/* pdp10_ksio.c: PDP-10 KS10 I/O subsystem simulator | |
Copyright (c) 1993-2008, Robert M Supnik | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name of Robert M Supnik shall not be | |
used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from Robert M Supnik. | |
uba Unibus adapters | |
22-Sep-05 RMS Fixed declarations (from Sterling Garwood) | |
25-Jan-04 RMS Added stub floating address routine | |
12-Mar-03 RMS Added logical name support | |
10-Oct-02 RMS Revised for dynamic table generation | |
Added SHOW IOSPACE routine | |
29-Sep-02 RMS Added variable vector, central map support | |
25-Jan-02 RMS Revised for multiple DZ11's | |
06-Jan-02 RMS Revised enable/disable support | |
23-Sep-01 RMS New IO page address constants | |
07-Sep-01 RMS Revised device disable mechanism | |
25-Aug-01 RMS Enabled DZ11 | |
21-Aug-01 RMS Updated DZ11 disable | |
01-Jun-01 RMS Updated DZ11 vectors | |
12-May-01 RMS Fixed typo | |
The KS10 uses the PDP-11 Unibus for its I/O, via adapters. While | |
nominally four adapters are supported, in practice only 1 and 3 | |
are implemented. The disks are placed on adapter 1, the rest of | |
the I/O devices on adapter 3. (adapter 4 IS used in some supported | |
configurations, but those devices haven't been emulated yet.) | |
In theory, we should maintain completely separate Unibuses, with | |
distinct PI systems. In practice, this simulator has so few devices | |
that we can get away with a single PI system, masking for which | |
devices are on adapter 1, and which on adapter 3. The Unibus | |
implementation is modeled on the Qbus in the PDP-11 simulator and | |
is described there. | |
The I/O subsystem is programmed by I/O instructions which create | |
Unibus operations (read, read pause, write, write byte). DMA is | |
the responsibility of the I/O device simulators, which also implement | |
Unibus to physical memory mapping. | |
The priority interrupt subsystem (and other privileged functions) | |
is programmed by I/O instructions with internal devices codes | |
(opcodes 700-702). These are dispatched here, although many are | |
handled in the memory management unit or elsewhere. | |
The ITS instructions are significantly different from the TOPS-10/20 | |
instructions. They do not use the extended address calculation but | |
instead provide instruction variants (Q for Unibus adapter 1, I for | |
Unibus adapter 3) which insert the Unibus adapter number into the | |
effective address. | |
*/ | |
#include "pdp10_defs.h" | |
#include <setjmp.h> | |
#include <assert.h> | |
#include "sim_sock.h" | |
#include "sim_tmxr.h" | |
#define AUTO_MAXC 32 /* Maximum number of controllers */ | |
#define AUTO_CSRBASE 0010 | |
#define AUTO_CSRMAX 04000 | |
#define AUTO_VECBASE 0300 | |
#define UBMPAGE(x) (x & (PAG_VPN<<2)) /* UBA Map page field of 11 address */ | |
#define XBA_MBZ 0400000 /* ba mbz */ | |
#define eaRB (ea & ~1) | |
#define GETBYTE(ea,x) ((((ea) & 1)? (x) >> 8: (x)) & 0377) | |
#define UBNXM_FAIL(pa,op) \ | |
n = ADDR2UBA (pa); \ | |
if (n >= 0) \ | |
ubcs[n] = ubcs[n] | UBCS_TMO | UBCS_NXD; \ | |
pager_word = PF_HARD | PF_VIRT | PF_IO | \ | |
((op == WRITEB)? PF_BYTE: 0) | \ | |
(TSTF (F_USR)? PF_USER: 0) | (pa); \ | |
ABORT (PAGE_FAIL) | |
/* Is Unibus address mapped to -10 memory */ | |
#define TEN_MAPPED(ub,ba) ((ubmap[ub][PAG_GETVPN(((ba) & 0777777) >> 2)] & UMAP_VLD) != 0) | |
/* Translate UBA number in a PA to UBA index. 1,,* -> ubmap[0], all others -> ubmap[1] */ | |
#define ADDR2UBA(x) (iocmap[GET_IOUBA (x)]) | |
/* Unibus adapter data */ | |
int32 ubcs[UBANUM] = { 0 }; /* status registers */ | |
int32 ubmap[UBANUM][UMAP_MEMSIZE] = {{ 0 }}; /* Unibus maps */ | |
int32 int_req = 0; /* interrupt requests */ | |
int32 autcon_enb = 1; /* auto configure enabled */ | |
/* Map IO controller numbers to Unibus adapters: -1 = non-existent */ | |
static int iocmap[IO_N_UBA] = { /* map I/O ext to UBA # */ | |
-1, 0, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 | |
}; | |
static const int32 ubabr76[UBANUM] = { | |
INT_UB1 & (INT_IPL7 | INT_IPL6), INT_UB3 & (INT_IPL7 | INT_IPL6) | |
}; | |
static const int32 ubabr54[UBANUM] = { | |
INT_UB1 & (INT_IPL5 | INT_IPL4), INT_UB3 & (INT_IPL5 | INT_IPL4) | |
}; | |
/* Masks for Unibus quantities */ | |
#define M_BYTE (0xFF) | |
#define M_WORD (0xFFFF) | |
#define M_WORD18 (0777777) | |
#define M_LH (0777777000000) | |
#define M_RH (0000000777777) | |
/* Bits to shift for each Unibus byte */ | |
#define V_BYTE0 (18) | |
#define V_BYTE1 (26) | |
#define V_BYTE2 (0) | |
#define V_BYTE3 (8) | |
#define V_WORD0 V_BYTE0 | |
#define V_WORD1 V_BYTE2 | |
/* Bits to preserve when writing each Unibus byte. | |
* This excludes the XX bits so they are cleared. | |
*/ | |
#define M_BYTE0 (~INT64_C (0000377000000)) /* Clear byte 0 */ | |
#define M_BYTE1 (~INT64_C (0777400000000)) /* Clear byte 1 + XX */ | |
#define M_BYTE2 (~INT64_C (0000000000377)) /* Clear byte 2 */ | |
#define M_BYTE3 (~INT64_C (0000000777400)) /* Clear byte 3 + XX */ | |
#define M_WORD0 (~INT64_C (0777777000000)) /* Clear word 0 + XX */ | |
#define M_WORD1 (~INT64_C (0000000777777)) /* Clear word 1 + XX */ | |
extern d10 *M; /* main memory */ | |
extern d10 *ac_cur; | |
extern d10 pager_word; | |
extern int32 flags; | |
extern const int32 pi_l2bit[8]; | |
extern UNIT cpu_unit; | |
extern jmp_buf save_env; | |
extern int32 pi_eval (void); | |
t_stat ubmap_rd (int32 *data, int32 addr, int32 access); | |
t_stat ubmap_wr (int32 data, int32 addr, int32 access); | |
t_stat ubs_rd (int32 *data, int32 addr, int32 access); | |
t_stat ubs_wr (int32 data, int32 addr, int32 access); | |
t_stat rd_zro (int32 *data, int32 addr, int32 access); | |
t_stat wr_nop (int32 data, int32 addr, int32 access); | |
t_stat uba_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw); | |
t_stat uba_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw); | |
t_stat uba_reset (DEVICE *dptr); | |
void uba_debug_dma_in (uint32 ba, a10 pa_start, a10 pa_end); | |
void uba_debug_dma_out (uint32 ba, a10 pa_start, a10 pa_end); | |
d10 ReadIO (a10 ea); | |
void WriteIO (a10 ea, d10 val, int32 mode); | |
/* Unibus adapter data structures | |
uba_dev UBA device descriptor | |
uba_unit UBA units | |
uba_reg UBA register list | |
*/ | |
DIB ubmp1_dib = { IOBA_UBMAP1, IOLN_UBMAP1, &ubmap_rd, &ubmap_wr, 0 }; | |
DIB ubmp3_dib = { IOBA_UBMAP3, IOLN_UBMAP3, &ubmap_rd, &ubmap_wr, 0 }; | |
DIB ubcs1_dib = { IOBA_UBCS1, IOLN_UBCS1, &ubs_rd, &ubs_wr, 0 }; | |
DIB ubcs3_dib = { IOBA_UBCS3, IOLN_UBCS3, &ubs_rd, &ubs_wr, 0 }; | |
DIB ubmn1_dib = { IOBA_UBMNT1, IOLN_UBMNT1, &rd_zro, &wr_nop, 0 }; | |
DIB ubmn3_dib = { IOBA_UBMNT3, IOLN_UBMNT3, &rd_zro, &wr_nop, 0 }; | |
DIB msys_dib = { 00100000, 1, &rd_zro, &wr_nop, 0 }; | |
UNIT uba_unit[] = { | |
{ UDATA (NULL, UNIT_FIX, UMAP_MEMSIZE) }, | |
{ UDATA (NULL, UNIT_FIX, UMAP_MEMSIZE) } | |
}; | |
REG uba_reg[] = { | |
{ ORDATA (INTREQ, int_req, 32), REG_RO }, | |
{ ORDATA (UB1CS, ubcs[0], 18) }, | |
{ ORDATA (UB3CS, ubcs[1], 18) }, | |
{ NULL } | |
}; | |
#define DBG_DMA_IN 0x0001 /* trace dma input transfers */ | |
#define DBG_DMA_OUT 0x0002 /* trace dma output transfers */ | |
#define DBG_DMA_NXM 0x0004 /* trace dma nxm errors */ | |
DEBTAB uba_debug[] = { | |
{"IN", DBG_DMA_IN}, | |
{"OUT", DBG_DMA_OUT}, | |
{"NXM", DBG_DMA_NXM}, | |
{0} | |
}; | |
DEVICE uba_dev = { | |
"UBA", uba_unit, uba_reg, NULL, | |
UBANUM, 8, UMAP_ASIZE, 1, 8, 32, | |
&uba_ex, &uba_dep, &uba_reset, | |
NULL, NULL, NULL, | |
NULL, DEV_DEBUG, 0, uba_debug | |
}; | |
/* PDP-11 I/O structures */ | |
