/* pdp10_pag.c: PDP-10 paging subsystem simulator | |
Copyright (c) 1993-2005, Robert M Supnik | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name of Robert M Supnik shall not be | |
used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from Robert M Supnik. | |
pag KS10 pager | |
22-Sep-05 RMS Fixed declarations (from Sterling Garwood) | |
02-Dec-01 RMS Fixed bug in ITS LPMR (found by Dave Conroy) | |
21-Aug-01 RMS Fixed bug in ITS paging (found by Miriam Lennox) | |
Removed register from declarations | |
19-May-01 RMS Added workaround for TOPS-20 V4.1 boot bug | |
03-May-01 RMS Fixed bug in indirect page table pointer processing | |
29-Apr-01 RMS Added CLRCSH for ITS, fixed LPMR | |
The pager consists of a standard hardware part (the translation | |
tables) and an operating-system specific page table fill routine. | |
There are two translation tables, one for executive mode and one | |
for user mode. Each table consists of 512 page table entries, | |
one for each page in the 18b virtual address space. Each pte | |
contains (in the hardware) a valid bit, a writeable bit, an | |
address space bit (executive or user), and a cacheable bit, plus | |
the physical page number corresponding to the virtual page. In | |
the simulator, the pte is expanded for rapid processing of normal | |
reads and writes. An expanded pte contains a valid bit, a writeable | |
bit, and the physical page number shifted left by the page size. | |
Expanded pte meaning | |
0 invalid | |
>0 read only | |
<0 read write | |
There is a third, physical table, which is used in place of the | |
executive and user tables if paging is off. Its entries are always | |
valid and always writeable. | |
To translate a virtual to physical address, the simulator uses | |
the virtual page number to index into the appropriate page table. | |
If the page table entry (pte) is not valid, the page fill routine | |
is called to see if the entry is merely not filled or is truly | |
inaccessible. If the pte is valid but not writeable, and the | |
reference is a write reference, the page fill routine is also | |
called to see if the reference can be resolved. | |
The page fill routine is operating system dependent. Three styles | |
of paging are supported: | |
TOPS10 known in the KS10 microcode as KI10 paging, | |
used by earlier versions of TOPS10 | |
TOPS20 known in the KS10 microcode as KL10 paging, | |
used by later versions of TOPS10, and TOPS20 | |
ITS used only by ITS | |
TOPS10 vs TOPS20 is selected by a bit in the EBR; ITS paging is | |
"hardwired" (it required different microcode). | |
*/ | |
#include "pdp10_defs.h" | |
#include <setjmp.h> | |
/* Page table (contains expanded pte's) */ | |
#define PTBL_ASIZE PAG_N_VPN | |
#define PTBL_MEMSIZE (1 << PTBL_ASIZE) /* page table size */ | |
#define PTBL_AMASK (PTBL_MEMSIZE - 1) | |
#define PTBL_M (1u << 31) /* must be sign bit */ | |
#define PTBL_V (1u << 30) | |
#define PTBL_MASK (PAG_PPN | PTBL_M | PTBL_V) | |
/* NXM processing */ | |
#define REF_V 0 /* ref is virt */ | |
#define REF_P 1 /* ref is phys */ | |
#define PF_OK 0 /* pfail ok */ | |
#define PF_TR 1 /* pfail trap */ | |
extern d10 *M; | |
