blob: 8d16be6152c0f118b93e68f768ae34b48cefbaf2 [file] [log] [blame] [raw]
/* hp2100_ipl.c: HP 2000 interprocessor link simulator
Copyright (c) 2002-2014, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
IPLI, IPLO 12875A interprocessor link
30-Dec-14 JDB Added S-register parameters to ibl_copy
12-Dec-12 MP Revised ipl_attach for new socket API
25-Oct-12 JDB Removed DEV_NET to allow restoration of listening ports
09-May-12 JDB Separated assignments from conditional expressions
10-Feb-12 JDB Deprecated DEVNO in favor of SC
Added CARD_INDEX casts to dib.card_index
07-Apr-11 JDB A failed STC may now be retried
28-Mar-11 JDB Tidied up signal handling
27-Mar-11 JDB Consolidated reporting of consecutive CRS signals
29-Oct-10 JDB Revised for new multi-card paradigm
26-Oct-10 JDB Changed I/O signal handler for revised signal model
07-Sep-08 JDB Changed Telnet poll to connect immediately after reset or attach
15-Jul-08 JDB Revised EDT handler to refine completion delay conditions
09-Jul-08 JDB Revised ipl_boot to use ibl_copy
26-Jun-08 JDB Rewrote device I/O to model backplane signals
01-Mar-07 JDB IPLI EDT delays DMA completion interrupt for TSB
Added debug printouts
28-Dec-06 JDB Added ioCRS state to I/O decoders
16-Aug-05 RMS Fixed C++ declaration and cast problems
07-Oct-04 JDB Fixed enable/disable from either device
26-Apr-04 RMS Fixed SFS x,C and SFC x,C
Implemented DMA SRQ (follows FLG)
21-Dec-03 RMS Adjusted ipl_ptime for TSB (from Mike Gemeny)
09-May-03 RMS Added network device flag
31-Jan-03 RMS Links are full duplex (found by Mike Gemeny)
Reference:
- 12875A Processor Interconnect Kit Operating and Service Manual
(12875-90002, Jan-1974)
The 12875A Processor Interconnect Kit consists four 12566A Microcircuit
Interface cards. Two are used in each processor. One card in each system is
used to initiate transmissions to the other, and the second card is used to
receive transmissions from the other. Each pair of cards forms a
bidirectional link, as the sixteen data lines are cross-connected, so that
data sent and status returned are supported. In each processor, data is sent
on the lower priority card and received on the higher priority card. Two
sets of cards are used to support simultaneous transmission in both
directions.
*/
#include "hp2100_defs.h"
#include "hp2100_cpu.h"
#include "sim_sock.h"
#include "sim_tmxr.h"
typedef enum { ipli, iplo } CARD_INDEX; /* card index number */
#define CARD_COUNT 2 /* count of cards supported */
#define UNIT_V_DIAG (UNIT_V_UF + 0) /* diagnostic mode */
#define UNIT_V_ACTV (UNIT_V_UF + 1) /* making connection */
#define UNIT_V_ESTB (UNIT_V_UF + 2) /* connection established */
#define UNIT_V_HOLD (UNIT_V_UF + 3) /* character holding */
#define UNIT_DIAG (1 << UNIT_V_DIAG)
#define UNIT_ACTV (1 << UNIT_V_ACTV)
#define UNIT_ESTB (1 << UNIT_V_ESTB)
#define UNIT_HOLD (1 << UNIT_V_HOLD)
#define IBUF buf /* input buffer */
#define OBUF wait /* output buffer */