DIB *dib_tab[DIB_MAX]; /* run-time DIBs */ | |
int32 (*int_ack[32])(void); /* int ack routines */ | |
int32 int_vec[32]; /* int vectors */ | |
DIB *std_dib[] = { /* standard DIBs */ | |
&ubmp1_dib, | |
&ubmp3_dib, | |
&ubcs1_dib, | |
&ubcs3_dib, | |
&ubmn1_dib, | |
&ubmn3_dib, | |
&msys_dib, | |
NULL | |
}; | |
/* IO 710 (DEC) TIOE - test I/O word, skip if zero | |
(ITS) IORDI - read word from Unibus 3 | |
returns TRUE if skip, FALSE otherwise | |
*/ | |
t_bool io710 (int32 ac, a10 ea) | |
{ | |
d10 val; | |
if (Q_ITS) /* IORDI */ | |
AC(ac) = ReadIO (IO_UBA3 | ea); | |
else { /* TIOE */ | |
val = ReadIO (ea); /* read word */ | |
if ((AC(ac) & val) == 0) | |
return TRUE; | |
} | |
return FALSE; | |
} | |
/* IO 711 (DEC) TION - test I/O word, skip if non-zero | |
(ITS) IORDQ - read word from Unibus 1 | |
returns TRUE if skip, FALSE otherwise | |
*/ | |
t_bool io711 (int32 ac, a10 ea) | |
{ | |
d10 val; | |
if (Q_ITS) /* IORDQ */ | |
AC(ac) = ReadIO (IO_UBA1 | ea); | |
else { /* TION */ | |
val = ReadIO (ea); /* read word */ | |
if ((AC(ac) & val) != 0) | |
return TRUE; | |
} | |
return FALSE; | |
} | |
/* IO 712 (DEC) RDIO - read I/O word, addr in ea | |
(ITS) IORD - read I/O word, addr in M[ea] | |
*/ | |
d10 io712 (a10 ea) | |
{ | |
return ReadIO (ea); /* RDIO, IORD */ | |
} | |
/* IO 713 (DEC) WRIO - write I/O word, addr in ea | |
(ITS) IOWR - write I/O word, addr in M[ea] | |
*/ | |
void io713 (d10 val, a10 ea) | |
{ | |
WriteIO (ea, val, WRITE); /* WRIO, IOWR */ | |
return; | |
} | |
/* IO 714 (DEC) BSIO - set bit in I/O address | |
(ITS) IOWRI - write word to Unibus 3 | |
*/ | |
void io714 (d10 val, a10 ea) | |
{ | |
d10 temp; | |
if (Q_ITS) /* IOWRI */ | |
WriteIO (IO_UBA3 | ea, val, WRITE); | |
else { | |
temp = ReadIO (ea); /* BSIO */ | |
temp = temp | val; | |
WriteIO (ea, temp, WRITE); | |
} | |
return; | |
} | |
/* IO 715 (DEC) BCIO - clear bit in I/O address | |
(ITS) IOWRQ - write word to Unibus 1 | |
*/ | |
void io715 (d10 val, a10 ea) | |
{ | |
d10 temp; | |
if (Q_ITS) /* IOWRQ */ | |
WriteIO (IO_UBA1 | ea, val, WRITE); | |
else { | |
temp = ReadIO (ea); /* BCIO */ | |
temp = temp & ~val; | |
WriteIO (ea, temp, WRITE); | |
} | |
return; | |
} | |
/* IO 720 (DEC) TIOEB - test I/O byte, skip if zero | |
(ITS) IORDBI - read byte from Unibus 3 | |
returns TRUE if skip, FALSE otherwise | |
*/ | |
t_bool io720 (int32 ac, a10 ea) | |
{ | |
d10 val; | |
if (Q_ITS) { /* IORDBI */ | |
val = ReadIO (IO_UBA3 | eaRB); | |
AC(ac) = GETBYTE (ea, val); | |
} | |
else { /* TIOEB */ | |
val = ReadIO (eaRB); | |
val = GETBYTE (ea, val); | |
if ((AC(ac) & val) == 0) | |
return TRUE; | |
} | |
return FALSE; | |
} | |
/* IO 721 (DEC) TIONB - test I/O word, skip if non-zero | |
(ITS) IORDBQ - read word from Unibus 1 | |
returns TRUE if skip, FALSE otherwise | |
*/ | |
t_bool io721 (int32 ac, a10 ea) | |
{ | |
d10 val; | |
if (Q_ITS) { /* IORDBQ */ | |
val = ReadIO (IO_UBA1 | eaRB); | |
AC(ac) = GETBYTE (ea, val); | |
} | |
else { /* TIONB */ | |
val = ReadIO (eaRB); | |
val = GETBYTE (ea, val); | |
if ((AC(ac) & val) != 0) | |
return TRUE; | |
} | |
return FALSE; | |
} | |
/* IO 722 (DEC) RDIOB - read I/O byte, addr in ea | |
(ITS) IORDB - read I/O byte, addr in M[ea] | |
*/ | |
d10 io722 (a10 ea) | |
{ | |
d10 val; | |
val = ReadIO (eaRB); /* RDIOB, IORDB */ | |
return GETBYTE (ea, val); | |
} | |
/* IO 723 (DEC) WRIOB - write I/O byte, addr in ea | |
(ITS) IOWRB - write I/O byte, addr in M[ea] | |
*/ | |
void io723 (d10 val, a10 ea) | |
{ | |
WriteIO (ea, val & M_BYTE, WRITEB); /* WRIOB, IOWRB */ | |
return; | |
} | |
/* IO 724 (DEC) BSIOB - set bit in I/O byte address | |
(ITS) IOWRBI - write byte to Unibus 3 | |
*/ | |
void io724 (d10 val, a10 ea) | |
{ | |
d10 temp; | |
val = val & M_BYTE; | |
if (Q_ITS) /* IOWRBI */ | |
WriteIO (IO_UBA3 | ea, val, WRITEB); | |
else { | |
temp = ReadIO (eaRB); /* BSIOB */ | |
temp = GETBYTE (ea, temp); | |
temp = temp | val; | |
WriteIO (ea, temp, WRITEB); | |
} | |
return; | |
} | |
/* IO 725 (DEC) BCIOB - clear bit in I/O byte address | |
(ITS) IOWRBQ - write byte to Unibus 1 | |
*/ | |
void io725 (d10 val, a10 ea) | |
{ | |
d10 temp; | |
val = val & M_BYTE; | |
if (Q_ITS) /* IOWRBQ */ | |
WriteIO (IO_UBA1 | ea, val, WRITEB); | |
else { | |
temp = ReadIO (eaRB); /* BCIOB */ | |
temp = GETBYTE (ea, temp); | |
temp = temp & ~val; | |
WriteIO (ea, temp, WRITEB); | |
} | |
return; | |
} | |
/* Read and write I/O devices. | |
These routines are the linkage between the 64b world of the main | |
simulator and the 32b world of the device simulators. | |
*/ | |
/* UBReadIO and UBWriteIO handle the device lookup and access | |
* These are used for all IO space accesses. They return status. | |
* | |
* ReadIO and WriteIO are used by the CPU instructions, and generate | |
* UBA NXM page fails for unassigned IO addresses. | |
*/ | |
static t_stat UBReadIO (int32 *data, int32 ba, int32 access) | |
{ | |
uint32 pa = (uint32) ba; | |
int32 i, val; | |
DIB *dibp; | |
for (i = 0; (dibp = dib_tab[i]); i++ ) { | |
if ((pa >= dibp->ba) && | |
(pa < (dibp->ba + dibp->lnt))) { | |
dibp->rd (&val, pa, access); | |
pi_eval (); | |
*data = val; | |
return SCPE_OK; | |
} | |
} | |
return SCPE_NXM; | |
} | |
d10 ReadIO (a10 ea) | |
{ | |
uint32 pa = (uint32) ea; | |
int32 n, val; | |
if (UBReadIO (&val, pa, READ) == SCPE_OK) | |
return ((d10) val); | |
UBNXM_FAIL (pa, READ); | |
} | |
static t_stat UBWriteIO (int32 data, int32 ba, int32 access) | |
{ | |
uint32 pa = (uint32) ba; | |
int32 i; | |
DIB *dibp; | |
for (i = 0; (dibp = dib_tab[i]); i++ ) { | |
if ((pa >= dibp->ba) && | |
(pa < (dibp->ba + dibp->lnt))) { | |
if ((dibp->flags & DIB_M_REGSIZE) == DIB_REG16BIT) { | |
data &= M_WORD; | |
} | |
dibp->wr (data, ba, access); | |
pi_eval (); | |
return SCPE_OK; | |
} | |
} | |
return SCPE_NXM; | |
} | |
void WriteIO (a10 ea, d10 val, int32 mode) | |
{ | |
uint32 pa = (uint32) ea; | |
int32 n; | |
if (UBWriteIO ((int32) val, (int32) pa, mode) == SCPE_OK) | |
return; | |
UBNXM_FAIL (pa, mode); | |
} | |
/* Mapped read and write routines - used by standard Unibus devices on Unibus 1 | |
* I/O space accesses will work. Note that Unibus addresses with bit 17 set can | |
* not be mapped by the UBA, so I/O space (and more) can not be mapped to -10 memory. | |
*/ | |
static a10 Map_Addr10 (a10 ba, int32 ub, int32 *ubmp) | |
{ | |
a10 pa10; | |
int32 vpn = PAG_GETVPN (ba >> 2); /* get PDP-10 page number */ | |
int32 ubm; | |
if ((vpn >= UMAP_MEMSIZE) || (ba & XBA_MBZ)) { /* Validate bus address */ | |
if (ubmp) | |
*ubmp = 0; | |
return -1; | |
} | |
ubm = ubmap[ub][vpn]; | |
if (ubmp) | |
*ubmp = ubm; | |
if ((ubm & UMAP_VLD) == 0) /* Ensure map entry is valid */ | |
return -1; | |
pa10 = (ubm + PAG_GETOFF (ba >> 2)) & PAMASK; | |
return pa10; | |
} | |
/* Routines for Bytes, Words (16-bit) and Words (18-bit). | |
* | |
* Note that the byte count argument is always BYTES, even if | |
* the unit transfered is a word. This is for compatibility with | |
* the 11/VAX system Unibus; these routines abstract DMA for all | |
* U/Q device simulations. | |
* | |
* All return the number of bytes NOT transferred; 0 means success. | |
* A non-zero return implies a NXM was encountered. | |
* | |
* Unaligned accesses to 16/18-bit words in IOSPACE are a STOP condition. | |
* (Should be in memory too, but some devices are lazy.) | |
* | |
* Unibus memory is mapped into 36-bit words so that 16-bit | |
* values appear in 18-bit half-words, and PDP10 byte pointers will | |
