu_mod, | |
1, 8, 15, 1, 8, 16, | |
&cpu_ex, &cpu_dep, &cpu_reset, | |
NULL, NULL, NULL }; | |
t_stat sim_instr (void) | |
{ | |
extern int32 sim_interval; | |
int32 PC, IR, i; | |
t_stat reason; | |
void mask_out (int32 mask); | |
extern int32 clk_sel, clk_time[4]; | |
/* Restore register state */ | |
PC = saved_PC & AMASK; /* load local PC */ | |
C = C & CBIT; | |
mask_out (pimask); /* reset int system */ | |
reason = 0; | |
sim_rtc_init (clk_time[clk_sel]); /* init calibration */ | |
/* Main instruction fetch/decode loop */ | |
while (reason == 0) { /* loop until halted */ | |
if (sim_interval <= 0) { /* check clock queue */ | |
if (reason = sim_process_event ()) break; } | |
if (int_req > INT_PENDING) { /* interrupt? */ | |
int32 MA, indf; | |
int_req = int_req & ~INT_ION; | |
old_PC = M[INT_SAV] = PC; | |
if (int_req & INT_STK) { /* stack overflow? */ | |
int_req = int_req & ~INT_STK; /* clear */ | |
MA = STK_JMP; } /* jmp @3 */ | |
else MA = INT_JMP; /* intr: jmp @1 */ | |
for (i = 0, indf = 1; indf && (i < ind_max); i++) { | |
indf = IND_STEP (MA); } /* indirect loop */ | |
if (i >= ind_max) { | |
reason = STOP_IND_INT; | |
break; } | |
PC = MA; } /* end interrupt */ | |
if (PC == ibkpt_addr) { /* breakpoint? */ | |
save_ibkpt = ibkpt_addr; /* save address */ | |
ibkpt_addr = ibkpt_addr | ILL_ADR_FLAG; /* disable */ | |
sim_activate (&cpu_unit, 1); /* sched re-enable */ | |
reason = STOP_IBKPT; /* stop simulation */ | |
break; } | |
IR = M[PC]; /* fetch instr */ | |
PC = (PC + 1) & AMASK; | |
int_req = int_req | INT_NO_ION_PENDING; /* clear ION delay */ | |
sim_interval = sim_interval - 1; | |
/* Operate instruction */ | |
if (IR & I_OPR) { /* operate? */ | |
int32 src, srcAC, dstAC; | |
srcAC = I_GETSRC (IR); /* get reg decodes */ | |
dstAC = I_GETDST (IR); | |
switch (I_GETCRY (IR)) { /* decode carry */ | |
case 0: /* load */ | |
src = AC[srcAC] | C; | |
break; | |
case 1: /* clear */ | |
src = AC[srcAC]; | |
break; | |
case 2: /* set */ | |
src = AC[srcAC] | CBIT; | |
break; | |
case 3: /* complement */ | |
src = AC[srcAC] | (C ^ CBIT); | |
break; } /* end switch carry */ | |
switch (I_GETALU (IR)) { /* decode ALU */ | |
case 0: /* COM */ | |
src = src ^ DMASK; | |
break; | |
case 1: /* NEG */ | |
src = ((src ^ DMASK) + 1) & CMASK; | |
break; | |
case 2: /* MOV */ | |
break; | |
case 3: /* INC */ | |
src = (src + 1) & CMASK; | |
break; | |
case 4: /* ADC */ | |
src = ((src ^ DMASK) + AC[dstAC]) & CMASK; | |
break; | |
case 5: /* SUB */ | |
src = ((src ^ DMASK) + AC[dstAC] + 1) & CMASK; | |
break; | |
case 6: /* ADD */ | |
src = (src + AC[dstAC]) & CMASK; | |
break; | |
case 7: /* AND */ | |
src = src & (AC[dstAC] | CBIT); | |
break; } /* end switch oper */ | |
/* Operate, continued */ | |
switch (I_GETSHF (IR)) { /* decode shift */ | |
case 0: /* nop */ | |
break; | |
case 1: /* L */ | |
src = ((src << 1) | (src >> 16)) & CMASK; | |
break; | |
case 2: /* R */ | |
src = ((src >> 1) | (src << 16)) & CMASK; | |
break; | |
case 3: /* S */ | |
src = ((src & 0377) << 8) | ((src >> 8) & 0377) | | |
(src & CBIT); | |
break; } /* end switch shift */ | |
switch (I_GETSKP (IR)) { /* decode skip */ | |
case 0: /* nop */ | |
if ((IR & I_NLD) && (cpu_unit.flags & UNIT_STK)) { | |