#define DSOCKET u3 /* data socket */
#define LSOCKET u4 /* listening socket */
/* Debug flags */
#define DEB_CMDS (1 << 0) /* Command initiation and completion */
#define DEB_CPU (1 << 1) /* CPU I/O */
#define DEB_XFER (1 << 2) /* Socket receive and transmit */
extern DIB ptr_dib; /* need PTR select code for boot */
int32 ipl_edtdelay = 1; /* EDT delay (msec) */
int32 ipl_ptime = 31; /* polling interval */
int32 ipl_stopioe = 0; /* stop on error */
typedef struct {
FLIP_FLOP control; /* control flip-flop */
FLIP_FLOP flag; /* flag flip-flop */
FLIP_FLOP flagbuf; /* flag buffer flip-flop */
int32 hold; /* holding character */
} CARD_STATE;
CARD_STATE ipl [CARD_COUNT]; /* per-card state */
IOHANDLER iplio;
t_stat ipl_svc (UNIT *uptr);
t_stat ipl_reset (DEVICE *dptr);
t_stat ipl_attach (UNIT *uptr, char *cptr);
t_stat ipl_detach (UNIT *uptr);
t_stat ipl_boot (int32 unitno, DEVICE *dptr);
t_stat ipl_dscln (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat ipl_setdiag (UNIT *uptr, int32 val, char *cptr, void *desc);
t_bool ipl_check_conn (UNIT *uptr);
/* Debug flags table */
DEBTAB ipl_deb [] = {
{ "CMDS", DEB_CMDS },
{ "CPU", DEB_CPU },
{ "XFER", DEB_XFER },
{ NULL, 0 }
};
/* Common structures */
DEVICE ipli_dev, iplo_dev;
static DEVICE *dptrs [] = { &ipli_dev, &iplo_dev };
UNIT ipl_unit [] = {
{ UDATA (&ipl_svc, UNIT_ATTABLE, 0) },
{ UDATA (&ipl_svc, UNIT_ATTABLE, 0) }
};
#define ipli_unit ipl_unit [ipli]
#define iplo_unit ipl_unit [iplo]
DIB ipl_dib [] = {
{ &iplio, IPLI, 0 },
{ &iplio, IPLO, 1 }
};
#define ipli_dib ipl_dib [ipli]
#define iplo_dib ipl_dib [iplo]
/* IPLI data structures
ipli_dev IPLI device descriptor
ipli_unit IPLI unit descriptor
ipli_reg IPLI register list
*/
REG ipli_reg [] = {
{ ORDATA (IBUF, ipli_unit.IBUF, 16) },
{ ORDATA (OBUF, ipli_unit.OBUF, 16) },
{ FLDATA (CTL, ipl [ipli].control, 0) },
{ FLDATA (FLG, ipl [ipli].flag, 0) },
{ FLDATA (FBF, ipl [ipli].flagbuf, 0) },
{ ORDATA (HOLD, ipl [ipli].hold, 8) },
{ DRDATA (TIME, ipl_ptime, 24), PV_LEFT },
{ FLDATA (STOP_IOE, ipl_stopioe, 0) },
{ ORDATA (SC, ipli_dib.select_code, 6), REG_HRO },
{ ORDATA (DEVNO, ipli_dib.select_code, 6), REG_HRO },
{ NULL }
};
MTAB ipl_mod [] = {
{ UNIT_DIAG, UNIT_DIAG, "diagnostic mode", "DIAG", &ipl_setdiag },
{ UNIT_DIAG, 0, "link mode", "LINK", &ipl_setdiag },
{ MTAB_XTD | MTAB_VDV, 0, NULL, "DISCONNECT",
&ipl_dscln, NULL, NULL },
{ MTAB_XTD | MTAB_VDV, 1, "SC", "SC", &hp_setsc, &hp_showsc, &ipli_dev },
{ MTAB_XTD | MTAB_VDV | MTAB_NMO, 1, "DEVNO", "DEVNO", &hp_setdev, &hp_showdev, &ipli_dev },
{ 0 }
};
DEVICE ipli_dev = {
"IPLI", &ipli_unit, ipli_reg, ipl_mod,
1, 10, 31, 1, 16, 16,
&tmxr_ex, &tmxr_dep, &ipl_reset,
&ipl_boot, &ipl_attach, &ipl_detach,
&ipli_dib, DEV_DISABLE | DEV_DIS | DEV_DEBUG,
0, ipl_deb, NULL, NULL
};
/* IPLO data structures
iplo_dev IPLO device descriptor
iplo_unit IPLO unit descriptor
iplo_reg IPLO register list
*/
REG iplo_reg [] = {
{ ORDATA (IBUF, iplo_unit.IBUF, 16) },