extern d10 acs[AC_NBLK * AC_NUM]; | |
extern d10 *ac_cur, *ac_prv, *last_pa; | |
extern a10 epta, upta; | |
extern int32 flags; | |
extern d10 pager_word; | |
extern int32 apr_flg; | |
extern d10 ebr, ubr, hsb; | |
extern d10 spt, cst, cstm, pur; | |
extern a10 dbr1, dbr2, dbr3, dbr4; | |
extern d10 pcst, quant; | |
extern t_bool paging; | |
extern UNIT cpu_unit; | |
extern jmp_buf save_env; | |
extern int32 test_int (void); | |
extern int32 pi_eval (void); | |
int32 eptbl[PTBL_MEMSIZE]; /* exec page table */ | |
int32 uptbl[PTBL_MEMSIZE]; /* user page table */ | |
int32 physptbl[PTBL_MEMSIZE]; /* phys page table */ | |
int32 *ptbl_cur, *ptbl_prv; | |
int32 save_ea; | |
int32 ptbl_fill (a10 ea, int32 *ptbl, int32 mode); | |
t_stat pag_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw); | |
t_stat pag_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw); | |
t_stat pag_reset (DEVICE *dptr); | |
void pag_nxm (a10 pa, int32 phys, int32 trap); | |
/* Pager data structures | |
pag_dev pager device descriptor | |
pag_unit pager units | |
pager_reg pager register list | |
*/ | |
UNIT pag_unit[] = { | |
{ UDATA (NULL, UNIT_FIX, PTBL_MEMSIZE) }, | |
{ UDATA (NULL, UNIT_FIX, PTBL_MEMSIZE) } | |
}; | |
REG pag_reg[] = { | |
{ ORDATA (PANIC_EA, save_ea, PASIZE), REG_HRO }, | |
{ NULL } | |
}; | |
DEVICE pag_dev = { | |
"PAG", pag_unit, pag_reg, NULL, | |
2, 8, PTBL_ASIZE, 1, 8, 32, | |
&pag_ex, &pag_dep, &pag_reset, | |
NULL, NULL, NULL, | |
NULL, 0 | |
}; | |
/* Memory read and write routines | |
Read - read current or previous, read checking | |
ReadM - read current or previous, write checking | |
ReadE - read exec | |
ReadP - read physical | |
Write - write current or previous | |
WriteE - write exec | |
WriteP - write physical | |
AccChk - test accessibility of virtual address | |
*/ | |
d10 Read (a10 ea, int32 prv) | |
{ | |
int32 pa, vpn, xpte; | |
if (ea < AC_NUM) return (prv? ac_prv[ea]: ac_cur[ea]); /* AC request */ | |
vpn = PAG_GETVPN (ea); /* get page num */ | |
xpte = prv? ptbl_prv[vpn]: ptbl_cur[vpn]; /* get exp pte */ | |
if (xpte == 0) xpte = ptbl_fill (ea, prv? ptbl_prv: ptbl_cur, PTF_RD); | |
pa = PAG_XPTEPA (xpte, ea); /* calc phys addr */ | |
if (MEM_ADDR_NXM (pa)) pag_nxm (pa, REF_V, PF_TR); /* process nxm */ | |
return M[pa]; /* return data */ | |
} | |
d10 ReadM (a10 ea, int32 prv) | |
{ | |
int32 pa, vpn, xpte; | |
if (ea < AC_NUM) return (prv? ac_prv[ea]: ac_cur[ea]); /* AC request */ | |
vpn = PAG_GETVPN (ea); /* get page num */ | |
xpte = prv? ptbl_prv[vpn]: ptbl_cur[vpn]; /* get exp pte */ | |
if (xpte >= 0) xpte = ptbl_fill (ea, prv? ptbl_prv: ptbl_cur, PTF_WR); | |
pa = PAG_XPTEPA (xpte, ea); /* calc phys addr */ | |
if (MEM_ADDR_NXM (pa)) pag_nxm (pa, REF_V, PF_TR); /* process nxm */ | |
return M[pa]; /* return data */ | |
} | |
d10 ReadE (a10 ea) | |
{ | |
int32 pa, vpn, xpte; | |
if (ea < AC_NUM) return AC(ea); /* AC? use current */ | |
if (!PAGING) return M[ea]; /* phys? no mapping */ | |
vpn = PAG_GETVPN (ea); /* get page num */ | |
xpte = eptbl[vpn]; /* get exp pte, exec tbl */ | |
if (xpte == 0) xpte = ptbl_fill (ea, eptbl, PTF_RD); | |
pa = PAG_XPTEPA (xpte, ea); /* calc phys addr */ | |