int32 indf, MA; /* Nova 3 or 4 trap */ | |
old_PC = M[TRP_SAV] = (PC - 1) & AMASK; | |
MA = TRP_JMP; /* jmp @47 */ | |
for (i = 0, indf = 1; indf && (i < ind_max); i++) { | |
indf = IND_STEP (MA); } /* resolve ind */ | |
if (i >= ind_max) { /* indirect loop? */ | |
reason = STOP_IND_TRP; | |
break; } | |
PC = MA; /* new PC */ | |
break; } | |
break; | |
case 1: /* SKP */ | |
PC = (PC + 1) & AMASK; | |
break; | |
case 2: /* SZC */ | |
if (src < CBIT) PC = (PC + 1) & AMASK; | |
break; | |
case 3: /* SNC */ | |
if (src >= CBIT) PC = (PC + 1) & AMASK; | |
break; | |
case 4: /* SZR */ | |
if ((src & DMASK) == 0) PC = (PC + 1) & AMASK; | |
break; | |
case 5: /* SNR */ | |
if ((src & DMASK) != 0) PC = (PC + 1) & AMASK; | |
break; | |
case 6: /* SEZ */ | |
if (src <= CBIT) PC = (PC + 1) & AMASK; | |
break; | |
case 7: /* SBN */ | |
if (src > CBIT) PC = (PC + 1) & AMASK; | |
break; } /* end switch skip */ | |
if ((IR & I_NLD) == 0) { /* load? */ | |
AC[dstAC] = src & DMASK; | |
C = src & CBIT; } /* end if load */ | |
} /* end if operate */ | |
/* Memory reference instructions */ | |
else if (IR < 060000) { /* mem ref? */ | |
int32 src, MA, indf; | |
MA = I_GETDISP (IR); /* get disp */ | |
switch (I_GETMODE (IR)) { /* decode mode */ | |
case 0: /* page zero */ | |
break; | |
case 1: /* PC relative */ | |
if (MA & DISPSIGN) MA = 077400 | MA; | |
MA = (MA + PC - 1) & AMASK; | |
break; | |
case 2: /* AC2 relative */ | |
if (MA & DISPSIGN) MA = 077400 | MA; | |
MA = (MA + AC[2]) & AMASK; | |
break; | |
case 3: /* AC3 relative */ | |
if (MA & DISPSIGN) MA = 077400 | MA; | |
MA = (MA + AC[3]) & AMASK; | |
break; } /* end switch mode */ | |
if (indf = IR & I_IND) { /* indirect? */ | |
for (i = 0; indf && (i < ind_max); i++) { /* count */ | |
indf = IND_STEP (MA); } /* resolve indirect */ | |
if (i >= ind_max) { /* too many? */ | |
reason = STOP_IND; | |
break; } } | |
/* Memory reference, continued */ | |
switch (I_GETOPAC (IR)) { /* decode op + AC */ | |
case 001: /* JSR */ | |
AC[3] = PC; | |
case 000: /* JMP */ | |
old_PC = PC; | |
PC = MA; | |
break; | |
case 002: /* ISZ */ | |
src = (M[MA] + 1) & DMASK; | |
if (MEM_ADDR_OK (MA)) M[MA] = src; | |
if (src == 0) PC = (PC + 1) & AMASK; | |
break; | |
case 003: /* DSZ */ | |
src = (M[MA] - 1) & DMASK; | |
if (MEM_ADDR_OK (MA)) M[MA] = src; | |
if (src == 0) PC = (PC + 1) & AMASK; | |
break; | |
case 004: /* LDA 0 */ | |
AC[0] = M[MA]; | |
break; | |
case 005: /* LDA 1 */ | |
AC[1] = M[MA]; | |
break; | |
case 006: /* LDA 2 */ | |
AC[2] = M[MA]; | |
break; | |
case 007: /* LDA 3 */ | |
AC[3] = M[MA]; | |
break; | |
case 010: /* STA 0 */ | |
if (MEM_ADDR_OK (MA)) M[MA] = AC[0]; | |
break; | |
case 011: /* STA 1 */ | |
if (MEM_ADDR_OK (MA)) M[MA] = AC[1]; | |
break; | |
case 012: /* STA 2 */ | |
if (MEM_ADDR_OK (MA)) M[MA] = AC[2]; | |
break; | |
case 013: /* STA 3 */ | |
if (MEM_ADDR_OK (MA)) M[MA] = AC[3]; | |
break; } /* end switch */ | |
} /* end mem ref */ | |
/* IOT instruction */ | |
else { /* IOT */ | |
int32 dstAC, pulse, code, device, iodata; | |
dstAC = I_GETDST (IR); /* decode fields */ | |
code = I_GETIOT (IR); | |
pulse = I_GETPULSE (IR); | |
device = I_GETDEV (IR); | |
if (code == ioSKP) { /* IO skip? */ | |
switch (pulse) { /* decode IR<8:9> */ | |