{ ORDATA (OBUF, iplo_unit.OBUF, 16) },
{ FLDATA (CTL, ipl [iplo].control, 0) },
{ FLDATA (FLG, ipl [iplo].flag, 0) },
{ FLDATA (FBF, ipl [iplo].flagbuf, 0) },
{ ORDATA (HOLD, ipl [iplo].hold, 8) },
{ DRDATA (TIME, ipl_ptime, 24), PV_LEFT },
{ ORDATA (SC, iplo_dib.select_code, 6), REG_HRO },
{ ORDATA (DEVNO, iplo_dib.select_code, 6), REG_HRO },
{ NULL }
};
DEVICE iplo_dev = {
"IPLO", &iplo_unit, iplo_reg, ipl_mod,
1, 10, 31, 1, 16, 16,
&tmxr_ex, &tmxr_dep, &ipl_reset,
&ipl_boot, &ipl_attach, &ipl_detach,
&iplo_dib, DEV_DISABLE | DEV_DIS | DEV_DEBUG,
0, ipl_deb, NULL, NULL
};
/* I/O signal handler for the IPLI and IPLO devices.
In the link mode, the IPLI and IPLO devices are linked via network
connections to the corresponding cards in another CPU instance. In the
diagnostic mode, we simulate the attachment of the interprocessor cable
between IPLI and IPLO in this machine.
Implementation notes:
1. 2000 Access has a race condition that manifests itself by an apparently
normal boot and operational system console but no PLEASE LOG IN response
to terminals connected to the multiplexer. The frequency of occurrence
is higher on multiprocessor host systems, where the SP and IOP instances
may execute concurrently.
The cause is this code in the SP disc loader source (2883.asm, 7900.asm,
790X.asm, 79X3.asm, and 79XX.asm):
LDA SDVTR REQUEST
JSB IOPMA,I DEVICE TABLE
[...]
STC DMAHS,C TURN ON DMA
SFS DMAHS WAIT FOR
JMP *-1 DEVICE TABLE
STC CH2,C SET CORRECT
CLC CH2 FLAG DIRECTION
The STC/CLC normally would cause a second "request device table" command
to be recognized by the IOP, except that the IOP DMA setup routine
"DMAXF" (in D61.asm) has specified an end-of-block CLC that holds off the
IPL interrupt, and the completion interrupt routine "DMACP" ends with a
STC,C that clears the IPL flag.
In hardware, the two CPUs are essentially interlocked by the DMA
transfer, and DMA completion interrupts occur almost simultaneously.
Therefore, the STC/CLC in the SP is guaranteed to occur before the STC,C
in the IOP. Under simulation, and especially on multiprocessor hosts,
that guarantee does not hold. If the STC/CLC occurs after the STC,C,
then the IOP starts a second device table DMA transfer, which the SP is
not expecting. The IOP never processes the subsequent "start
timesharing" command, and the muxtiplexer is non-reponsive.
We employ a workaround that decreases the incidence of the problem: DMA
output completion interrupts are delayed to allow the other SIMH instance
a chance to process its own DMA completion. We do this by processing the
EDT (End Data Transfer) I/O backplane signal and "sleep"ing for a short
time if the transfer was an output transfer to the input channel, i.e.,
a data response to the SP. This improves the race condition by delaying
the IOP until the SP has a chance to receive the last word, recognize its
own DMA input completion, drop out of the SFS loop, and execute the
STC/CLC.