* increment through 16-bit (but not 8-bit) data. Viewed as bytes or | |
* words from the PDP10, memory looks like this: | |
* | |
* +-----+-----------+------------+-------+------------+------------+ | |
* | 0 1 | 2 9 | 10 17 | 18 19 | 20 27| 28 35 | PDP10 bits | |
* +-----+-----------+------------+-------+------------+------------+ | |
* | X X | BYTE 1<01>| BYTE 0<00> | X X | BYTE 3<11> | BYTE 2<10> | PDP11 bytes | |
* +-----+-----------+------------+-------+------------+------------+ | |
* | X X | WORD 0 <00> | X X | WORD 1 <10> | PDP11 words | |
* +-----+-----------+------------+-------+------------+------------+ | |
* | |
* <nn> are the values of the two low-order address bits as viewed on | |
* the Unibus. | |
* | |
* The bits marked XX are written as zero for 8 and 16 bit transfers | |
* and with data from the Unibus parity lines for 18 bit transfers. | |
* In a -10 read-modify-write cycle, they are cleared if the high byte | |
* of the adjacent word is written, and preserved otherwise. | |
* | |
* Unibus addressing does not change with 18-bit transfers; they are | |
* accounted for as 2 bytes. <0:1> are bits <17:16> of word 0; | |
* <18:19> are bits <17:16> of word 1. | |
* | |
* Normal writes assume that DMA will access sequential Unibus addresses. | |
* The UBA optimizes this by writing NPR data to <00> addresses | |
* without preserving the rest of the -10 word. This allows a memory | |
* write cycle, rather than the read-modify-write cycle required to | |
* preserve the rest of the word. The 'read reverse' bit in the UBA | |
* map forces a read-modify-write on all addresses. | |
* | |
* 16-bit transfers (the d18 bit in the map selects) write 0s into | |
* the correspnding X bits when <00> or <10> are written. | |
* | |
* Address mapping uses bits <1:0> of the Unibus address to select | |
* the byte as indicated above. Bits <10:2> are the offset within | |
* the PDP10 page; thus Unibus addressing assumes 4 bytes/PDP10 word. | |
* | |
* 9 bits = 512 words/PDP10 page = 2048 bytes / Unibus page | |
* | |
* Bits 16:11 select a UBA mapping register, which indicates whether | |
* PDP10 memory at that address is accessible, and if so, provides | |
* PDP10 bus address bits that replace and extend the Unibus bits. | |
* | |
* Unibus addresses with bit 17 set do not map PDP10 memory. The | |
* high end is reserved for Unibus IO space. The rest is used for | |
* UBA maintenance modes (not simulated). | |
* | |
* IO space accesses may have side effects in the device; an aligned | |
* read of two bytes is NOT equivalent to two one byte reads of the | |
* same addresses. | |
* | |
* The memory access in these routines is optimized to minimize UBA | |
* page table lookups and shift/merge operations with PDP10 memory. | |
* | |
* Memory transfers happen in up to 3 pieces: | |
* head : 0-3 bytes to an aligned PDP10 word (UB address 000b) | |
* body : As many PDP10 whole words as possible (4 bytes 32/36 bits) | |
* tail : 0-3 bytes remaining after the body. | |
*/ | |
int32 Map_ReadB (uint32 ba, int32 bc, uint8 *buf) | |
{ | |
uint32 ea, ofs, cp, np; | |
int32 seg; | |
a10 pa10 = ~0u; | |
d10 m; | |
uint32 dpy_ba = ba; | |
a10 dpy_pa10 = ~0u; | |
if ((ba & ~((IO_M_UBA<<IO_V_UBA)|0017777)) == 0760000) { | |
/* IOPAGE: device register read */ | |
int32 csr; | |
while (bc) { | |
if (UBReadIO (&csr, ba & ~1, READ) != SCPE_OK) | |
break; | |
*buf++ = (ba & 1)? ((csr >> 8) & 0xff): csr & 0xff; | |
ba++; | |
bc--; | |
} | |
return bc; | |
} | |
/* Memory */ | |
if (bc == 0) | |
return 0; | |
cp = ~ba; | |
ofs = ba & 3; | |
seg = (4 - ofs) & 3; | |
if (seg) { /* Unaligned head */ | |
if (seg > bc) | |
seg = bc; | |
cp = UBMPAGE (ba); /* Only one word, can't cross page */ | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL); /* map addr */ | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm (const "Read Byte", pa10, ba, bc); | |
return bc; /* return bc */ | |
} | |
m = M[pa10++]; | |
ba += seg; | |
bc -= seg; | |
switch (ofs) { | |
case 1: | |
*buf++ = (uint8) ((m >> V_BYTE1) & M_BYTE); | |
if (!--seg) | |
break; | |
case 2: | |
*buf++ = (uint8) (m & M_BYTE); /* V_BYTE2 */ | |
if (!--seg) | |
break; | |
case 3: | |
*buf++ = (uint8) ((m >> V_BYTE3) & M_BYTE); | |
--seg; | |
break; | |
default: | |
assert (FALSE); | |
} | |
if (bc == 0) { | |
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10); | |
return 0; | |
} | |
} /* Head */ | |
/* At this point, ba is aligned. Therefore, ea<1:0> are the tail's length */ | |
ea = ba + bc; | |
seg = bc - (ea & 3); | |
if (seg > 0) { /* Body: Whole PDP-10 words, 4 bytes */ | |
assert (((seg & 3) == 0) && (bc >= seg)); | |
dpy_ba = ba; | |
bc -= seg; | |
for ( ; seg; seg -= 4, ba += 4) { /* aligned longwords */ | |
np = UBMPAGE (ba); | |
if (np != cp) { /* New (or first) page? */ | |
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10); | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL);/* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) {/* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm (const "Read Byte", pa10, ba, bc); | |
return (bc + seg); /* return bc */ | |
} | |
cp = np; | |
} | |
m = M[pa10++]; /* Next word from -10 */ | |
buf[2] = (uint8) (m & M_BYTE); /* Byte 2 */ | |
m >>= 8; | |
buf[3] = (uint8) (m & M_BYTE); /* Byte 3 */ | |
m >>= 10; | |
buf[0] = (uint8) (m & M_BYTE); /* Byte 0 */ | |
m >>= 8; | |
buf[1] = (uint8) (m & M_BYTE); /* Byte 1 */ | |
buf += 4; | |
} | |
} /* Body */ | |
/* Tail: partial -10 word, must be aligned. 1-3 bytes */ | |
assert ((bc >= 0) && ((ba & 3) == 0)); | |
if (bc) { | |
assert (bc <= 3); | |
np = UBMPAGE (ba); /* Only one word, last possible page crossing */ | |
if (np != cp) { /* New (or first) page? */ | |
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10); | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL);/* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) {/* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Read Byte", pa10, ba, bc); | |
return (bc); /* return bc */ | |
} | |
} | |
m = M[pa10++]; | |
switch (bc) { | |
case 3: | |
buf[2] = (uint8) (m & M_BYTE); /* V_BYTE2 */ | |
case 2: | |
buf[1] = (uint8) ((m >> V_BYTE1) & M_BYTE); | |
case 1: | |
buf[0] = (uint8) ((m >> V_BYTE0) & M_BYTE); | |
break; | |
default: | |
assert (FALSE); | |
} | |
} | |
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10); | |
return 0; | |
} | |
int32 Map_ReadW (uint32 ba, int32 bc, uint16 *buf) | |
{ | |
uint32 ea, cp, np; | |
int32 seg; | |
a10 pa10 = ~0u; | |
d10 m; | |
uint32 dpy_ba = ba; | |
a10 dpy_pa10 = ~0u; | |
if ((ba & ~((IO_M_UBA<<IO_V_UBA)|0017777)) == 0760000) { | |
/* IOPAGE: device register read */ | |
int32 csr; | |
if ((ba | bc) & 1) | |
ABORT (STOP_IOALIGN); | |
while (bc) { | |
if (UBReadIO (&csr, ba, READ) != SCPE_OK) | |
break; | |
*buf++ = (uint16)csr; | |
ba += 2; | |
bc -= 2; | |
} | |
return bc; | |
} | |
/* Memory */ | |
if (bc == 0) | |
return 0; | |
ba &= ~1; | |
if (bc & 1) | |
ABORT (STOP_IOALIGN); | |
cp = ~ba; | |
seg = (4 - (ba & 3)) & 3; | |
if (seg) { /* Unaligned head, can only be WORD1 */ | |
assert ((ba & 2) && (seg == 2)); | |
if (seg > bc) | |
seg = bc; | |
cp = UBMPAGE (ba); /* Only one word, can't cross page */ | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL); /* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Read Word", pa10, ba, bc); | |
return bc; /* return bc */ | |
} | |
ba += seg; | |
*buf++ = (uint16) (M[pa10++] & M_WORD); | |
if ((bc -= seg) == 0) { | |
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10); | |
return 0; | |
} | |
} /* Head */ | |