case 0: /* skip if busy */ | |
if ((device == DEV_CPU)? (int_req & INT_ION) != 0: | |
(dev_busy & dev_table[device].mask) != 0) | |
PC = (PC + 1) & AMASK; | |
break; | |
case 1: /* skip if not busy */ | |
if ((device == DEV_CPU)? (int_req & INT_ION) == 0: | |
(dev_busy & dev_table[device].mask) == 0) | |
PC = (PC + 1) & AMASK; | |
break; | |
case 2: /* skip if done */ | |
if ((device == DEV_CPU)? pwr_low != 0: | |
(dev_done & dev_table[device].mask) != 0) | |
PC = (PC + 1) & AMASK; | |
break; | |
case 3: /* skip if not done */ | |
if ((device == DEV_CPU)? pwr_low == 0: | |
(dev_done & dev_table[device].mask) == 0) | |
PC = (PC + 1) & AMASK; | |
break; } /* end switch */ | |
} /* end IO skip */ | |
/* IOT, continued */ | |
else if (device == DEV_MDV) { | |
switch (code) { /* case on opcode */ | |
case ioNIO: /* frame ptr */ | |
if (cpu_unit.flags & UNIT_STK) { | |
if (pulse == iopN) FP = AC[dstAC] & AMASK; | |
if (pulse == iopC) AC[dstAC] = FP; } | |
break; | |
case ioDIA: /* load byte */ | |
if (cpu_unit.flags & UNIT_BYT) | |
AC[dstAC] = (M[AC[pulse] >> 1] >> | |
((AC[pulse] & 1)? 0: 8)) & 0377; | |
else AC[dstAC] = 0; | |
break; | |
case ioDOA: /* stack ptr */ | |
if (cpu_unit.flags & UNIT_STK) { | |
if (pulse == iopN) SP = AC[dstAC] & AMASK; | |
if (pulse == iopC) AC[dstAC] = SP; } | |
break; | |
case ioDIB: /* push, pop */ | |
if (cpu_unit.flags & UNIT_STK) { | |
if (pulse == iopN) { /* push */ | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) M[SP] = AC[dstAC]; | |
STK_CHECK (SP, 1); } | |
if (pulse == iopC) { /* pop */ | |
AC[dstAC] = M[SP]; | |
SP = DECA (SP); } | |
if ((pulse == iopP) && /* Nova 4 pshn */ | |
(cpu_unit.flags & UNIT_BYT)) { | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) M[SP] = AC[dstAC]; | |
if (SP > M[042]) int_req = int_req | INT_STK ; | |
} | |
} | |
break; | |
case ioDOB: /* store byte */ | |
if (cpu_unit.flags & UNIT_BYT) { | |
int32 MA, val; | |
MA = AC[pulse] >> 1; | |
val = AC[dstAC] & 0377; | |
if (MEM_ADDR_OK (MA)) M[MA] = (AC[pulse] & 1)? | |
((M[MA] & ~0377) | val): | |
((M[MA] & 0377) | (val << 8)); } | |
break; | |
case ioDIC: /* save, return */ | |
if (cpu_unit.flags & UNIT_STK) { | |
if (pulse == iopN) { /* save */ | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) M[SP] = AC[0]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) M[SP] = AC[1]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) M[SP] = AC[2]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) M[SP] = FP; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) M[SP] = (C >> 1) | | |
(AC[3] & AMASK); | |
AC[3] = FP = SP & AMASK; | |
STK_CHECK (SP, 5); } | |
if (pulse == iopC) { /* retn */ | |
old_PC = PC; | |
SP = FP & AMASK; | |
C = (M[SP] << 1) & CBIT; | |
PC = M[SP] & AMASK; | |
SP = DECA (SP); | |
AC[3] = M[SP]; | |
SP = DECA (SP); | |
AC[2] = M[SP]; | |
SP = DECA (SP); | |
AC[1] = M[SP]; | |
SP = DECA (SP); | |
AC[0] = M[SP]; | |
SP = DECA (SP); | |
FP = AC[3] & AMASK; } | |
if ((pulse == iopP) && /* Nova 4 saven */ | |
(cpu_unit.flags & UNIT_BYT)) { | |
int32 frameSz = M[PC] ; | |
PC = INCA (PC) ; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) M[SP] = AC[0]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) M[SP] = AC[1]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) M[SP] = AC[2]; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) M[SP] = FP; | |