The condition is only improved, and not solved, because "sleep"ing the
IOP doesn't guarantee that the SP will actually execute. It's possible
that a higher-priority host process will preempt the SP, and that at the
sleep expiration, the SP still has not executed the STC/CLC. Still, in
testing, the incidence dropped dramatically, so the problem is much less
intrusive.
2. The operating manual for the 12920A Terminal Multiplexer says that "at
least 100 milliseconds of CLC 0s must be programmed" by systems employing
the multiplexer to ensure that the multiplexer resets. In practice, such
systems issue 128K CLC 0 instructions. As we provide debug logging of
IPL resets, a CRS counter is used to ensure that only one debug line is
printed in response to these 128K CRS invocations.
3. The STC handler may return "Unit not attached", "I/O error", or "No
connection on interprocessor link" status if the link fails or is
improperly configured. If the error is corrected, the operation may be
retried by resuming simulated execution.
*/
uint32 iplio (DIB *dibptr, IOCYCLE signal_set, uint32 stat_data)
{
CARD_INDEX card = (CARD_INDEX) dibptr->card_index; /* set card selector */
UNIT *const uptr = &(ipl_unit [card]); /* associated unit pointer */
const char *iotype [] = { "Status", "Command" };
int32 sta;
char msg [2];
static uint32 crs_count [CARD_COUNT] = { 0, 0 }; /* per-card cntrs for ioCRS repeat */
IOSIGNAL signal;
IOCYCLE working_set = IOADDSIR (signal_set); /* add ioSIR if needed */
if (crs_count [card] && !(signal_set & ioCRS)) { /* counting CRSes and not present? */
if (DEBUG_PRJ (dptrs [card], DEB_CMDS)) /* report reset count */
fprintf (sim_deb, ">>%s cmds: [CRS] Control cleared %d times\n",
dptrs [card]->name, crs_count [card]);
crs_count [card] = 0; /* clear counter */
}
while (working_set) {
signal = IONEXT (working_set); /* isolate next signal */
switch (signal) { /* dispatch I/O signal */
case ioCLF: /* clear flag flip-flop */
ipl [card].flag = ipl [card].flagbuf = CLEAR;
break;
case ioSTF: /* set flag flip-flop */
case ioENF: /* enable flag */
ipl [card].flag = ipl [card].flagbuf = SET;
break;
case ioSFC: /* skip if flag is clear */
setstdSKF (ipl [card]);
break;
case ioSFS: /* skip if flag is set */
setstdSKF (ipl [card]);
break;
case ioIOI: /* I/O data input */
stat_data = IORETURN (SCPE_OK, uptr->IBUF); /* get return data */
if (DEBUG_PRJ (dptrs [card], DEB_CPU))
fprintf (sim_deb, ">>%s cpu: [LIx] %s = %06o\n", dptrs [card]->name, iotype [card ^ 1], uptr->IBUF);
break;
case ioIOO: /* I/O data output */
uptr->OBUF = IODATA (stat_data); /* clear supplied status */
if (DEBUG_PRJ (dptrs [card], DEB_CPU))
fprintf (sim_deb, ">>%s cpu: [OTx] %s = %06o\n", dptrs [card]->name, iotype [card], uptr->OBUF);
break;
case ioPOPIO: /* power-on preset to I/O */
ipl [card].flag = ipl [card].flagbuf = SET; /* set flag buffer and flag */
uptr->OBUF = 0; /* clear output buffer */
break;
case ioCRS: /* control reset */
if (crs_count [card] == 0) /* first reset? */
ipl [card].control = CLEAR; /* clear control */
crs_count [card] = crs_count [card] + 1; /* increment count */
break;
case ioCLC: /* clear control flip-flop */
ipl [card].control = CLEAR; /* clear ctl */
if (DEBUG_PRJ (dptrs [card], DEB_CMDS))
fprintf (sim_deb, ">>%s cmds: [CLC] Control cleared\n", dptrs [card]->name);
break;
case ioSTC: /* set control flip-flop */