if (MEM_ADDR_NXM (pa)) pag_nxm (pa, REF_V, PF_TR); /* process nxm */ | |
return M[pa]; /* return data */ | |
} | |
d10 ReadP (a10 ea) | |
{ | |
if (ea < AC_NUM) return AC(ea); /* AC request */ | |
if (MEM_ADDR_NXM (ea)) pag_nxm (ea, REF_P, PF_TR); /* process nxm */ | |
return M[ea]; /* return data */ | |
} | |
void Write (a10 ea, d10 val, int32 prv) | |
{ | |
int32 pa, vpn, xpte; | |
if (ea < AC_NUM) { /* AC request */ | |
if (prv) ac_prv[ea] = val; /* write AC */ | |
else ac_cur[ea] = val; | |
} | |
else { | |
vpn = PAG_GETVPN (ea); /* get page num */ | |
xpte = prv? ptbl_prv[vpn]: ptbl_cur[vpn]; /* get exp pte */ | |
if (xpte >= 0) xpte = ptbl_fill (ea, prv? ptbl_prv: ptbl_cur, PTF_WR); | |
pa = PAG_XPTEPA (xpte, ea); /* calc phys addr */ | |
if (MEM_ADDR_NXM (pa)) pag_nxm (pa, REF_V, PF_TR); /* process nxm */ | |
else M[pa] = val; /* write data */ | |
} | |
return; | |
} | |
void WriteE (a10 ea, d10 val) | |
{ | |
int32 pa, vpn, xpte; | |
if (ea < AC_NUM) AC(ea) = val; /* AC? use current */ | |
else if (!PAGING) M[ea] = val; /* phys? no mapping */ | |
else { | |
vpn = PAG_GETVPN (ea); /* get page num */ | |
xpte = eptbl[vpn]; /* get exp pte, exec tbl */ | |
if (xpte >= 0) xpte = ptbl_fill (ea, eptbl, PTF_WR); | |
pa = PAG_XPTEPA (xpte, ea); /* calc phys addr */ | |
if (MEM_ADDR_NXM (pa)) pag_nxm (pa, REF_V, PF_TR); /* process nxm */ | |
else M[pa] = val; /* write data */ | |
} | |
return; | |
} | |
void WriteP (a10 ea, d10 val) | |
{ | |
if (ea < AC_NUM) AC(ea) = val; /* AC request */ | |
else { | |
if (MEM_ADDR_NXM (ea)) pag_nxm (ea, REF_P, PF_TR); /* process nxm */ | |
M[ea] = val; /* memory */ | |
} | |
return; | |
} | |
t_bool AccViol (a10 ea, int32 prv, int32 mode) | |
{ | |
int32 vpn, xpte; | |
if (ea < AC_NUM) return FALSE; /* AC request */ | |
vpn = PAG_GETVPN (ea); /* get page num */ | |
xpte = prv? ptbl_prv[vpn]: ptbl_cur[vpn]; /* get exp pte */ | |
if ((xpte == 0) || ((mode & PTF_WR) && (xpte > 0))) /* not accessible? */ | |
xpte = ptbl_fill (ea, prv? ptbl_prv: ptbl_cur, mode | PTF_MAP); | |
if (xpte) return FALSE; /* accessible */ | |
return TRUE; /* not accessible */ | |
} | |
void pag_nxm (a10 pa, int32 phys, int32 trap) | |
{ | |
apr_flg = apr_flg | APRF_NXM; /* set APR flag */ | |
pi_eval (); /* eval intr */ | |
pager_word = PF_NXM | (phys? PF_NXMP: 0) | | |
(TSTF (F_USR)? PF_USER: 0) | ((d10) pa); | |
if (PAGING && trap) ABORT (PAGE_FAIL); /* trap? */ | |
return; | |
} | |
/* Page table fill | |
This routine is called if the page table is invalid, or on a write | |
reference if the page table is read only. If the access is allowed | |
it stores the pte in the page table entry and returns an expanded | |
pte for use by the caller. Otherwise, it generates a page fail. | |
Notes: | |
- If called from the console, invalid references return a pte | |
of 0, and the page table entry is not filled. | |
- If called from MAP, invalid references return a pte of 0. The | |
page fail word is properly set up. | |
*/ | |
#define PAGE_FAIL_TRAP if (mode & (PTF_CON | PTF_MAP)) return 0; \ | |
ABORT (PAGE_FAIL) | |
#define READPT(x,y) if (MEM_ADDR_NXM (y)) { \ | |
pag_nxm (y, REF_P, PF_OK); \ | |
PAGE_FAIL_TRAP; \ | |