ea = ba + bc; | |
seg = bc - (ea & 3); | |
if (seg > 0) { | |
assert (((seg & 3) == 0) && (bc >= seg)); | |
bc -= seg; | |
for ( ; seg; seg -= 4, ba += 4) { /* aligned longwords */ | |
np = UBMPAGE (ba); | |
if (np != cp) { /* New (or first) page? */ | |
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10); | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL);/* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Read Word", pa10, ba, bc); | |
return (bc + seg); /* return bc */ | |
} | |
cp = np; | |
} | |
m = M[pa10++]; /* Next word from -10 */ | |
buf[1] = (uint16) (m & M_WORD); /* Bytes 3,,2 */ | |
m >>= 18; | |
buf[0] = (uint16) (m & M_WORD); /* Bytes 1,,0 */ | |
buf += 2; | |
} | |
} /* Body */ | |
/* Tail: partial word, must be aligned, can only be WORD0 */ | |
assert ((bc >= 0) && ((ba & 3) == 0)); | |
if (bc) { | |
assert (bc == 2); | |
np = UBMPAGE (ba); /* Only one word, last possible page crossing */ | |
if (np != cp) { /* New (or first) page? */ | |
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10); | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL);/* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) {/* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Read Word", pa10, ba, bc); | |
return (bc); /* return bc */ | |
} | |
} | |
*buf = (uint16) ((M[pa10++] >> V_WORD0) & M_WORD); | |
} | |
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10); | |
return 0; | |
} | |
/* Word reads returning 18-bit data | |
* | |
* Identical to 16-bit reads except that buffer is uint32 | |
* and masked to 18 bits. | |
*/ | |
int32 Map_ReadW18 (uint32 ba, int32 bc, uint32 *buf) | |
{ | |
uint32 ea, cp, np; | |
int32 seg; | |
a10 pa10 = ~0u; | |
d10 m; | |
uint32 dpy_ba = ba; | |
a10 dpy_pa10 = ~0u; | |
if ((ba & ~((IO_M_UBA<<IO_V_UBA)|0017777)) == 0760000) { | |
/* IOPAGE: device register read */ | |
int32 csr; | |
if ((ba | bc) & 1) | |
ABORT (STOP_IOALIGN); | |
while (bc) { | |
if (UBReadIO (&csr, ba, READ) != SCPE_OK) | |
break; | |
*buf++ = (uint32)csr; | |
ba += 2; | |
bc -= 2; | |
} | |
return bc; | |
} | |
/* Memory */ | |
if (bc == 0) | |
return 0; | |
ba &= ~1; | |
if (bc & 1) | |
ABORT (STOP_IOALIGN); | |
cp = ~ba; | |
seg = (4 - (ba & 3)) & 3; | |
if (seg) { /* Unaligned head */ | |
assert ((ba & 2) && (seg == 2)); | |
if (seg > bc) | |
seg = bc; | |
cp = UBMPAGE (ba); /* Only one word, can't cross page */ | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL); /* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Read 18b Word", pa10, ba, bc); | |
return bc; /* return bc */ | |
} | |
ba += seg; | |
*buf++ = (uint32) (M[pa10++] & M_RH); | |
if ((bc -= seg) == 0) { | |
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10); | |
return 0; | |
} | |
} /* Head */ | |
ea = ba + bc; | |
seg = bc - (ea & 3); | |
if (seg > 0) { | |
assert (((seg & 3) == 0) && (bc >= seg)); | |
bc -= seg; | |
for ( ; seg; seg -= 4, ba += 4) { /* aligned longwords */ | |
np = UBMPAGE (ba); | |
if (np != cp) { /* New (or first) page? */ | |
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10); | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL);/* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) {/* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Read 18b Word", pa10, ba, bc); | |
return (bc + seg); /* return bc */ | |
} | |
cp = np; | |
} | |
m = M[pa10++]; /* Next word from -10 */ | |
buf[1] = (uint32) (m & M_RH); /* Bytes 3,,2 */ | |
m >>= 18; | |
buf[0] = (uint32) (m & M_RH); /* Bytes 1,,0 */ | |
buf += 2; | |
} | |
} /* Body */ | |
/* Tail: partial word, must be aligned */ | |
assert ((bc >= 0) && ((ba & 3) == 0)); | |
if (bc) { | |
assert (bc == 2); | |
np = UBMPAGE (ba); /* Only one word, last possible page crossing */ | |
if (np != cp) { /* New (or first) page? */ | |
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10); | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL);/* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Read 18b Word", pa10, ba, bc); | |
return (bc); /* return bc */ | |
} | |
} | |
*buf++ = (uint32) ((M[pa10++] >> V_WORD0) & M_RH); | |
} | |
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10); | |
return 0; | |
} | |
/* Byte-mode writes */ | |
int32 Map_WriteB (uint32 ba, int32 bc, uint8 *buf) | |
{ | |
uint32 ea, ofs, cp, np; | |
int32 seg, ubm = 0; | |
a10 pa10 = ~0u; | |
d10 m; | |
uint32 dpy_ba = ba; | |
a10 dpy_pa10 = ~0u; | |
if ((ba & ~((IO_M_UBA<<IO_V_UBA)|0017777)) == 0760000) { | |
/* IOPAGE: device register write */ | |
while (bc) { | |
if (UBWriteIO (*buf++ & 0xff, ba, WRITEB) != SCPE_OK) | |
break; | |
ba++; | |
bc--; | |
} | |
return bc; | |
} | |
/* Memory */ | |
if (bc == 0) | |
return 0; | |
cp = ~ba; | |
ofs = ba & 3; | |
seg = (4 - ofs) & 3; | |
if (seg) { /* Unaligned head */ | |
if (seg > bc) | |
seg = bc; | |
cp = UBMPAGE (ba); /* Only one word, can't cross page */ | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, &ubm); /* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Write Byte", pa10, ba, bc); | |
return bc; /* return bc */ | |
} | |
m = M[pa10]; | |
ba += seg; | |
bc -= seg; | |
switch (ofs) { | |
case 1: | |
m = (m & M_BYTE1) | (((d10) (*buf++)) << V_BYTE1); | |
if (!--seg) | |
break; | |
case 2: | |
m = (m & M_BYTE2) | ((d10) (*buf++)); /* V_BYTE2 */ | |
if (!--seg) | |
break; | |
case 3: | |
m = (m & M_BYTE3) | (((d10) (*buf++)) << V_BYTE3); | |
--seg; | |
break; | |
default: | |
assert (FALSE); | |
} | |
M[pa10++] = m; | |
if (bc == 0) { | |
uba_debug_dma_in (dpy_ba, dpy_pa10, pa10-dpy_pa10); | |
return 0; | |
} | |
} /* Head */ | |
ea = ba + bc; | |
seg = bc - (ea & 3); | |
if (seg > 0) { | |
assert (((seg & 3) == 0) && (bc >= seg)); | |
bc -= seg; | |
for ( ; seg; seg -= 4, ba += 4) { /* aligned longwords */ | |
np = UBMPAGE (ba); | |
if (np != cp) { /* New (or first) page? */ | |
uba_debug_dma_in (dpy_ba, dpy_pa10, pa10); | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, &ubm);/* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) {/* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Write Byte", pa10, ba, bc); | |
return (bc + seg); /* return bc */ | |
} | |
cp = np; | |
} | |
M[pa10++] = (((d10)((buf[1] << 8) | buf[0])) << 18) | /* <0:1,18:19> = 0 */ | |
((buf[3] << 8) | buf[2]); | |
buf += 4; | |
} | |
} /* Body */ | |
/* Tail: partial word, must be aligned */ | |
assert ((bc >= 0) && ((ba & 3) == 0)); | |
if (bc) { | |
assert (bc <= 3); | |
np = UBMPAGE (ba); /* Only one word, last possible page crossing */ | |
if (np != cp) { /* New (or first) page? */ | |
uba_debug_dma_in (dpy_ba, dpy_pa10, pa10); | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, &ubm);/* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Write Byte", pa10, ba, bc); | |
return (bc); /* return bc */ | |
} | |
} | |
m = M[pa10]; | |
if ((ubm & UMAP_RRV )) { /* RMW */ | |
switch (bc) { | |
case 3: | |
m = (m & M_BYTE2) | ((d10) (buf[2])); /* V_BYTE2 */ | |
case 2: | |
m = (m & M_BYTE1) | (((d10) (buf[1])) << V_BYTE1); | |
case 1: | |
m = (m & M_BYTE0) | (((d10) (buf[0])) << V_BYTE0); | |
break; | |
default: | |
assert (FALSE); | |
} | |
} | |
else { | |
switch (bc) { /* Write byte 0 + RMW bytes 1 & 2 */ | |
case 3: | |
m = (((d10) (buf[1])) << V_BYTE1) | (((d10) (buf[0])) << V_BYTE0) | | |
((d10) (buf[2])); /* V_BYTE2 */ | |
break; | |
case 2: | |
m = (((d10) (buf[1])) << V_BYTE1) | (((d10) (buf[0])) << V_BYTE0); | |
break; | |
case 1: | |
m = ((d10) (buf[0])) << V_BYTE0; | |
break; | |
default: | |
assert (FALSE); | |
} | |
} | |
M[pa10++] = m; | |
} | |
uba_debug_dma_in (dpy_ba, dpy_pa10, pa10); | |