if (DEBUG_PRJ (dptrs [card], DEB_CMDS))
fprintf (sim_deb, ">>%s cmds: [STC] Control set\n", dptrs [card]->name);
if (uptr->flags & UNIT_ATT) { /* attached? */
if (!ipl_check_conn (uptr)) /* not established? */
return IORETURN (STOP_NOCONN, 0); /* lose */
msg [0] = (uptr->OBUF >> 8) & 0377;
msg [1] = uptr->OBUF & 0377;
sta = sim_write_sock (uptr->DSOCKET, msg, 2);
if (DEBUG_PRJ (dptrs [card], DEB_XFER))
fprintf (sim_deb,
">>%s xfer: [STC] Socket write = %06o, status = %d\n",
dptrs [card]->name, uptr->OBUF, sta);
if (sta == SOCKET_ERROR) {
printf ("IPL socket write error\n");
return IORETURN (SCPE_IOERR, 0);
}
ipl [card].control = SET; /* set ctl */
sim_os_sleep (0);
}
else if (uptr->flags & UNIT_DIAG) { /* diagnostic mode? */
ipl [card].control = SET; /* set ctl */
ipl_unit [card ^ 1].IBUF = uptr->OBUF; /* output to other */
iplio ((DIB *) dptrs [card ^ 1]->ctxt, ioENF, 0); /* set other flag */
}
else
return IORETURN (SCPE_UNATT, 0); /* lose */
break;
case ioEDT: /* end data transfer */
if ((cpu_unit.flags & UNIT_IOP) && /* are we the IOP? */
(signal_set & ioIOO) && /* and doing output? */
(card == ipli)) { /* on the input card? */
if (DEBUG_PRJ (dptrs [card], DEB_CMDS))
fprintf (sim_deb,
">>%s cmds: [EDT] Delaying DMA completion interrupt for %d msec\n",
dptrs [card]->name, ipl_edtdelay);
sim_os_ms_sleep (ipl_edtdelay); /* delay completion */
}
break;
case ioSIR: /* set interrupt request */
setstdPRL (ipl [card]);
setstdIRQ (ipl [card]);
setstdSRQ (ipl [card]);
break;
case ioIAK: /* interrupt acknowledge */
ipl [card].flagbuf = CLEAR;
break;
default: /* all other signals */
break; /* are ignored */
}
working_set = working_set & ~signal; /* remove current signal from set */
}
return stat_data;
}
/* Unit service - poll for input */
t_stat ipl_svc (UNIT *uptr)
{
CARD_INDEX card;
int32 nb;
char msg [2];
if ((uptr->flags & UNIT_ATT) == 0) /* not attached? */
return SCPE_OK;
sim_activate (uptr, ipl_ptime); /* reactivate */
if (!ipl_check_conn (uptr)) /* check for conn */
return SCPE_OK; /* not connected */
nb = sim_read_sock (uptr->DSOCKET, msg, ((uptr->flags & UNIT_HOLD)? 1: 2));
if (nb < 0) { /* connection closed? */
printf ("IPL socket read error\n");
return SCPE_IOERR;
}
else if (nb == 0) /* no data? */
return SCPE_OK;
card = (CARD_INDEX) (uptr == &iplo_unit); /* set card selector */
if (uptr->flags & UNIT_HOLD) { /* holdover byte? */
uptr->IBUF = (ipl [card].hold << 8) | (((int32) msg [0]) & 0377);
uptr->flags = uptr->flags & ~UNIT_HOLD;
}
else if (nb == 1) {
ipl [card].hold = ((int32) msg [0]) & 0377;
uptr->flags = uptr->flags | UNIT_HOLD;
}
else
uptr->IBUF = ((((int32) msg [0]) & 0377) << 8) | (((int32) msg [1]) & 0377);
iplio ((DIB *) dptrs [card]->ctxt, ioENF, 0); /* set flag */
if (DEBUG_PRJ (dptrs [card], DEB_XFER))
fprintf (sim_deb, ">>%s xfer: Socket read = %06o, status = %d\n",
dptrs [card]->name, uptr->IBUF, nb);
return SCPE_OK;
}
t_bool ipl_check_conn (UNIT *uptr)
{
SOCKET sock;
if (uptr->flags & UNIT_ESTB) /* established? */
return TRUE;
if (uptr->flags & UNIT_ACTV) { /* active connect? */
if (sim_check_conn (uptr->DSOCKET, 0) <= 0)
return FALSE;
}
else {
sock = sim_accept_conn (uptr->LSOCKET, NULL); /* poll connect */
if (sock == INVALID_SOCKET) /* got a live one? */
return FALSE;
uptr->DSOCKET = sock; /* save data socket */
}
uptr->flags = uptr->flags | UNIT_ESTB; /* conn established */
return TRUE;
}
/* Reset routine.