} \ | |
x = ReadP (y) | |
int32 ptbl_fill (a10 ea, int32 *tbl, int32 mode) | |
{ | |
/* ITS paging is based on conventional page tables. ITS divides each address | |
space into a 128K high and low section, and uses different descriptor base | |
pointers (dbr) for each. ITS pages are twice the size of DEC standard; | |
therefore, the fill routine fills two page table entries and returns the pte | |
that maps the correct ITS half page. This allows the DEC paging macros to | |
be used in the normal path read-write routines. | |
ITS has no MAP instruction, therefore, physical NXM traps are ok. | |
*/ | |
if (Q_ITS) { /* ITS paging */ | |
int32 acc, decvpn, pte, vpn, ptead, xpte; | |
d10 ptewd; | |
vpn = ITS_GETVPN (ea); /* get ITS pagno */ | |
if (tbl == uptbl) | |
ptead = ((ea & RSIGN)? dbr2: dbr1) + ((vpn >> 1) & 077); | |
else ptead = ((ea & RSIGN)? dbr3: dbr4) + ((vpn >> 1) & 077); | |
ptewd = ReadP (ptead); /* get PTE pair */ | |
pte = (int32) ((ptewd >> ((vpn & 1)? 0: 18)) & RMASK); | |
acc = ITS_GETACC (pte); /* get access */ | |
pager_word = PF_VIRT | ea | ((tbl == uptbl)? PF_USER: 0) | | |
((mode & PTF_WR)? PF_ITS_WRITE: 0) | (acc << PF_ITS_V_ACC); | |
if ((acc != ITS_ACC_NO) && (!(mode & PTF_WR) || (acc == ITS_ACC_RW))) { | |
pte = pte & ~PTE_ITS_AGE; /* clear age */ | |
if (vpn & 1) WriteP (ptead, (ptewd & LMASK) | pte); | |
else WriteP (ptead, (ptewd & RMASK) | (((d10) pte) << 18)); | |
xpte = ((pte & PTE_ITS_PPMASK) << ITS_V_PN) | PTBL_V | | |
((acc == ITS_ACC_RW)? PTBL_M: 0); | |
decvpn = PAG_GETVPN (ea); /* get tlb idx */ | |
if (!(mode & PTF_CON)) { | |
tbl[decvpn & ~1] = xpte; /* map lo ITS page */ | |
tbl[decvpn | 1] = xpte + PAG_SIZE; /* map hi */ | |
} | |
return (xpte + ((decvpn & 1)? PAG_SIZE: 0)); | |
} | |
PAGE_FAIL_TRAP; | |
} /* end ITS paging */ | |
/* TOPS-10 paging - checked against KS10 microcode | |
TOPS-10 paging is also based on conventional page tables. The user page | |
tables are arranged contiguously at the beginning of the user process table; | |
however, the executive page tables are scattered through the executive and | |
user process tables. | |
*/ | |
else if (!T20PAG) { /* TOPS-10 paging */ | |
int32 pte, vpn, ptead, xpte; | |
d10 ptewd; | |
vpn = PAG_GETVPN (ea); /* get virt page num */ | |
if (tbl == uptbl) ptead = upta + UPT_T10_UMAP + (vpn >> 1); | |
else if (vpn < 0340) ptead = epta + EPT_T10_X000 + (vpn >> 1); | |
else if (vpn < 0400) ptead = upta + UPT_T10_X340 + ((vpn - 0340) >> 1); | |
else ptead = epta + EPT_T10_X400 + ((vpn - 0400) >> 1); | |
READPT (ptewd, ptead); /* get PTE pair */ | |
pte = (int32) ((ptewd >> ((vpn & 1)? 0: 18)) & RMASK); | |
pager_word = PF_VIRT | ea | ((tbl == uptbl)? PF_USER: 0) | | |
((mode & PTF_WR)? PF_WRITE: 0) | | |
((pte & PTE_T10_A)? PF_T10_A | | |
((pte & PTE_T10_S)? PF_T10_S: 0): 0); | |
if (mode & PTF_MAP) pager_word = pager_word | /* map? add to pf wd */ | |
((pte & PTE_T10_W)? PF_T10_W: 0) | /* W, S, C bits */ | |
((pte & PTE_T10_S)? PF_T10_S: 0) | | |
((pte & PTE_T10_C)? PF_C: 0); | |
if ((pte & PTE_T10_A) && (!(mode & PTF_WR) || (pte & PTE_T10_W))) { | |
xpte = ((pte & PTE_PPMASK) << PAG_V_PN) | /* calc exp pte */ | |