return 0; | |
} | |
/* Word mode writes; 16-bit data */ | |
int32 Map_WriteW (uint32 ba, int32 bc, uint16 *buf) | |
{ | |
uint32 ea, cp, np; | |
int32 seg, ubm = 0; | |
a10 pa10 = ~0u; | |
uint32 dpy_ba = ba; | |
a10 dpy_pa10 = ~0u; | |
if ((ba & ~((IO_M_UBA<<IO_V_UBA)|0017777)) == 0760000) { | |
/* IOPAGE: device register write */ | |
if ((ba | bc) & 1) | |
ABORT (STOP_IOALIGN); | |
while (bc) { | |
if (UBWriteIO (*buf++ & 0xffff, ba, WRITE) != SCPE_OK) | |
break; | |
ba += 2; | |
bc -= 2; | |
} | |
return bc; | |
} | |
/* Memory */ | |
if (bc == 0) | |
return 0; | |
ba &= ~1; | |
if (bc & 1) | |
ABORT (STOP_IOALIGN); | |
cp = ~ba; | |
seg = (4 - (ba & 3)) & 3; | |
if (seg) { /* Unaligned head */ | |
assert ((ba & 2) && (seg == 2)); | |
if (seg > bc) | |
seg = bc; | |
cp = UBMPAGE (ba); /* Only one word, can't cross page */ | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, &ubm); /* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Write Word", pa10, ba, bc); | |
return bc; /* return bc */ | |
} | |
M[pa10] = (M[pa10] & M_WORD1) | ((d10) (*buf++)); | |
pa10++; | |
if ((bc -= seg) == 0) { | |
uba_debug_dma_in (dpy_ba, dpy_pa10, pa10-dpy_pa10); | |
return 0; | |
} | |
ba += seg; | |
} /* Head */ | |
ea = ba + bc; | |
seg = bc - (ea & 3); | |
if (seg > 0) { | |
assert (((seg & 3) == 0) && (bc >= seg)); | |
bc -= seg; | |
for ( ; seg; seg -= 4, ba += 4) { /* aligned longwords */ | |
np = UBMPAGE (ba); | |
if (np != cp) { /* New (or first) page? */ | |
uba_debug_dma_in (dpy_ba, dpy_pa10, pa10); | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, &ubm);/* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) {/* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Write Word", pa10, ba, bc); | |
return (bc + seg); /* return bc */ | |
} | |
cp = np; | |
} | |
M[pa10++] = (((d10)(buf[0])) << V_WORD0) | buf[1];/* <0:1,18:19> = 0 | |
* V_WORD1 | |
*/ | |
buf += 2; | |
} | |
} /* Body */ | |
/* Tail: partial word, must be aligned, can only be WORD0 */ | |
assert ((bc >= 0) && ((ba & 3) == 0)); | |
if (bc) { | |
assert (bc == 2); | |
np = UBMPAGE (ba); /* Only one word, last possible page crossing */ | |
if (np != cp) { /* New (or first) page? */ | |
uba_debug_dma_in (dpy_ba, dpy_pa10, pa10); | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, &ubm);/* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Write Word", pa10, ba, bc); | |
return (bc); /* return bc */ | |
} | |
} | |
if (ubm & UMAP_RRV ) /* Read reverse preserves RH */ | |
M[pa10] = (((d10)(buf[0])) << V_WORD0) | (M[pa10] & M_WORD0); | |
else | |
M[pa10] = ((d10)(buf[0])) << V_WORD0; | |
pa10++; | |
} | |
uba_debug_dma_in (dpy_ba, dpy_pa10, pa10); | |
return 0; | |
} | |
/* Word mode writes; 18-bit data */ | |
int32 Map_WriteW18 (uint32 ba, int32 bc, uint32 *buf) | |
{ | |
uint32 ea, cp, np; | |
int32 seg, ubm = 0; | |
a10 pa10 = ~0u; | |
uint32 dpy_ba = ba; | |
a10 dpy_pa10 = ~0u; | |
if ((ba & ~((IO_M_UBA<<IO_V_UBA)|0017777)) == 0760000) | |
{ /* IOPAGE: device register write */ | |
if ((ba | bc) & 1) | |
ABORT (STOP_IOALIGN); | |
while (bc) { | |
if (UBWriteIO (*buf++ & M_RH, ba, WRITE) != SCPE_OK) | |
break; | |
ba += 2; | |
bc -= 2; | |
} | |
return bc; | |
} | |
/* Memory */ | |
if (bc == 0) | |
return 0; | |
ba &= ~1; | |
if (bc & 1) | |
ABORT (STOP_IOALIGN); | |
cp = ~ba; | |
seg = (4 - (ba & 3)) & 3; | |
if (seg) { /* Unaligned head */ | |
assert ((ba & 2) && (seg == 2)); | |
if (seg > bc) | |
seg = bc; | |
cp = UBMPAGE (ba); /* Only one word, can't cross page */ | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, &ubm); /* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Write 18b Word", pa10, ba, bc); | |
return bc; /* return bc */ | |
} | |
M[pa10] = (M[pa10] & M_WORD1) | ((d10) (M_WORD18 & *buf++)); /* V_WORD1 */ | |
pa10++; | |
if ((bc -= seg) == 0) { | |
uba_debug_dma_in (dpy_ba, dpy_pa10, pa10-dpy_pa10); | |
return 0; | |
} | |
ba += seg; | |
} /* Head */ | |
ea = ba + bc; | |
seg = bc - (ea & 3); | |
if (seg > 0) { | |
assert (((seg & 3) == 0) && (bc >= seg)); | |
bc -= seg; | |
for ( ; seg; seg -= 4, ba += 4) { /* aligned longwords */ | |
np = UBMPAGE (ba); | |
if (np != cp) { /* New (or first) page? */ | |
uba_debug_dma_in (dpy_ba, dpy_pa10, pa10); | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, &ubm);/* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) {/* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Write 18b Word", pa10, ba, bc); | |
return (bc + seg); /* return bc */ | |
} | |
cp = np; | |
} | |
M[pa10++] = (((d10)(M_WORD18 & buf[0])) << V_WORD0) | (M_WORD18 & buf[1]);/* V_WORD1 */ | |
buf += 2; | |
} | |
} /* Body */ | |
/* Tail: partial word, must be aligned */ | |
assert ((bc >= 0) && ((ba & 3) == 0)); | |
if (bc) { | |
assert (bc == 2); | |
np = UBMPAGE (ba); /* Only one word, last possible page crossing */ | |
if (np != cp) { /* New (or first) page? */ | |
uba_debug_dma_in (dpy_ba, dpy_pa10, pa10); | |
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, &ubm);/* map addr */ | |
dpy_ba = ba; | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */ | |
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */ | |
uba_debug_dma_nxm ("Write 18b Word", pa10, ba, bc); | |
return (bc); /* return bc */ | |
} | |
} | |
if (ubm & UMAP_RRV ) /* Read reverse preserves RH */ | |
M[pa10] = (M[pa10] & M_WORD0) | (((d10)(M_WORD18 & buf[0])) << V_WORD0); | |
else | |
M[pa10] = ((d10)(M_WORD18 & buf[0])) << V_WORD0; | |
pa10++; | |
} | |
uba_debug_dma_in (dpy_ba, dpy_pa10, pa10); | |
return 0; | |
} | |
void | |
uba_debug_dma (int32 mask, uint32 ba, a10 pa_start, a10 pa_end) | |
{ | |
int32 i; | |
int32 wc = (int32)(pa_end - pa_start); | |
if ((!wc) || (!(sim_deb && (uba_dev.dctrl & mask)))) | |
return; | |
sim_debug (mask, &uba_dev, "DMA Bus Address: 0%o, Memory Address: %07o of %o word%s\n", ba, pa_start, wc, (wc>1) ? "s" : ""); | |
for (i=0; i<wc; i++) | |
{ | |
char octal[80]; | |
char words[80]; | |
char bytes[80]; | |
char ascii[80]; | |
char sixbit[80]; | |
char c; | |
int j; | |
d10 d = M[pa_start+i]; | |
sprintf (octal, "%07o: %06o,,%06o", pa_start+i, (int)((d>>V_WORD0)&M_WORD18), | |
(int)((d>>V_WORD1)&M_WORD18)); | |
sprintf (words, "0x%05X: %04X,,%04X", pa_start+i, (int)((d>>V_WORD0)&M_WORD), | |
(int)((d>>V_WORD1)&M_WORD)); | |
sprintf (bytes, "%02X %02X %02X %02X", (int)(((d&~M_BYTE0)>>V_BYTE0)&M_BYTE), | |
(int)(((d&~M_BYTE1)>>V_BYTE1)&M_BYTE), | |
(int)(((d&~M_BYTE2)>>V_BYTE2)&M_BYTE), | |
(int)(((d&~M_BYTE3)>>V_BYTE3)&M_BYTE)); | |
strcpy (ascii, "'.....'"); | |
for (j=1; j<=5; j++) | |
{ | |
c = 0x7F&(d>>(36-(j*7))); | |
if (isprint(c)) | |
ascii[j] = c; | |
} | |
strcpy (sixbit, "'.....'"); | |
for (j=1; j<=6; j++) | |
{ | |
c = 0x3F&(d>>(36-(j*6))); | |
sixbit[j] = c + 32; | |
} | |
sim_debug (mask, &uba_dev, "%s | %s | %s | %s | %s\n", octal, words, bytes, ascii, sixbit); | |
} | |
} | |
void | |
uba_debug_dma_in (uint32 ba, a10 pa_start, a10 pa_end) | |
{ | |
uba_debug_dma (DBG_DMA_IN, ba, pa_start, pa_end); | |
} | |
void | |
uba_debug_dma_out (uint32 ba, a10 pa_start, a10 pa_end) | |
{ | |
uba_debug_dma (DBG_DMA_OUT, ba, pa_start, pa_end); | |
} | |
void | |
uba_debug_dma_nxm (const char *msg, a10 pa10, uint32 ba, int32 bc) | |
{ | |
sim_debug (DBG_DMA_NXM, &uba_dev, "%s Error at address=%7o, ba=%o, bc=%o\n", msg, pa10, ba, bc); | |
} | |
/* Evaluate Unibus priority interrupts */ | |
int32 pi_ub_eval () | |
{ | |
int32 i, lvl; | |
for (i = lvl = 0; i < UBANUM; i++) { | |
if (int_req & ubabr76[i]) | |
lvl = lvl | pi_l2bit[UBCS_GET_HI (ubcs[i])]; | |