Implementation notes:
1. We set up the first poll for socket connections to occur "immediately"
upon execution, so that clients will be connected before execution
begins. Otherwise, a fast program may access the IPL before the poll
service routine activates.
*/
t_stat ipl_reset (DEVICE *dptr)
{
UNIT *uptr = dptr->units;
DIB *dibptr = (DIB *) dptr->ctxt; /* DIB pointer */
CARD_INDEX card = (CARD_INDEX) dibptr->card_index; /* card number */
hp_enbdis_pair (dptr, dptrs [card ^ 1]); /* make pair cons */
if (sim_switches & SWMASK ('P')) /* initialization reset? */
uptr->IBUF = uptr->OBUF = 0; /* clr buffers */
IOPRESET (dibptr); /* PRESET device (does not use PON) */
if (uptr->flags & UNIT_ATT) /* socket attached? */
sim_activate (uptr, POLL_FIRST); /* activate first poll "immediately" */
else
sim_cancel (uptr); /* deactivate unit */
uptr->flags = uptr->flags & ~UNIT_HOLD; /* clear holding flag */
return SCPE_OK;
}
/* Attach routine
attach -l - listen for connection on port
attach -c - connect to ip address and port
*/
t_stat ipl_attach (UNIT *uptr, char *cptr)
{
SOCKET newsock;
uint32 i, t;
char host [CBUFSIZE], port [CBUFSIZE], hostport [2 * CBUFSIZE + 3];
char *tptr = NULL;
t_stat r;
t_bool is_active;
is_active = (uptr->flags & UNIT_ACTV) == UNIT_ACTV; /* is the connection active? */
if (uptr->flags & UNIT_ATT) /* if IPL is currently attached, */
ipl_detach (uptr); /* detach it first */
if ((sim_switches & SWMASK ('C')) || /* connecting? */
((sim_switches & SIM_SW_REST) && is_active)) { /* or restoring an active connection? */
r = sim_parse_addr (cptr, host, /* parse the host and port */
sizeof (host), "localhost", /* from the parameter string */
port, sizeof (port),
NULL, NULL);
if ((r != SCPE_OK) || (port [0] == '\0')) /* parse error or missing port number? */
return SCPE_ARG; /* complain to the user */
sprintf(hostport, "%s%s%s%s%s", strchr(host, ':') ? "[" : "", host, strchr(host, ':') ? "]" : "", host [0] ? ":" : "", port);
newsock = sim_connect_sock (hostport, NULL, NULL);
if (newsock == INVALID_SOCKET)
return SCPE_IOERR;
printf ("Connecting to %s\n", hostport);
if (sim_log)
fprintf (sim_log, "Connecting to %s\n", hostport);
uptr->flags = uptr->flags | UNIT_ACTV;
uptr->LSOCKET = 0;
uptr->DSOCKET = newsock;
}
else {
r = sim_parse_addr (cptr, host, sizeof(host), NULL, port, sizeof(port), NULL, NULL);
if (r != SCPE_OK)
return SCPE_ARG;
sprintf(hostport, "%s%s%s%s%s", strchr(host, ':') ? "[" : "", host, strchr(host, ':') ? "]" : "", host [0] ? ":" : "", port);
newsock = sim_master_sock (hostport, &r);
if (r != SCPE_OK)
return r;