PTBL_V | ((pte & PTE_T10_W)? PTBL_M: 0); | |
if (!(mode & PTF_CON)) tbl[vpn] = xpte; /* set tbl if ~cons */ | |
return xpte; | |
} | |
PAGE_FAIL_TRAP; | |
} /* end TOPS10 paging */ | |
/* TOPS-20 paging - checked against KS10 microcode | |
TOPS-20 paging has three phases: | |
1. Starting at EPT/UPT + 540 + section number, chase section pointers to | |
get the pointer to the section page table. In the KS10, because there | |
is only one section, the microcode caches the result of this evaluation. | |
Also, the evaluation of indirect pointers is simplified, as the section | |
table index is ignored. | |
2. Starting with the page map pointer, chase page pointers to get the | |
pointer to the page. The KS10 allows the operating system to inhibit | |
updating of the CST (base address = 0). | |
3. Use the page pointer to get the CST entry. If a write reference to | |
a writeable page, set CST_M. If CST_M is set, set M in page table. | |
*/ | |
else { /* TOPS-20 paging */ | |
int32 pmi, vpn, xpte; | |
int32 flg, t; | |
t_bool stop; | |
a10 pa, csta; | |
d10 ptr, cste; | |
d10 acc = PTE_T20_W | PTE_T20_C; /* init access bits */ | |
pager_word = PF_VIRT | ea | ((tbl == uptbl)? PF_USER: 0) | | |
((mode & PTF_WR)? PF_WRITE: 0); /* set page fail word */ | |
/* First phase - evaluate section pointers - returns a ptr to a page map | |
As a single section machine, the KS10 short circuits this part of the | |
process. In particular, the indirect pointer calculation assumes that | |
the section table index will be 0. It adds the full pointer (not just | |
the right half) to the SPT base. If the section index is > 0, the | |
result is a physical memory address > 256KW. Depending on the size of | |
memory, the SPT fetch may or may not generate a NXM page fail. The | |
KS10 then ignores the section table index in fetching the next pointer. | |
The KS10 KL10 memory management diagnostic (dskec.sav) tests for this | |
behavior with a section index of 3. However, this would be a legal | |
physical address in a system with 1MW. Accordingly, the simulator | |
special cases non-zero section indices (which can't work in any case) | |
to generate the right behavior for the diagnostic. | |
*/ | |
vpn = PAG_GETVPN (ea); /* get virt page num */ | |
pa = (tbl == uptbl)? upta + UPT_T20_SCTN: epta + EPT_T20_SCTN; | |
READPT (ptr, pa & PAMASK); /* get section 0 ptr */ | |
for (stop = FALSE, flg = 0; !stop; flg++) { /* eval section ptrs */ | |
acc = acc & ptr; /* cascade acc bits */ | |
switch (T20_GETTYP (ptr)) { /* case on ptr type */ | |
case T20_NOA: /* no access */ | |
default: /* undefined type */ | |
PAGE_FAIL_TRAP; /* page fail */ | |
case T20_IMM: /* immediate */ | |
stop = TRUE; /* exit */ | |
break; | |
case T20_SHR: /* shared */ | |
pa = (int32) (spt + (ptr & RMASK)); /* get SPT idx */ | |
READPT (ptr, pa & PAMASK); /* get SPT entry */ | |
stop = TRUE; /* exit */ | |
break; | |
case T20_IND: /* indirect */ | |
if (flg && (t = test_int ())) ABORT (t); | |
pmi = T20_GETPMI (ptr); /* get sect tbl idx */ | |
pa = (int32) (spt + (ptr & RMASK)); /* get SPT idx */ | |
if (pmi) { /* for dskec */ | |
pag_nxm ((pmi << 18) | pa, REF_P, PF_OK); | |