SP = INCA (SP); | |
if (MEM_ADDR_OK (SP)) M[SP] = (C >> 1) | | |
(AC[3] & AMASK); | |
AC[3] = FP = SP & AMASK ; | |
SP = (SP + frameSz) & AMASK ; | |
if (SP > M[042]) int_req = int_req | INT_STK; | |
} | |
} | |
break; | |
case ioDOC: | |
if ((dstAC == 2) && (cpu_unit.flags & UNIT_MDV)) { | |
uint32 mddata, uAC0, uAC1, uAC2; | |
uAC0 = (unsigned int32) AC[0]; | |
uAC1 = (unsigned int32) AC[1]; | |
uAC2 = (unsigned int32) AC[2]; | |
if (pulse == iopP) { /* mul */ | |
mddata = (uAC1 * uAC2) + uAC0; | |
AC[0] = (mddata >> 16) & DMASK; | |
AC[1] = mddata & DMASK; } | |
if (pulse == iopS) { /* div */ | |
if ((uAC0 >= uAC2) || (uAC2 == 0)) | |
C = CBIT; | |
else { C = 0; | |
mddata = (uAC0 << 16) | uAC1; | |
AC[1] = mddata / uAC2; | |
AC[0] = mddata % uAC2; } } } | |
if ((dstAC == 3) && (cpu_unit.flags & UNIT_BYT)) { | |
int32 mddata; | |
if (pulse == iopC) { /* muls */ | |
mddata = (SEXT (AC[1]) * SEXT (AC[2])) + | |
SEXT (AC[0]); | |
AC[0] = (mddata >> 16) & DMASK; | |
AC[1] = mddata & DMASK; } | |
if (pulse == iopN) { /* divs */ | |
if (AC[2] == 0) C = CBIT; | |
else { mddata = (SEXT (AC[0]) << 16) | AC[1]; | |
AC[1] = mddata / SEXT (AC[2]); | |
AC[0] = mddata % SEXT (AC[2]); | |
if ((AC[1] > 077777) || (AC[1] < -0100000)) | |
C = CBIT; | |
else C = 0; | |
AC[0] = AC[0] & DMASK; } } } | |
break; } /* end case code */ | |
} /* end if mul/div */ | |
/* IOT, continued */ | |
else if (device == DEV_CPU) { /* CPU control */ | |
switch (code) { /* decode IR<5:7> */ | |
case ioDIA: /* read switches */ | |
AC[dstAC] = SR; | |
break; | |
case ioDIB: /* int ack */ | |
AC[dstAC] = 0; | |
int_req = (int_req & ~INT_DEV) | | |
(dev_done & ~dev_disable); | |
iodata = int_req & (-int_req); | |
for (i = DEV_LOW; i <= DEV_HIGH; i++) { | |
if (iodata & dev_table[i].mask) { | |
AC[dstAC] = i; break; } } | |
break; | |
case ioDOB: /* mask out */ | |
mask_out (pimask = AC[dstAC]); | |
break; | |
case ioDIC: /* io reset */ | |
reset_all (0); /* reset devices */ | |
break; | |
case ioDOC: /* halt */ | |
reason = STOP_HALT; | |
break; } /* end switch code */ | |
switch (pulse) { /* decode IR<8:9> */ | |
case iopS: /* ion */ | |
int_req = (int_req | INT_ION) & ~INT_NO_ION_PENDING; | |
break; | |
case iopC: /* iof */ | |
int_req = int_req & ~INT_ION; | |
break; } /* end switch pulse */ | |
} /* end CPU control */ | |
else if ((dev_table[device].mask == 0) || | |
(dev_table[device].mask & iot_enb)) { /* normal device */ | |
iodata = dev_table[device].routine (pulse, code, AC[dstAC]); | |
reason = iodata >> IOT_V_REASON; | |
if (code & 1) AC[dstAC] = iodata & 0177777; } | |
else reason = stop_dev; | |
} /* end if IOT */ | |
} /* end while */ | |
/* Simulation halted */ | |
saved_PC = PC; | |
return reason; | |
} | |
/* Null device */ | |
int32 nulldev (int32 pulse, int32 code, int32 AC) | |
{ | |
return stop_dev << IOT_V_REASON; | |
} | |
/* New priority mask out */ | |
void mask_out (int32 newmask) | |
{ | |
int32 i; | |
dev_disable = 0; | |
for (i = DEV_LOW; i <= DEV_HIGH; i++) { | |
if (newmask & dev_table[i].pi) | |
dev_disable = dev_disable | dev_table[i].mask; } | |