if (newsock == INVALID_SOCKET)
return SCPE_IOERR;
printf ("Listening on port %s\n", hostport);
if (sim_log)
fprintf (sim_log, "Listening on port %s\n", hostport);
uptr->flags = uptr->flags & ~UNIT_ACTV;
uptr->LSOCKET = newsock;
uptr->DSOCKET = 0;
}
uptr->IBUF = uptr->OBUF = 0;
uptr->flags = (uptr->flags | UNIT_ATT) & ~(UNIT_ESTB | UNIT_HOLD);
tptr = (char *) malloc (strlen (hostport) + 1); /* get string buf */
if (tptr == NULL) { /* no memory? */
ipl_detach (uptr); /* close sockets */
return SCPE_MEM;
}
strcpy (tptr, hostport); /* copy ipaddr:port */
uptr->filename = tptr; /* save */
sim_activate (uptr, POLL_FIRST); /* activate first poll "immediately" */
if (sim_switches & SWMASK ('W')) { /* wait? */
for (i = 0; i < 30; i++) { /* check for 30 sec */
t = ipl_check_conn (uptr);
if (t) /* established? */
break;
if ((i % 10) == 0) /* status every 10 sec */
printf ("Waiting for connnection\n");
sim_os_sleep (1); /* sleep 1 sec */
}
if (t) /* if connected (set by "ipl_check_conn" above) */
printf ("Connection established\n"); /* then report */
}
return SCPE_OK;
}
/* Detach routine */
t_stat ipl_detach (UNIT *uptr)
{
if (!(uptr->flags & UNIT_ATT)) /* attached? */
return SCPE_OK;
if (uptr->flags & UNIT_ACTV)
sim_close_sock (uptr->DSOCKET, 1);
else {
if (uptr->flags & UNIT_ESTB) /* if established, */
sim_close_sock (uptr->DSOCKET, 0); /* close data socket */
sim_close_sock (uptr->LSOCKET, 1); /* closen listen socket */
}
free (uptr->filename); /* free string */
uptr->filename = NULL;
uptr->LSOCKET = 0;
uptr->DSOCKET = 0;
uptr->flags = uptr->flags & ~(UNIT_ATT | UNIT_ACTV | UNIT_ESTB);
sim_cancel (uptr); /* don't poll */
return SCPE_OK;
}
/* Disconnect routine */
t_stat ipl_dscln (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (cptr)
return SCPE_ARG;
if (((uptr->flags & UNIT_ATT) == 0) ||
(uptr->flags & UNIT_ACTV) ||
((uptr->flags & UNIT_ESTB) == 0))
return SCPE_NOFNC;
sim_close_sock (uptr->DSOCKET, 0);
uptr->DSOCKET = 0;
uptr->flags = uptr->flags & ~UNIT_ESTB;
return SCPE_OK;
}
/* Diagnostic/normal mode routine */
t_stat ipl_setdiag (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (val) {
ipli_unit.flags = ipli_unit.flags | UNIT_DIAG;
iplo_unit.flags = iplo_unit.flags | UNIT_DIAG;
}
else {
ipli_unit.flags = ipli_unit.flags & ~UNIT_DIAG;
iplo_unit.flags = iplo_unit.flags & ~UNIT_DIAG;
}
return SCPE_OK;
}
/* Interprocessor link bootstrap routine (HP Access Manual) */
#define MAX_BASE 073
#define IPL_PNTR 074
#define PTR_PNTR 075
#define IPL_DEVA 076
#define PTR_DEVA 077
static const BOOT_ROM ipl_rom = {