PAGE_FAIL_TRAP; | |
} | |
READPT (ptr, pa & PAMASK); /* get SPT entry */ | |
if (ptr & PTE_T20_STM) { PAGE_FAIL_TRAP; } | |
pa = PAG_PTEPA (ptr, pmi); /* index off page */ | |
READPT (ptr, pa & PAMASK); /* get pointer */ | |
break; /* continue in loop */ | |
} /* end case */ | |
} /* end for */ | |
/* Second phase - found page map ptr, evaluate page pointers */ | |
pa = PAG_PTEPA (ptr, vpn); /* get ptbl address */ | |
for (stop = FALSE, flg = 0; !stop; flg++) { /* eval page ptrs */ | |
if (ptr & PTE_T20_STM) { PAGE_FAIL_TRAP; } /* non-res? */ | |
if (cst) { /* cst really there? */ | |
csta = (int32) ((cst + (ptr & PTE_PPMASK)) & PAMASK); | |
READPT (cste, csta); /* get CST entry */ | |
if ((cste & CST_AGE) == 0) { PAGE_FAIL_TRAP; } | |
cste = (cste & cstm) | pur; /* update entry */ | |
WriteP (csta, cste); /* rewrite */ | |
} | |
READPT (ptr, pa & PAMASK); /* get pointer */ | |
acc = acc & ptr; /* cascade acc bits */ | |
switch (T20_GETTYP (ptr)) { /* case on ptr type */ | |
case T20_NOA: /* no access */ | |
default: /* undefined type */ | |
PAGE_FAIL_TRAP; /* page fail */ | |
case T20_IMM: /* immediate */ | |
stop = TRUE; /* exit */ | |
break; | |
case T20_SHR: /* shared */ | |
pa = (int32) (spt + (ptr & RMASK)); /* get SPT idx */ | |
READPT (ptr, pa & PAMASK); /* get SPT entry */ | |
stop = TRUE; /* exit */ | |
break; | |
case T20_IND: /* indirect */ | |
if (flg && (t = test_int ())) ABORT (t); | |
pmi = T20_GETPMI (ptr); /* get section index */ | |
pa = (int32) (spt + (ptr & RMASK)); /* get SPT idx */ | |
READPT (ptr, pa & PAMASK); /* get SPT entry */ | |
pa = PAG_PTEPA (ptr, pmi); /* index off page */ | |
break; /* continue in loop */ | |
} /* end case */ | |
} /* end for */ | |
/* Last phase - have final page pointer, check modifiability */ | |
if (ptr & PTE_T20_STM) { PAGE_FAIL_TRAP; } /* non-resident? */ | |
if (cst) { /* CST really there? */ | |
csta = (int32) ((cst + (ptr & PTE_PPMASK)) & PAMASK); | |
READPT (cste, csta); /* get CST entry */ | |
if ((cste & CST_AGE) == 0) { PAGE_FAIL_TRAP; } | |
cste = (cste & cstm) | pur; /* update entry */ | |
} | |
else cste = 0; /* no, entry = 0 */ | |
pager_word = pager_word | PF_T20_DN; /* set eval done */ | |
xpte = ((int32) ((ptr & PTE_PPMASK) << PAG_V_PN)) | PTBL_V; | |
if (mode & PTF_WR) { /* write? */ | |
if (acc & PTE_T20_W) { /* writable? */ | |
xpte = xpte | PTBL_M; /* set PTE M */ | |
cste = cste | CST_M; /* set CST M */ | |
} | |
else { PAGE_FAIL_TRAP; } /* no, trap */ | |
} | |
if (cst) WriteP (csta, cste); /* write CST entry */ | |
if (mode & PTF_MAP) pager_word = pager_word | /* map? more in pf wd */ | |
((xpte & PTBL_M)? PF_T20_M: 0) | /* M, W, C bits */ | |
((acc & PTE_T20_W)? PF_T20_W: 0) | | |
((acc & PTE_T20_C)? PF_C: 0); | |
if (!(mode & PTF_CON)) tbl[vpn] = xpte; /* set tbl if ~cons */ | |
return xpte; | |
} /* end TOPS20 paging */ | |
} | |
/* Set up pointers for AC, memory, and process table access */ | |
void set_dyn_ptrs (void) | |
{ | |
int32 t; | |
if (PAGING) { | |
ac_cur = &acs[UBR_GETCURAC (ubr) * AC_NUM]; | |
ac_prv = &acs[UBR_GETPRVAC (ubr) * AC_NUM]; | |
if (TSTF (F_USR)) ptbl_cur = ptbl_prv = &uptbl[0]; | |
else { | |
ptbl_cur = &eptbl[0]; | |