if (int_req & ubabr54[i]) | |
lvl = lvl | pi_l2bit[UBCS_GET_LO (ubcs[i])]; | |
} | |
return lvl; | |
} | |
/* Return Unibus device vector | |
Takes as input the request level calculated by pi_eval | |
If there is an interrupting Unibus device at that level, return its vector, | |
otherwise, returns 0 | |
*/ | |
int32 pi_ub_vec (int32 rlvl, int32 *uba) | |
{ | |
int32 i, masked_irq; | |
for (i = masked_irq = 0; i < UBANUM; i++) { | |
if ((rlvl == UBCS_GET_HI (ubcs[i])) && /* req on hi level? */ | |
(masked_irq = int_req & ubabr76[i])) | |
break; | |
if ((rlvl == UBCS_GET_LO (ubcs[i])) && /* req on lo level? */ | |
(masked_irq = int_req & ubabr54[i])) | |
break; | |
} | |
*uba = (i << 1) + 1; /* store uba # */ | |
for (i = 0; (i < 32) && masked_irq; i++) { /* find hi pri req */ | |
if ((masked_irq >> i) & 1) { | |
int_req = int_req & ~(1u << i); /* clear req */ | |
if (int_ack[i]) | |
return int_ack[i](); | |
return int_vec[i]; /* return vector */ | |
} | |
} | |
return 0; | |
} | |
/* Unibus adapter map routines */ | |
t_stat ubmap_rd (int32 *val, int32 pa, int32 mode) | |
{ | |
int32 n = iocmap[GET_IOUBA (pa)]; | |
if (n < 0) | |
ABORT (STOP_ILLIOC); | |
*val = ubmap[n][pa & UMAP_AMASK]; | |
return SCPE_OK; | |
} | |
t_stat ubmap_wr (int32 val, int32 pa, int32 mode) | |
{ | |
int32 n = iocmap[GET_IOUBA (pa)]; | |
if (n < 0) | |
ABORT (STOP_ILLIOC); | |
ubmap[n][pa & UMAP_AMASK] = UMAP_POSFL (val) | UMAP_POSPN (val); | |
return SCPE_OK; | |
} | |
/* Unibus adapter control/status routines */ | |
t_stat ubs_rd (int32 *val, int32 pa, int32 mode) | |
{ | |
int32 n = iocmap[GET_IOUBA (pa)]; | |
if (n < 0) | |
ABORT (STOP_ILLIOC); | |
if (int_req & ubabr76[n]) | |
ubcs[n] = ubcs[n] | UBCS_HI; | |
if (int_req & ubabr54[n]) | |
ubcs[n] = ubcs[n] | UBCS_LO; | |
*val = ubcs[n] = ubcs[n] & ~UBCS_RDZ; | |
return SCPE_OK; | |
} | |
t_stat ubs_wr (int32 val, int32 pa, int32 mode) | |
{ | |
int32 n = iocmap[GET_IOUBA (pa)]; | |
if (n < 0) | |
ABORT (STOP_ILLIOC); | |
if (val & UBCS_INI) { | |
reset_all (5); /* start after UBA */ | |
ubcs[n] = val & UBCS_DXF; | |
} | |
else ubcs[n] = val & UBCS_RDW; | |
if (int_req & ubabr76[n]) | |
ubcs[n] = ubcs[n] | UBCS_HI; | |
if (int_req & ubabr54[n]) | |
ubcs[n] = ubcs[n] | UBCS_LO; | |
return SCPE_OK; | |
} | |
/* Unibus adapter read zero/write ignore routines */ | |
t_stat rd_zro (int32 *val, int32 pa, int32 mode) | |
{ | |
*val = 0; | |
return SCPE_OK; | |
} | |
t_stat wr_nop (int32 val, int32 pa, int32 mode) | |
{ | |
return SCPE_OK; | |
} | |
/* Simulator interface routines */ | |
t_stat uba_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw) | |
{ | |
int32 uba = uptr - uba_unit; | |
if (addr >= UMAP_MEMSIZE) | |
return SCPE_NXM; | |
*vptr = ubmap[uba][addr]; | |
return SCPE_OK; | |
} | |
t_stat uba_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw) | |
{ | |
int32 uba = uptr - uba_unit; | |
if (addr >= UMAP_MEMSIZE) | |
return SCPE_NXM; | |
ubmap[uba][addr] = (int32) val & UMAP_MASK; | |
return SCPE_OK; | |
} | |
t_stat uba_reset (DEVICE *dptr) | |
{ | |
int32 i, uba; | |
int_req = 0; | |
for (uba = 0; uba < UBANUM; uba++) { | |
ubcs[uba] = 0; | |
for (i = 0; i < UMAP_MEMSIZE; i++) | |
ubmap[uba][i] = 0; | |
} | |
pi_eval (); | |
return SCPE_OK; | |
} | |
/* Change device address */ | |
t_stat set_addr (UNIT *uptr, int32 val, char *cptr, void *desc) | |
{ | |
DEVICE *dptr; | |
DIB *dibp; | |
uint32 newba; | |
t_stat r; | |
if (cptr == NULL) | |
return SCPE_ARG; | |
if ((val == 0) || (uptr == NULL)) | |
return SCPE_IERR; | |
dptr = find_dev_from_unit (uptr); | |
if (dptr == NULL) | |
return SCPE_IERR; | |
dibp = (DIB *) dptr->ctxt; | |
if (dibp == NULL) | |
return SCPE_IERR; | |
newba = (uint32) get_uint (cptr, 8, PAMASK, &r); /* get new */ | |
if ((r != SCPE_OK) || (newba == dibp->ba)) | |
return r; | |
if (GET_IOUBA (newba) != GET_IOUBA (dibp->ba)) | |
return SCPE_ARG; | |
if (newba % ((uint32) val)) /* check modulus */ | |
return SCPE_ARG; | |
dibp->ba = newba; /* store */ | |
autcon_enb = 0; /* autoconfig off */ | |
return SCPE_OK; | |
} | |
/* Show device address */ | |
t_stat show_addr (FILE *st, UNIT *uptr, int32 val, void *desc) | |
{ | |
DEVICE *dptr; | |
DIB *dibp; | |
if (uptr == NULL) | |
return SCPE_IERR; | |
dptr = find_dev_from_unit (uptr); | |
if (dptr == NULL) | |
return SCPE_IERR; | |
dibp = (DIB *) dptr->ctxt; | |
if (dibp == NULL) | |
return SCPE_IERR; | |
if (((dibp->ba>>IO_V_UBA) != 1) && | |
((dibp->ba>>IO_V_UBA) != 3)) | |
return SCPE_IERR; | |
fprintf (st, "address=%07o", dibp->ba); | |
if (dibp->lnt > 1) | |
fprintf (st, "-%07o", dibp->ba + dibp->lnt - 1); | |
if ((dibp->ba & ((1 << IO_V_UBA) - 1)) < AUTO_CSRBASE + AUTO_CSRMAX) | |
fprintf (st, "*"); | |
return SCPE_OK; | |
} | |
/* Change device vector */ | |
t_stat set_vec (UNIT *uptr, int32 arg, char *cptr, void *desc) | |
{ | |
DEVICE *dptr; | |
DIB *dibp; | |
uint32 newvec; | |
t_stat r; | |
if (cptr == NULL) | |
return SCPE_ARG; | |
if (uptr == NULL) | |
return SCPE_IERR; | |
dptr = find_dev_from_unit (uptr); | |
if (dptr == NULL) | |
return SCPE_IERR; | |
dibp = (DIB *) dptr->ctxt; | |
if (dibp == NULL) | |
return SCPE_IERR; | |
newvec = (uint32) get_uint (cptr, 8, VEC_Q + 01000, &r); | |
if ((r != SCPE_OK) || (newvec == VEC_Q) || | |
((newvec + (dibp->vnum * 4)) >= (VEC_Q + 01000)) || | |
(newvec & ((dibp->vnum > 1)? 07: 03))) | |
return SCPE_ARG; | |
dibp->vec = newvec; | |
autcon_enb = 0; /* autoconfig off */ | |
return SCPE_OK; | |
} | |
/* Show device vector */ | |
t_stat show_vec (FILE *st, UNIT *uptr, int32 arg, void *desc) | |
{ | |
DEVICE *dptr; | |
DIB *dibp; | |
uint32 vec, numvec; | |
if (uptr == NULL) | |
return SCPE_IERR; | |
dptr = find_dev_from_unit (uptr); | |
if (dptr == NULL) | |
return SCPE_IERR; | |
dibp = (DIB *) dptr->ctxt; | |
if (dibp == NULL) | |
return SCPE_IERR; | |
vec = dibp->vec; | |
if (arg) | |
numvec = arg; | |
else numvec = dibp->vnum; | |
if (vec == 0) | |
fprintf (st, "no vector"); | |
else { | |
fprintf (st, "vector=%o", vec); | |
if (numvec > 1) | |
fprintf (st, "-%o", vec + (4 * (numvec - 1))); | |
} | |
if (vec >= AUTO_VECBASE) | |
fprintf (st, "*"); | |
return SCPE_OK; | |
} | |
/* Show vector for terminal multiplexor */ | |
t_stat show_vec_mux (FILE *st, UNIT *uptr, int32 arg, void *desc) | |
{ | |
TMXR *mp = (TMXR *) desc; | |
if ((mp == NULL) || (arg == 0)) | |
return SCPE_IERR; | |
return show_vec (st, uptr, ((mp->lines * 2) / arg), desc); | |
} | |
/* Test for conflict in device addresses */ | |
t_bool dev_conflict (DIB *curr) | |
{ | |
uint32 i, end; | |
DEVICE *dptr; | |
DIB *dibp; | |
end = curr->ba + curr->lnt - 1; /* get end */ | |
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */ | |
dibp = (DIB *) dptr->ctxt; /* get DIB */ | |
if ((dibp == NULL) || (dibp == curr) || | |
(dptr->flags & DEV_DIS)) | |
continue; | |
if (((curr->ba >= dibp->ba) && /* overlap start? */ | |
(curr->ba < (dibp->ba + dibp->lnt))) || | |
((end >= dibp->ba) && /* overlap end? */ | |
(end < (dibp->ba + dibp->lnt)))) { | |
sim_printf ("Device %s address conflict at %08o\n", | |
sim_dname (dptr), dibp->ba); | |
return TRUE; | |
} | |
} | |
return FALSE; | |
} | |
/* Build interrupt tables */ | |
void build_int_vec (int32 vloc, int32 ivec, int32 (*iack)(void) ) | |
{ | |
if (iack != NULL) | |
int_ack[vloc] = iack; | |
else int_vec[vloc] = ivec; | |
return; | |
} | |
/* Build dib_tab from device list */ | |
t_bool build_dib_tab (void) | |
{ | |
int32 i, j, k; | |
DEVICE *dptr; | |
DIB *dibp; | |
for (i = 0; i < 32; i++) { /* clear intr tables */ | |