int_req = (int_req & ~INT_DEV) | (dev_done & ~dev_disable); | |
return; | |
} | |
/* Reset routine */ | |
t_stat cpu_reset (DEVICE *dptr) | |
{ | |
int_req = int_req & ~(INT_ION | INT_STK); | |
pimask = 0; | |
dev_disable = 0; | |
pwr_low = 0; | |
return cpu_svc (&cpu_unit); | |
} | |
/* Memory examine */ | |
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw) | |
{ | |
if (addr >= MEMSIZE) return SCPE_NXM; | |
if (vptr != NULL) *vptr = M[addr] & DMASK; | |
return SCPE_OK; | |
} | |
/* Memory deposit */ | |
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw) | |
{ | |
if (addr >= MEMSIZE) return SCPE_NXM; | |
M[addr] = val & DMASK; | |
return SCPE_OK; | |
} | |
/* Breakpoint service */ | |
t_stat cpu_svc (UNIT *uptr) | |
{ | |
if ((ibkpt_addr & ~ILL_ADR_FLAG) == save_ibkpt) ibkpt_addr = save_ibkpt; | |
save_ibkpt = -1; | |
return SCPE_OK; | |
} | |
t_stat cpu_set_size (UNIT *uptr, int32 value) | |
{ | |
int32 mc = 0; | |
t_addr i; | |
if ((value <= 0) || (value > MAXMEMSIZE) || ((value & 07777) != 0)) | |
return SCPE_ARG; | |
for (i = value; i < MEMSIZE; i++) mc = mc | M[i]; | |
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE))) | |
return SCPE_OK; | |
MEMSIZE = value; | |
for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0; | |
return SCPE_OK; | |
} | |
/* Bootstrap routine for CPU */ | |
#define BOOT_START 00000 | |
#define BOOT_LEN (sizeof (boot_rom) / sizeof (int)) | |
static const int32 boot_rom[] = { | |
0062677, /* IORST ;reset all I/O */ | |
0060477, /* READS 0 ;read SR into AC0 */ | |
0024026, /* LDA 1,C77 ;get dev mask */ | |
0107400, /* AND 0,1 ;isolate dev code */ | |
0124000, /* COM 1,1 ;- device code - 1 */ | |
0010014, /* LOOP: ISZ OP1 ;device code to all */ | |
0010030, /* ISZ OP2 ;I/O instructions */ | |
0010032, /* ISZ OP3 */ | |
0125404, /* INC 1,1,SZR ;done? */ | |
0000005, /* JMP LOOP ;no, increment again */ | |
0030016, /* LDA 2,C377 ;place JMP 377 into */ | |
0050377, /* STA 2,377 ;location 377 */ | |
0060077, /* OP1: 060077 ;start device (NIOS 0) */ | |
00101102, /* MOVL 0,0,SZC ;test switch 0, low speed? */ | |
0000377, /* C377: JMP 377 ;no - jmp 377 & wait */ | |
0004030, /* LOOP2: JSR GET+1 ;get a frame */ | |
0101065, /* MOVC 0,0,SNR ;is it non-zero? */ | |
0000017, /* JMP LOOP2 ;no, ignore */ | |
0004027, /* LOOP4: JSR GET ;yes, get full word */ | |
0046026, /* STA 1,@C77 ;store starting at 100 */ | |
/* ;2's complement of word ct */ | |
0010100, /* ISZ 100 ;done? */ | |
0000022, /* JMP LOOP4 ;no, get another */ | |
0000077, /* C77: JMP 77 ;yes location ctr and */ | |
/* ;jmp to last word */ | |
0126420, /* GET: SUBZ 1,1 ; clr AC1, set carry */ | |
/* OP2: */ | |
0063577, /* LOOP3: 063577 ;done? (SKPDN 0) - 1 */ | |
0000030, /* JMP LOOP3 ;no -- wait */ | |
0060477, /* OP3: 060477 ;y -- read in ac0 (DIAS 0,0) */ | |
0107363, /* ADDCS 0,1,SNC ;add 2 frames swapped - got 2nd? */ | |
0000030, /* JMP LOOP3 ;no go back after it */ | |
0125300, /* MOVS 1,1 ;yes swap them */ | |
0001400, /* JMP 0,3 ;rtn with full word */ | |
0000000 /* 0 ;padding */ | |
}; | |
t_stat cpu_boot (int32 unitno) | |
{ | |
int32 i; | |
extern int32 saved_PC; | |
for (i = 0; i < BOOT_LEN; i++) M[BOOT_START + i] = boot_rom[i]; | |
saved_PC = BOOT_START; | |
return SCPE_OK; | |
} |