0163774, /*BBL LDA ICK,I ; IPL sel code */
0027751, /* JMP CFG ; go configure */
0107700, /*ST CLC 0,C ; intr off */
0002702, /* CLA,CCE,SZA ; skip in */
0063772, /*CN LDA M26 ; feed frame */
0002307, /*EOC CCE,INA,SZA,RSS ; end of file? */
0027760, /* JMP EOT ; yes */
0017736, /* JSB READ ; get #char */
0007307, /* CMB,CCE,INB,SZB,RSS ; 2's comp; null? */
0027705, /* JMP EOC ; read next */
0077770, /* STB WC ; word in rec */
0017736, /* JSB READ ; get feed frame */
0017736, /* JSB READ ; get address */
0074000, /* STB 0 ; init csum */
0077771, /* STB AD ; save addr */
0067771, /*CK LDB AD ; check addr */
0047773, /* ADB MAXAD ; below loader */
0002040, /* SEZ ; E =0 => OK */
0102055, /* HLT 55 */
0017736, /* JSB READ ; get word */
0040001, /* ADA 1 ; cont checksum */
0177771, /* STB AD,I ; store word */
0037771, /* ISZ AD */
0000040, /* CLE ; force wd read */
0037770, /* ISZ WC ; block done? */
0027717, /* JMP CK ; no */
0017736, /* JSB READ ; get checksum */
0054000, /* CPB 0 ; ok? */
0027704, /* JMP CN ; next block */
0102011, /* HLT 11 ; bad csum */
0000000, /*RD 0 */
0006600, /* CLB,CME ; E reg byte ptr */
0103700, /*IO1 STC RDR,C ; start reader */
0102300, /*IO2 SFS RDR ; wait */
0027741, /* JMP *-1 */
0106400, /*IO3 MIB RDR ; get byte */
0002041, /* SEZ,RSS ; E set? */
0127736, /* JMP RD,I ; no, done */
0005767, /* BLF,CLE,BLF ; shift byte */
0027740, /* JMP IO1 ; again */
0163775, /* LDA PTR,I ; get ptr code */
0043765, /*CFG ADA SFS ; config IO */
0073741, /* STA IO2 */
0043766, /* ADA STC */
0073740, /* STA IO1 */
0043767, /* ADA MIB */
0073743, /* STA IO3 */
0027702, /* JMP ST */
0063777, /*EOT LDA PSC ; put select codes */
0067776, /* LDB ISC ; where xloader wants */
0102077, /* HLT 77 */
0027702, /* JMP ST */
0000000, /* NOP */
0102300, /*SFS SFS 0 */
0001400, /*STC 1400 */
0002500, /*MIB 2500 */
0000000, /*WC 0 */
0000000, /*AD 0 */
0177746, /*M26 -26 */
0000000, /*MAX -BBL */
0007776, /*ICK ISC */
0007777, /*PTR IPT */
0000000, /*ISC 0 */
0000000 /*IPT 0 */
};
t_stat ipl_boot (int32 unitno, DEVICE *dptr)
{
const int32 devi = ipli_dib.select_code;
const int32 devp = ptr_dib.select_code;
if (ibl_copy (ipl_rom, devi, IBL_S_CLR, /* copy the boot ROM to memory and configure */
IBL_SET_SC (devi) | devp)) /* the S register accordingly */
return SCPE_IERR; /* return an internal error if the copy failed */
WritePW (PC + MAX_BASE, (~PC + 1) & DMASK); /* fix ups */
WritePW (PC + IPL_PNTR, ipl_rom [IPL_PNTR] | PC);
WritePW (PC + PTR_PNTR, ipl_rom [PTR_PNTR] | PC);
WritePW (PC + IPL_DEVA, devi);
WritePW (PC + PTR_DEVA, devp);
return SCPE_OK;
}