int_vec[i] = 0; | |
int_ack[i] = NULL; | |
} | |
for (i = j = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */ | |
dibp = (DIB *) dptr->ctxt; /* get DIB */ | |
if (dibp && !(dptr->flags & DEV_DIS)) { /* defined, enabled? */ | |
if (dibp->vnum > VEC_DEVMAX) | |
return SCPE_IERR; | |
for (k = 0; k < dibp->vnum; k++) /* loop thru vec */ | |
build_int_vec (dibp->vloc + k, /* add vector */ | |
dibp->vec + (k * 4), dibp->ack[k]); | |
if (dibp->lnt != 0) { /* I/O addresses? */ | |
dib_tab[j++] = dibp; /* add DIB to dib_tab */ | |
if (j >= DIB_MAX) /* too many? */ | |
return SCPE_IERR; | |
} | |
} /* end if enabled */ | |
} /* end for */ | |
for (i = 0; (dibp = std_dib[i]) != NULL; i++) { /* loop thru std */ | |
dib_tab[j++] = dibp; /* add to dib_tab */ | |
if (j >= DIB_MAX) /* too many? */ | |
return SCPE_IERR; | |
} | |
dib_tab[j] = NULL; /* end with NULL */ | |
for (i = 0; (dibp = dib_tab[i]) != NULL; i++) { /* test built dib_tab */ | |
if (dev_conflict (dibp)) /* for conflicts */ | |
return SCPE_STOP; | |
} | |
return SCPE_OK; | |
} | |
/* Show dib_tab */ | |
t_stat show_iospace (FILE *st, UNIT *uptr, int32 val, void *desc) | |
{ | |
int32 i, j, done = 0; | |
DEVICE *dptr; | |
DIB *dibt; | |
build_dib_tab (); /* build table */ | |
while (done == 0) { /* sort ascending */ | |
done = 1; /* assume done */ | |
for (i = 0; dib_tab[i + 1] != NULL; i++) { /* check table */ | |
if (dib_tab[i]->ba > dib_tab[i + 1]->ba) { /* out of order? */ | |
dibt = dib_tab[i]; /* interchange */ | |
dib_tab[i] = dib_tab[i + 1]; | |
dib_tab[i + 1] = dibt; | |
done = 0; /* not done */ | |
} | |
} | |
} /* end while */ | |
fprintf (st, " Address Vector BR # Device\n" | |
"----------------- -------- -- -- ------\n"); | |
for (i = 0; dib_tab[i] != NULL; i++) { /* print table */ | |
for (j = 0, dptr = NULL; sim_devices[j] != NULL; j++) { | |
if (((DIB*) sim_devices[j]->ctxt) == dib_tab[i]) { | |
dptr = sim_devices[j]; | |
break; | |
} | |
} | |
fprintf (st, "%07o - %07o ", dib_tab[i]->ba, | |
dib_tab[i]->ba + dib_tab[i]->lnt - 1); | |
if (dib_tab[i]->vec == 0) | |
fprintf (st, " "); | |
else { | |
fprintf (st, "%03o", dib_tab[i]->vec); | |
if (dib_tab[i]->vnum > 1) | |
fprintf (st, "-%03o", dib_tab[i]->vec + (4 * (dib_tab[i]->vnum - 1))); | |
else | |
fprintf (st, " "); | |
fprintf (st, "%1s", (dib_tab[i]->vnum >= AUTO_VECBASE)? "*": " "); | |
} | |
if (dib_tab[i]->vec || dib_tab[i]->vloc) | |
fprintf (st, " %2u", (dib_tab[i]->vloc<=3)? 7: | |
(dib_tab[i]->vloc<=7)? 6: | |
(dib_tab[i]->vloc<=19)? 5: 4); | |
else | |
fprintf (st, " "); | |
fprintf (st, " %2u %s\n", (dib_tab[i]->ulnt? dib_tab[i]->lnt/dib_tab[i]->ulnt: | |
(dptr? dptr->numunits: 1)), dptr? sim_dname (dptr): "CPU"); | |
} | |
return SCPE_OK; | |
} | |
/* Autoconfiguration | |
The below table describes the fixed addresses for the currently | |
supported Unibus devices which are shared between the PDP11/VAX | |
Unibus and the PDP10. This list isn't likely to change, but if | |
need be, it can be extended to include as many devices as necessary. | |
The full 'real' auto configuration table which describes both | |
devices with static addresses and addresses(and vectors) in floating | |
address space is #ifdef'd out below. These addresses have been | |
used historically in the PDP10 simulator so their fixed addresses | |
are retained for consistency with OS configurations which | |
expect them to be using these fixed address and vectors. | |
A minus number of vectors indicates a field that should be calculated | |
but not placed in the DIB (RQ, TQ dynamic vectors) | |
An amod value of 0 indicates that all addresses are FIXED | |
An vmod value of 0 indicates that all vectors are FIXED */ | |
typedef struct { | |
char *dnam[AUTO_MAXC]; | |
int32 numc; | |
int32 numv; | |
uint32 amod; | |
uint32 vmod; | |
uint32 fixa[AUTO_MAXC]; | |
uint32 fixv[AUTO_MAXC]; | |
} AUTO_CON; | |
AUTO_CON auto_tab[] = {/*c #v am vm fxa fxv */ | |
#ifdef VM_PDP10 | |
{ { "DZ" }, 1, 2, 0, 0, | |
{0000010}, {0340} }, /* DZ11 - Fixed addresses and vectors in simulator */ | |
{ { "RY" }, 1, 1, 8, 4, | |
{0017170}, {0264} }, /* RX11/RX211 - Fixed address and vector in simulator */ | |
{ { "CR" }, 1, 1, 0, 0, | |
{0017160}, {0230} }, /* CR11 - fx CSR, fx VEC */ | |
{ { "PTR" }, 1, 1, 0, 0, | |
{0017550}, {0070} }, /* PC11 reader - fx CSR, fx VEC */ | |
{ { "PTP" }, 1, 1, 0, 0, | |
{0017554}, {0074} }, /* PC11 punch - fx CSR, fx VEC */ | |
{ { "DUP" }, 1, 2, 0, 0, | |
{0000300}, {0570} }, /* DUP11 bit sync - fx CSR, fx VEC */ | |
{ { "KDP" }, 1, 2, 0, 0, | |
{0000540}, {0540} }, /* KMC11-A comm IOP-DUP ucode - fx CSR, fx VEC */ | |
{ { "DMR" }, 1, 2, 0, 0, | |
{0004000}, {0610} }, /* DMR11 comm - fx CSR, fx VEC */ | |
#else | |
{ { "QBA" }, 1, 0, 0, 0, | |
{017500} }, /* doorbell - fx CSR, no VEC */ | |
{ { "MCTL" }, 1, 0, 0, 0, | |
{012100} }, /* MSV11-P - fx CSR, no VEC */ | |
{ { "KE" }, 1, 0, 0, 0, | |
{017300} }, /* KE11-A - fx CSR, no VEC */ | |
{ { "KG" }, 1, 0, 0, 0, | |
{010700} }, /* KG11-A - fx CSR, no VEC */ | |
{ { "RHA", "RHB" }, 1, 1, 0, 0, | |
{016700, 012440}, {0254, 0224} }, /* RH11/RH70 - fx CSR, fx VEC */ | |
{ { "CLK" }, 1, 1, 0, 0, | |
{017546}, {0100} }, /* KW11L - fx CSR, fx VEC */ | |
{ { "PCLK" }, 1, 1, 0, 0, | |
{012540}, {0104} }, /* KW11P - fx CSR, fx VEC */ | |
{ { "PTR" }, 1, 1, 0, 0, | |
{017550}, {0070} }, /* PC11 reader - fx CSR, fx VEC */ | |
{ { "PTP" }, 1, 1, 0, 0, | |
{017554}, {0074} }, /* PC11 punch - fx CSR, fx VEC */ | |
{ { "RK" }, 1, 1, 0, 0, | |
{017400}, {0220} }, /* RK11 - fx CSR, fx VEC */ | |
{ { "TM" }, 1, 1, 0, 0, | |
{012520}, {0224} }, /* TM11 - fx CSR, fx VEC */ | |
{ { "RC" }, 1, 1, 0, 0, | |
{017440}, {0210} }, /* RC11 - fx CSR, fx VEC */ | |
{ { "RF" }, 1, 1, 0, 0, | |
{017460}, {0204} }, /* RF11 - fx CSR, fx VEC */ | |
{ { "CR" }, 1, 1, 0, 0, | |
{017160}, {0230} }, /* CR11 - fx CSR, fx VEC */ | |
{ { "HK" }, 1, 1, 0, 0, | |
{017440}, {0210} }, /* RK611 - fx CSR, fx VEC */ | |
{ { "LPT" }, 1, 1, 0, 0, | |
{017514, 004004, 004014, 004024, 004034}, | |
{0200, 0170, 0174, 0270, 0274} }, /* LP11 - fx CSR, fx VEC */ | |
{ { "RB" }, 1, 1, 0, 0, | |
{015606}, {0250} }, /* RB730 - fx CSR, fx VEC */ | |
{ { "RL" }, 1, 1, 0, 0, | |
{014400}, {0160} }, /* RL11 - fx CSR, fx VEC */ | |
{ { "RL" }, 1, 1, 0, 0, | |
{014400}, {0160} }, /* RL11 - fx CSR, fx VEC */ | |
{ { "DCI" }, 1, 2, 0, 8, | |
{014000, 014010, 014020, 014030, | |
014040, 014050, 014060, 014070, | |
014100, 014110, 014120, 014130, | |
014140, 014150, 014160, 014170, | |
014200, 014210, 014220, 014230, | |
014240, 014250, 014260, 014270, | |
014300, 014310, 014320, 014330, | |
014340, 014350, 014360, 014370} }, /* DC11 - fx CSRs */ | |
{ { NULL }, 1, 2, 0, 8, | |
{016500, 016510, 016520, 016530, | |
016540, 016550, 016560, 016570, | |
016600, 016610, 016620, 016630, | |
016640, 016650, 016660, 016670} }, /* TU58 - fx CSRs */ | |
{ { NULL }, 1, 1, 0, 4, | |
{015200, 015210, 015220, 015230, | |
015240, 015250, 015260, 015270, | |
015300, 015310, 015320, 015330, | |
015340, 015350, 015360, 015370} }, /* DN11 - fx CSRs */ | |
{ { NULL }, 1, 1, 0, 4, | |
{010500, 010510, 010520, 010530, | |
010540, 010550, 010560, 010570, | |
010600, 010610, 010620, 010630, | |
010640, 010650, 010660, 010670} }, /* DM11B - fx CSRs */ | |
{ { NULL }, 1, 2, 0, 8, | |
{007600, 007570, 007560, 007550, | |
007540, 007530, 007520, 007510, | |
007500, 007470, 007460, 007450, | |
007440, 007430, 007420, 007410} }, /* DR11C - fx CSRs */ | |
{ { NULL }, 1, 1, 0, 8, | |
{012600, 012604, 012610, 012614, | |
