| /* pdp1_cpu.c: PDP-1 CPU simulator | |
| Copyright (c) 1993-2001, Robert M. Supnik | |
| Permission is hereby granted, free of charge, to any person obtaining a | |
| copy of this software and associated documentation files (the "Software"), | |
| to deal in the Software without restriction, including without limitation | |
| the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
| and/or sell copies of the Software, and to permit persons to whom the | |
| Software is furnished to do so, subject to the following conditions: | |
| The above copyright notice and this permission notice shall be included in | |
| all copies or substantial portions of the Software. | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
| ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
| IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
| CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
| Except as contained in this notice, the name of Robert M Supnik shall not | |
| be used in advertising or otherwise to promote the sale, use or other dealings | |
| in this Software without prior written authorization from Robert M Supnik. | |
| cpu PDP-1 central processor | |
| 16-Dec-00 RMS Fixed bug in XCT address calculation | |
| 14-Apr-99 RMS Changed t_addr to unsigned | |
| The PDP-1 was Digital's first computer. Although Digital built four | |
| other 18b computers, the later systems (the PDP-4, PDP-7, PDP-9, and | |
| PDP-15) were similar to each other and quite different from the PDP-1. | |
| Accordingly, the PDP-1 requires a distinct simulator. | |
| The register state for the PDP-1 is: | |
| AC<0:17> accumulator | |
| IO<0:17> IO register | |
| OV overflow flag | |
| PC<0:15> program counter | |
| IOSTA I/O status register | |
| SBS<0:2> sequence break flip flops | |
| IOH I/O halt flip flop | |
| IOC I/O completion flip flop | |
| EXTM extend mode | |
| PF<1:6> program flags | |
| SS<1:6> sense switches | |
| TW<0:17> test word (switch register) | |
| Questions: | |
| cks: which bits are line printer print done and space done? | |
| cks: is there a bit for sequence break enabled (yes, according | |
| to the 1963 Handbook) | |
| sbs: do sequence breaks accumulate while the system is disabled | |
| (yes, according to the Maintenance Manual) | |
| */ | |
| /* The PDP-1 has six instruction formats: memory reference, skips, | |
| shifts, load immediate, I/O transfer, and operate. The memory | |
| reference format is: | |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | |
| +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| | op |in| address | memory reference | |
| +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| <0:4> <5> mnemonic action | |
| 00 | |
| 02 AND AC = AC & M[MA] | |
| 04 IOR AC = AC | M[MA] | |
| 06 XOR AC = AC ^ M[MA] | |
| 10 XCT M[MA] is executed as an instruction | |
| 12 | |
| 14 | |
| 16 0 CAL M[100] = AC, AC = PC, PC = 101 | |
| 16 1 JDA M[MA] = AC, AC = PC, PC = MA + 1 | |
| 20 LAC AC = M[MA] | |
| 22 LIO IO = M[MA] | |
| 24 DAC M[MA] = AC | |
| 26 DAP M[MA]<6:17> = AC<6:17> | |
| 30 DIP M[MA]<0:5> = AC<0:5> | |
| 32 DIO M[MA] = IO | |
| 34 DZM M[MA] = 0 | |
| 36 | |
| 40 ADD AC = AC + M[MA] | |
| 42 SUB AC = AC - M[MA] | |
| 44 IDX AC = M[MA] = M[MA] + 1 | |
| 46 ISP AC = M[MA] = M[MA] + 1, skip if AC >= 0 | |
| 50 SAD skip if AC != M[MA] | |
| 52 SAS skip if AC == M[MA] | |
| 54 MUL AC'IO = AC * M[MA] | |
| 56 DIV AC, IO = AC'IO / M[MA] | |
| 60 JMP PC = MA | |
| 62 JSP AC = PC, PC = MA | |
| Memory reference instructions can access an address space of 64K words. | |
| The address space is divided into sixteen 4K word fields. An | |
| instruction can directly address, via its 12b address, the entire | |
| current field. If extend mode is off, indirect addresses access | |
| the current field, and indirect addressing is multi-level; if off, | |
| they can access all 64K, and indirect addressing is single level. | |
| */ | |
| /* The skip format is: | |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | |
| +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| | 1 1 0 1 0| | | | | | | | | | | | | | skip | |
| +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| | | | | | | \______/ \______/ | |
| | | | | | | | | | |
| | | | | | | | +---- program flags | |
| | | | | | | +------------- sense switches | |
| | | | | | +------------------- AC == 0 | |
| | | | | +---------------------- AC >= 0 | |
| | | | +------------------------- AC < 0 | |
| | | +---------------------------- OV == 0 | |
| | +------------------------------- IO >= 0 | |
| +------------------------------------- invert skip | |
| The shift format is: | |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | |
| +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| | 1 1 0 1 1| subopcode | encoded count | shift | |
| +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| The load immediate format is: | |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | |
| +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| | 1 1 1 0 0| S| immediate | LAW | |
| +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| <0:4> mnemonic action | |
| 70 LAW if S = 0, AC = IR<6:17> | |
| else AC = ~IR<6:17> | |
| */ | |
| /* The I/O transfer format is: | |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | |
| +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| | 1 1 1 0 1| W| C| subopcode | device | I/O transfer | |
| +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| The IO transfer instruction sends the the specified subopcode to | |
| specified I/O device. The I/O device may take data from the IO or | |
| return data to the IO, initiate or cancel operations, etc. The | |
| W bit specifies whether the CPU waits for completion, the C bit | |
| whether a completion pulse will be returned from the device. | |
| The operate format is: | |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | |
| +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| | 1 1 1 1 1| | | | | | | | | | | | | | operate | |
| +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| | | | | | | | \______/ | |
| | | | | | | | | | |
| | | | | | | | +---- PF select | |
| | | | | | | +---------- clear/set PF | |
| | | | | | +------------------- or PC | |
| | | | | +---------------------- clear AC | |
| | | | +------------------------- halt | |
| | | +---------------------------- CMA | |
| | +------------------------------- or TW | |
| +---------------------------------- clear IO | |
| The operate instruction can be microprogrammed. | |
| */ | |
| /* This routine is the instruction decode routine for the PDP-1. | |
| It is called from the simulator control program to execute | |
| instructions in simulated memory, starting at the simulated PC. | |
| It runs until 'reason' is set non-zero. | |
| General notes: | |
| 1. Reasons to stop. The simulator can be stopped by: | |
| HALT instruction | |
| breakpoint encountered | |
| unimplemented instruction and STOP_INST flag set | |
| XCT loop | |
| indirect address loop | |
| infinite wait state | |
| I/O error in I/O simulator | |
| 2. Interrupts. With a single channel sequence break system, the | |
| PDP-1 has a single break request (flop b2, here sbs<SB_V_RQ>). | |
| If sequence breaks are enabled (flop sbm, here sbs<SB_V_ON>), | |
| and one is not already in progress (flop b4, here sbs<SB_V_IP>), | |
| a sequence break occurs. | |
| 3. Arithmetic. The PDP-1 is a 1's complement system. In 1's | |
| complement arithmetic, a negative number is represented by the | |
| complement (XOR 0777777) of its absolute value. Addition of 1's | |
| complement numbers requires propagating the carry out of the high | |
| order bit back to the low order bit. | |
| 4. Adding I/O devices. Three modules must be modified: | |
| pdp1_defs.h add interrupt request definition | |
| pdp1_cpu.c add IOT dispatches | |
| pdp1_sys.c add pointer to data structures to sim_devices | |
| */ | |
| #include "pdp1_defs.h" | |
| #define ILL_ADR_FLAG (1 << ASIZE) | |
| #define save_ibkpt (cpu_unit.u3) | |
| #define UNIT_V_MDV (UNIT_V_UF) /* mul/div */ | |
| #define UNIT_MDV (1 << UNIT_V_MDV) | |
| #define UNIT_V_MSIZE (UNIT_V_UF+1) /* dummy mask */ | |
| #define UNIT_MSIZE (1 << UNIT_V_MSIZE) | |
| int32 M[MAXMEMSIZE] = { 0 }; /* memory */ | |
| int32 AC = 0; /* AC */ | |
| int32 IO = 0; /* IO */ | |
| int32 PC = 0; /* PC */ | |
| int32 OV = 0; /* overflow */ | |
| int32 SS = 0; /* sense switches */ | |
| int32 PF = 0; /* program flags */ | |
| int32 TW = 0; /* test word */ | |
| int32 iosta = 0; /* status reg */ | |
| int32 sbs = 0; /* sequence break */ | |
| int32 sbs_init = 0; /* seq break startup */ | |
| int32 ioh = 0; /* I/O halt */ | |
| int32 ioc = 0; /* I/O completion */ | |
| int32 extm = 0; /* ext mem mode */ | |
| int32 extm_init = 0; /* ext mem startup */ | |
| int32 stop_inst = 0; /* stop on rsrv inst */ | |
| int32 xct_max = 16; /* nested XCT limit */ | |
| int32 ind_max = 16; /* nested ind limit */ | |
| int32 old_PC = 0; /* old PC */ | |
| int32 ibkpt_addr = ILL_ADR_FLAG | AMASK; /* breakpoint addr */ | |
| t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw); | |
| t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw); | |
| t_stat cpu_reset (DEVICE *dptr); | |
| t_stat cpu_svc (UNIT *uptr); | |
| t_stat cpu_set_size (UNIT *uptr, int32 value); | |
| extern int32 sim_int_char; | |