ptbl_prv = TSTF (F_UIO)? &uptbl[0]: &eptbl[0]; | |
} | |
} | |
else { | |
ac_cur = ac_prv = &acs[0]; | |
ptbl_cur = ptbl_prv = &physptbl[0]; | |
} | |
t = EBR_GETEBR (ebr); | |
epta = t << PAG_V_PN; | |
if (Q_ITS) upta = (int32) ubr & PAMASK; | |
else { | |
t = UBR_GETUBR (ubr); | |
upta = t << PAG_V_PN; | |
} | |
return; | |
} | |
/* MAP instruction, TOPS-10 and TOPS-20 only | |
According to the KS-10 ucode, map with paging disabled sets | |
"accessible, writeable, software", regardless of whether | |
TOPS-10 or TOPS-20 paging is implemented | |
*/ | |
d10 map (a10 ea, int32 prv) | |
{ | |
int32 xpte; | |
d10 val = (TSTF (F_USR)? PF_USER: 0); | |
if (!PAGING) return (val | PF_T10_A | PF_T10_W | PF_T10_S | ea); | |
xpte = ptbl_fill (ea, prv? ptbl_prv: ptbl_cur, PTF_MAP); /* get exp pte */ | |
if (xpte) val = (pager_word & ~PAMASK) | PAG_XPTEPA (xpte, ea); | |
else { | |
if (pager_word & PF_HARD) val = pager_word; /* hard error */ | |
else val = val | PF_VIRT | ea; /* inaccessible */ | |
} | |
return val; | |
} | |
/* Mapping routine for console */ | |
a10 conmap (a10 ea, int32 mode, int32 sw) | |
{ | |
int32 xpte, *tbl; | |
if (!PAGING) return ea; | |
set_dyn_ptrs (); /* in case changed */ | |
if (sw & SWMASK ('E')) tbl = eptbl; | |
else if (sw & SWMASK ('U')) tbl = uptbl; | |
else tbl = ptbl_cur; | |
xpte = ptbl_fill (ea, tbl, mode); | |
if (xpte) return PAG_XPTEPA (xpte, ea); | |
else return MAXMEMSIZE; | |
} | |
/* Common pager instructions */ | |
t_bool clrpt (a10 ea, int32 prv) | |
{ | |
int32 vpn = PAG_GETVPN (ea); /* get page num */ | |
if (Q_ITS) { /* ITS? */ | |
uptbl[vpn & ~1] = 0; /* clear double size */ | |
uptbl[vpn | 1] = 0; /* entries in */ | |
eptbl[vpn & ~1] = 0; /* both page tables */ | |
eptbl[vpn | 1] = 0; | |
} | |
else { | |
uptbl[vpn] = 0; /* clear entries in */ | |
eptbl[vpn] = 0; /* both page tables */ | |
} | |
return FALSE; | |
} | |
t_bool wrebr (a10 ea, int32 prv) | |
{ | |
ebr = ea & EBR_MASK; /* store EBR */ | |
pag_reset (&pag_dev); /* clear page tables */ | |
set_dyn_ptrs (); /* set dynamic ptrs */ | |
return FALSE; | |
} | |
t_bool rdebr (a10 ea, int32 prv) | |
{ | |
Write (ea, (ebr & EBR_MASK), prv); | |
return FALSE; | |
} | |
t_bool wrubr (a10 ea, int32 prv) | |
{ | |
d10 val = Read (ea, prv); | |
d10 ubr_mask = (Q_ITS)? PAMASK: UBR_UBRMASK; /* ITS: ubr is wd addr */ | |
if (val & UBR_SETACB) ubr = ubr & ~UBR_ACBMASK; /* set AC's? */ | |
else val = val & ~UBR_ACBMASK; /* no, keep old val */ | |
if (val & UBR_SETUBR) { /* set UBR? */ | |
ubr = ubr & ~ubr_mask; | |
pag_reset (&pag_dev); /* yes, clr pg tbls */ | |
} | |
else val = val & ~ubr_mask; /* no, keep old val */ | |
ubr = (ubr | val) & (UBR_ACBMASK | ubr_mask); | |
set_dyn_ptrs (); | |
return FALSE; | |
} | |
t_bool rdubr (a10 ea, int32 prv) | |
{ | |
ubr = ubr & (UBR_ACBMASK | (Q_ITS? PAMASK: UBR_UBRMASK)); | |
Write (ea, UBRWORD, prv); | |
return FALSE; | |
} | |
t_bool wrhsb (a10 ea, int32 prv) | |
{ | |
hsb = Read (ea, prv) & PAMASK; | |
return FALSE; | |
} | |
t_bool rdhsb (a10 ea, int32 prv) | |
{ | |
Write (ea, hsb, prv); | |
return FALSE; | |
} | |
/* TOPS20 pager instructions */ | |
t_bool wrspb (a10 ea, int32 prv) | |