012620, 012624, 012620, 012624} }, /* PR611 - fx CSRs */ | |
{ { NULL }, 1, 1, 0, 8, | |
{017420, 017422, 017424, 017426, | |
017430, 017432, 017434, 017436} }, /* DT11 - fx CSRs */ | |
{ { NULL }, 1, 2, 0, 8, | |
{016200, 016240} }, /* DX11 */ | |
{ { "DLI" }, 1, 2, 0, 8, | |
{016500, 016510, 016520, 016530, | |
016540, 016550, 016560, 016570, | |
016600, 016610, 016620, 016630, | |
016740, 016750, 016760, 016770} }, /* KL11/DL11/DLV11 - fx CSRs */ | |
{ { NULL }, 1, 2, 0, 8, { 0 } }, /* DLV11J - fx CSRs */ | |
{ { NULL }, 1, 2, 8, 8 }, /* DJ11 */ | |
{ { NULL }, 1, 2, 16, 8 }, /* DH11 */ | |
{ { NULL }, 1, 4, 0, 8, | |
{012000, 012010, 012020, 012030} }, /* GT40 */ | |
{ { NULL }, 1, 2, 0, 8, | |
{010400} }, /* LPS11 */ | |
{ { NULL }, 1, 2, 8, 8 }, /* DQ11 */ | |
{ { NULL }, 1, 2, 0, 8, | |
{012400} }, /* KW11W */ | |
{ { NULL }, 1, 2, 8, 8 }, /* DU11 */ | |
{ { NULL }, 1, 2, 8, 8 }, /* DUP11 */ | |
{ { NULL }, 1, 3, 0, 8, | |
{015000, 015040, 015100, 015140, }}, /* DV11 */ | |
{ { NULL }, 1, 2, 8, 8 }, /* LK11A */ | |
{ { "DMC0", "DMC1", "DMC2", "DMC3" }, | |
1, 2, 8, 8 }, /* DMC11 */ | |
{ { "DZ" }, 1, 2, 8, 8 }, /* DZ11 */ | |
{ { NULL }, 1, 2, 8, 8 }, /* KMC11 */ | |
{ { NULL }, 1, 2, 8, 8 }, /* LPP11 */ | |
{ { NULL }, 1, 2, 8, 8 }, /* VMV21 */ | |
{ { NULL }, 1, 2, 16, 8 }, /* VMV31 */ | |
{ { NULL }, 1, 2, 8, 8 }, /* DWR70 */ | |
{ { "RL", "RLB"}, 1, 1, 8, 4, | |
{014400}, {0160} }, /* RL11 */ | |
{ { "TS", "TSB", "TSC", "TSD"}, | |
1, 1, 0, 4, /* TS11 */ | |
{012520, 012524, 012530, 012534}, | |
{0224} }, | |
{ { NULL }, 1, 2, 16, 8, | |
{010460} }, /* LPA11K */ | |
{ { NULL }, 1, 2, 8, 8 }, /* KW11C */ | |
{ { NULL }, 1, 1, 8, 8 }, /* reserved */ | |
{ { "RX", "RY" }, 1, 1, 8, 4, | |
{017170} , {0264} }, /* RX11/RX211 */ | |
{ { NULL }, 1, 1, 8, 4 }, /* DR11W */ | |
{ { NULL }, 1, 1, 8, 4, | |
{012410, 012410}, {0124} }, /* DR11B - fx CSRs,vec */ | |
{ { "DMP" }, 1, 2, 8, 8 }, /* DMP11 */ | |
{ { NULL }, 1, 2, 8, 8 }, /* DPV11 */ | |
{ { NULL }, 1, 2, 8, 8 }, /* ISB11 */ | |
{ { NULL }, 1, 2, 16, 8 }, /* DMV11 */ | |
{ { "XU", "XUB" }, 1, 1, 8, 4, | |
{014510}, {0120} }, /* DEUNA */ | |
{ { "XQ", "XQB" }, 1, -1, 0, 4, | |
{014440, 014460, 014520, 014540}, {0120} }, /* DEQNA */ | |
{ { "RQ", "RQB", "RQC", "RQD" }, | |
1, -1, 4, 4, /* RQDX3 */ | |
{012150}, {0154} }, | |
{ { NULL }, 1, 8, 32, 4 }, /* DMF32 */ | |
{ { NULL }, 1, 3, 16, 8 }, /* KMS11 */ | |
{ { NULL }, 1, 2, 0, 8, | |
{004200, 004240, 004300, 004340} }, /* PLC11 */ | |
{ { NULL }, 1, 1, 16, 4 }, /* VS100 */ | |
{ { "TQ", "TQB" }, 1, -1, 4, 4, | |
{014500}, {0260} }, /* TQK50 */ | |
{ { NULL }, 1, 2, 16, 8 }, /* KMV11 */ | |
{ { NULL }, 1, 2, 0, 8, | |
{004400, 004440, 004500, 004540} }, /* KTC32 */ | |
{ { NULL }, 1, 2, 0, 8, | |
{004100} }, /* IEQ11 */ | |
{ { "VH" }, 1, 2, 16, 8 }, /* DHU11/DHQ11 */ | |
{ { NULL }, 1, 6, 32, 4 }, /* DMZ32 */ | |
{ { NULL }, 1, 6, 32, 4 }, /* CP132 */ | |
{ { "TC" }, 1, 1, 0, 0, | |
{017340}, {0214} }, /* TC11 */ | |
{ { "TA" }, 1, 1, 0, 0, | |
{017500}, {0260} }, /* TA11 */ | |
{ { NULL }, 1, 2, 64, 8, | |
{017200} }, /* QVSS - fx CSR */ | |
{ { NULL }, 1, 1, 8, 4 }, /* VS31 */ | |
{ { NULL }, 1, 1, 0, 4, | |
{016200} }, /* LNV11 - fx CSR */ | |
{ { NULL }, 1, 1, 16, 4 }, /* LNV21/QPSS */ | |
{ { NULL }, 1, 1, 8, 4, | |
{012570} }, /* QTA - fx CSR */ | |
{ { NULL }, 1, 1, 8, 4 }, /* DSV11 */ | |
{ { NULL }, 1, 2, 8, 8 }, /* CSAM */ | |
{ { NULL }, 1, 2, 8, 8 }, /* ADV11C */ | |
{ { NULL }, 1, 0, 8, 8, | |
{010440} }, /* AAV11/AAV11C */ | |
{ { NULL }, 1, 2, 8, 8, | |
{016400}, {0140} }, /* AXV11C - fx CSR,vec */ | |
{ { NULL }, 1, 2, 4, 8, | |
{010420} }, /* KWV11C - fx CSR */ | |
{ { NULL }, 1, 2, 8, 8, | |
{016410} }, /* ADV11D - fx CSR */ | |
{ { NULL }, 1, 2, 8, 8, | |
{016420} }, /* AAV11D - fx CSR */ | |
{ { "QDSS" }, 1, 3, 0, 16, | |
{017400, 017402, 017404, 017406, | |
017410, 017412, 017414, 017416} }, /* VCB02 - QDSS - fx CSR */ | |
{ { NULL }, 1, 16, 0, 4, | |
{004160, 004140, 004120} }, /* DRV11J - fx CSR */ | |
{ { NULL }, 1, 2, 16, 8 }, /* DRQ3B */ | |
{ { NULL }, 1, 1, 8, 4 }, /* VSV24 */ | |
{ { NULL }, 1, 1, 8, 4 }, /* VSV21 */ | |
{ { NULL }, 1, 1, 8, 4 }, /* IBQ01 */ | |
{ { NULL }, 1, 1, 8, 8 }, /* IDV11A */ | |
{ { NULL }, 1, 0, 8, 8 }, /* IDV11B */ | |
{ { NULL }, 1, 0, 8, 8 }, /* IDV11C */ | |
{ { NULL }, 1, 1, 8, 8 }, /* IDV11D */ | |
{ { NULL }, 1, 2, 8, 8 }, /* IAV11A */ | |
{ { NULL }, 1, 0, 8, 8 }, /* IAV11B */ | |
{ { NULL }, 1, 2, 8, 8 }, /* MIRA */ | |
{ { NULL }, 1, 2, 16, 8 }, /* IEQ11 */ | |
{ { NULL }, 1, 2, 32, 8 }, /* ADQ32 */ | |
{ { NULL }, 1, 2, 8, 8 }, /* DTC04, DECvoice */ | |
{ { NULL }, 1, 1, 32, 4 }, /* DESNA */ | |
{ { NULL }, 1, 2, 4, 8 }, /* IGQ11 */ | |
{ { NULL }, 1, 2, 32, 8 }, /* KMV1F */ | |
{ { NULL }, 1, 1, 8, 4 }, /* DIV32 */ | |
{ { NULL }, 1, 2, 4, 8 }, /* DTCN5, DECvoice */ | |
{ { NULL }, 1, 2, 4, 8 }, /* DTC05, DECvoice */ | |
{ { NULL }, 1, 2, 8, 8 }, /* KWV32 (DSV11) */ | |
{ { NULL }, 1, 1, 64, 4 }, /* QZA */ | |
#endif | |
{ { NULL }, -1 } /* end table */ | |
}; | |
#if !defined(DEV_NEXUS) | |
#if defined(DEV_MBUS) | |
#define DEV_NEXUS DEV_MBUS | |
#else | |
#define DEV_NEXUS 0 | |
#endif | |
#endif | |
t_stat auto_config (char *name, int32 nctrl) | |
{ | |
uint32 csr = IOPAGEBASE + AUTO_CSRBASE; | |
uint32 vec = VEC_Q + AUTO_VECBASE; | |
AUTO_CON *autp; | |
DEVICE *dptr; | |
DIB *dibp; | |
uint32 j, vmask, amask; | |
if (autcon_enb == 0) /* enabled? */ | |
return SCPE_OK; | |
if (name) { /* updating? */ | |
if (nctrl < 0) | |
return SCPE_ARG; | |
for (autp = auto_tab; autp->numc >= 0; autp++) { | |
for (j = 0; (j < AUTO_MAXC) && autp->dnam[j]; j++) { | |
if (strcmp (name, autp->dnam[j]) == 0) | |
autp->numc = nctrl; | |
} | |
} | |
} | |
for (autp = auto_tab; autp->numc >= 0; autp++) { /* loop thru table */ | |
if (autp->amod) { /* floating csr? */ | |
amask = autp->amod - 1; | |
csr = (csr + amask) & ~amask; /* align csr */ | |
} | |
for (j = 0; (j < AUTO_MAXC) && autp->dnam[j]; j++) { | |
if (autp->dnam[j] == NULL) /* no device? */ | |
break; | |
dptr = find_dev (autp->dnam[j]); /* find ctrl */ | |
if ((dptr == NULL) || /* enabled, not nexus? */ | |
(dptr->flags & DEV_DIS) || | |
(dptr->flags & DEV_NEXUS) ) | |
continue; | |
dibp = (DIB *) dptr->ctxt; /* get DIB */ | |
if (dibp == NULL) /* not there??? */ | |
return SCPE_IERR; | |
if (autp->fixa[j]) /* fixed csr avail? */ | |
dibp->ba = IOPAGEBASE + autp->fixa[j]; /* use it */ | |
else { /* no fixed left */ | |
dibp->ba = csr; /* set CSR */ | |
csr += (autp->numc * autp->amod); /* next CSR */ | |
} /* end else */ | |
if (autp->numv) { /* vec needed? */ | |
if (autp->fixv[j]) { /* fixed vec avail? */ | |
if (autp->numv > 0) | |
dibp->vec = VEC_Q + autp->fixv[j]; /* use it */ | |
} | |
else { /* no fixed left */ | |
uint32 numv = abs (autp->numv); /* get num vec */ | |
vmask = autp->vmod - 1; | |
vec = (vec + vmask) & ~vmask; /* align vector */ | |
if (autp->numv > 0) | |
dibp->vec = vec; /* set vector */ | |
vec += (autp->numc * numv * 4); | |
} /* end else */ | |
} /* end vec needed */ | |
} /* end for j */ | |
if (autp->amod) /* flt CSR? gap */ | |
csr = csr + 2; | |
} /* end for i */ | |
return SCPE_OK; | |
} | |
/* Set address floating */ | |
t_stat set_addr_flt (UNIT *uptr, int32 val, char *cptr, void *desc) | |
{ | |
DEVICE *dptr; | |
if (cptr != NULL) | |
return SCPE_ARG; | |
if (uptr == NULL) | |
return SCPE_IERR; | |
dptr = find_dev_from_unit (uptr); | |
if (dptr == NULL) | |
return SCPE_IERR; | |
return auto_config (NULL, 0); /* autoconfigure */ | |
} | |