{ | |
spt = Read (ea, prv); | |
return FALSE; | |
} | |
t_bool rdspb (a10 ea, int32 prv) | |
{ | |
Write (ea, spt, prv); | |
return FALSE; | |
} | |
t_bool wrcsb (a10 ea, int32 prv) | |
{ | |
cst = Read (ea, prv); | |
return FALSE; | |
} | |
t_bool rdcsb (a10 ea, int32 prv) | |
{ | |
Write (ea, cst, prv); | |
return FALSE; | |
} | |
t_bool wrpur (a10 ea, int32 prv) | |
{ | |
pur = Read (ea, prv); | |
return FALSE; | |
} | |
t_bool rdpur (a10 ea, int32 prv) | |
{ | |
Write (ea, pur, prv); | |
return FALSE; | |
} | |
t_bool wrcstm (a10 ea, int32 prv) | |
{ | |
cstm = Read (ea, prv); | |
if ((cpu_unit.flags & UNIT_T20) && (ea == 040127)) | |
cstm = 0770000000000; | |
return FALSE; | |
} | |
t_bool rdcstm (a10 ea, int32 prv) | |
{ | |
Write (ea, cstm, prv); | |
return FALSE; | |
} | |
/* ITS pager instructions | |
The KS10 does not implement the JPC option. | |
*/ | |
t_bool clrcsh (a10 ea, int32 prv) | |
{ | |
return FALSE; | |
} | |
t_bool ldbr1 (a10 ea, int32 prv) | |
{ | |
dbr1 = ea; | |
pag_reset (&pag_dev); | |
return FALSE; | |
} | |
t_bool sdbr1 (a10 ea, int32 prv) | |
{ | |
Write (ea, dbr1, prv); | |
return FALSE; | |
} | |
t_bool ldbr2 (a10 ea, int32 prv) | |
{ | |
dbr2 = ea; | |
pag_reset (&pag_dev); | |
return FALSE; | |
} | |
t_bool sdbr2 (a10 ea, int32 prv) | |
{ | |
Write (ea, dbr2, prv); | |
return FALSE; | |
} | |
t_bool ldbr3 (a10 ea, int32 prv) | |
{ | |
dbr3 = ea; | |
pag_reset (&pag_dev); | |
return FALSE; | |
} | |
t_bool sdbr3 (a10 ea, int32 prv) | |
{ | |
Write (ea, dbr3, prv); | |
return FALSE; | |
} | |
t_bool ldbr4 (a10 ea, int32 prv) | |
{ | |
dbr4 = ea; | |
pag_reset (&pag_dev); | |
return FALSE; | |
} | |
t_bool sdbr4 (a10 ea, int32 prv) | |
{ | |
Write (ea, dbr4, prv); | |
return FALSE; | |
} | |
t_bool wrpcst (a10 ea, int32 prv) | |
{ | |
pcst = Read (ea, prv); | |
return FALSE; | |
} | |
t_bool rdpcst (a10 ea, int32 prv) | |
{ | |
Write (ea, pcst, prv); | |
return FALSE; | |
} | |
t_bool lpmr (a10 ea, int32 prv) | |
{ | |
d10 val; | |
val = Read (ADDA (ea, 2), prv); | |
dbr1 = (a10) (Read (ea, prv) & AMASK); | |
dbr2 = (a10) (Read (ADDA (ea, 1), prv) & AMASK); | |
quant = val; | |
pag_reset (&pag_dev); | |
return FALSE; | |
} | |
t_bool spm (a10 ea, int32 prv) | |
{ | |
ReadM (ADDA (ea, 2), prv); | |
Write (ea, dbr1, prv); | |
Write (ADDA (ea, 1), dbr2, prv); | |
Write (ADDA (ea, 2), quant, prv); | |
return FALSE; | |
} | |
/* Simulator interface routines */ | |
t_stat pag_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw) | |
{ | |
int32 tbln = uptr - pag_unit; | |
if (addr >= PTBL_MEMSIZE) return SCPE_NXM; | |
*vptr = tbln? uptbl[addr]: eptbl[addr];; | |
return SCPE_OK; | |
} | |
t_stat pag_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw) | |
{ | |
int32 tbln = uptr - pag_unit; | |
if (addr >= PTBL_MEMSIZE) return SCPE_NXM; | |
if (tbln) uptbl[addr] = (int32) val & PTBL_MASK; | |
else eptbl[addr] = (int32) val & PTBL_MASK; | |
return SCPE_OK; | |
} | |
t_stat pag_reset (DEVICE *dptr) | |
{ | |
int32 i; | |
for (i = 0; i < PTBL_MEMSIZE; i++) { | |
eptbl[i] = uptbl[i] = 0; | |
physptbl[i] = (i << PAG_V_PN) + PTBL_M + PTBL_V; | |
} | |
return SCPE_OK; | |
} |