| extern UNIT *sim_clock_queue; | |
| extern int32 ptr (int32 inst, int32 dev, int32 IO); | |
| extern int32 ptp (int32 inst, int32 dev, int32 IO); | |
| extern int32 tti (int32 inst, int32 dev, int32 IO); | |
| extern int32 tto (int32 inst, int32 dev, int32 IO); | |
| extern int32 lpt (int32 inst, int32 dev, int32 IO); | |
| extern t_stat sim_activate (UNIT *uptr, int32 delay); | |
| int32 sc_map[512] = { | |
| 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, /* 00000xxxx */ | |
| 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, /* 00001xxxx */ | |
| 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, /* 00010xxxx */ | |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 00011xxxx */ | |
| 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, /* 00100xxxx */ | |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 00101xxxx */ | |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 00110xxxx */ | |
| 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 00111xxxx */ | |
| 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, /* 01000xxxx */ | |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 01001xxxx */ | |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 01010xxxx */ | |
| 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 01011xxxx */ | |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 01100xxxx */ | |
| 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 01101xxxx */ | |
| 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 01110xxxx */ | |
| 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, /* 01111xxxx */ | |
| 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, /* 10000xxxx */ | |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 10001xxxx */ | |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 10010xxxx */ | |
| 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 10011xxxx */ | |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 10100xxxx */ | |
| 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 10101xxxx */ | |
| 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 10110xxxx */ | |
| 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, /* 11011xxxx */ | |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, /* 11000xxxx */ | |
| 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 11001xxxx */ | |
| 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 11010xxxx */ | |
| 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, /* 11011xxxx */ | |
| 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, /* 11100xxxx */ | |
| 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, /* 11101xxxx */ | |
| 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, /* 11110xxxx */ | |
| 5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 8, 7, 8, 8, 9 /* 11111xxxx */ | |
| }; | |
| /* CPU data structures | |
| cpu_dev CPU device descriptor | |
| cpu_unit CPU unit | |
| cpu_reg CPU register list | |
| cpu_mod CPU modifier list | |
| */ | |
| UNIT cpu_unit = { UDATA (&cpu_svc, UNIT_FIX + UNIT_BINK, MAXMEMSIZE) }; | |
| REG cpu_reg[] = { | |
| { ORDATA (PC, PC, ASIZE) }, | |
| { ORDATA (AC, AC, 18) }, | |
| { ORDATA (IO, IO, 18) }, | |
| { FLDATA (OV, OV, 0) }, | |
| { ORDATA (PF, PF, 6) }, | |
| { ORDATA (SS, SS, 6) }, | |
| { ORDATA (TW, TW, 18) }, | |
| { FLDATA (EXTM, extm, 0) }, | |
| { ORDATA (IOSTA, iosta, 18), REG_RO }, | |
| { FLDATA (SBON, sbs, SB_V_ON) }, | |
| { FLDATA (SBRQ, sbs, SB_V_RQ) }, | |
| { FLDATA (SBIP, sbs, SB_V_IP) }, | |
| { FLDATA (IOH, ioh, 0) }, | |
| { FLDATA (IOC, ioc, 0) }, | |
| { ORDATA (OLDPC, old_PC, ASIZE), REG_RO }, | |
| { FLDATA (STOP_INST, stop_inst, 0) }, | |
| { FLDATA (SBS_INIT, sbs_init, SB_V_ON) }, | |
| { FLDATA (EXTM_INIT, extm_init, 0) }, | |
| { FLDATA (MDV, cpu_unit.flags, UNIT_V_MDV), REG_HRO }, | |
| { DRDATA (XCT_MAX, xct_max, 8), PV_LEFT + REG_NZ }, | |
| { DRDATA (IND_MAX, ind_max, 8), PV_LEFT + REG_NZ }, | |
| { ORDATA (BREAK, ibkpt_addr, ASIZE + 1) }, | |
| { ORDATA (WRU, sim_int_char, 8) }, | |
| { NULL } }; | |
| MTAB cpu_mod[] = { | |
| { UNIT_MDV, UNIT_MDV, "multiply/divide", "MDV", NULL }, | |
| { UNIT_MDV, 0, "no multiply/divide", "NOMDV", NULL }, | |
| { UNIT_MSIZE, 4096, NULL, "4K", &cpu_set_size }, | |
| { UNIT_MSIZE, 8192, NULL, "8K", &cpu_set_size }, | |
| { UNIT_MSIZE, 12288, NULL, "12K", &cpu_set_size }, | |
| { UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size }, | |
| { UNIT_MSIZE, 20480, NULL, "20K", &cpu_set_size }, | |
| { UNIT_MSIZE, 24576, NULL, "24K", &cpu_set_size }, | |
| { UNIT_MSIZE, 28672, NULL, "28K", &cpu_set_size }, | |
| { UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size }, | |
| { UNIT_MSIZE, 49152, NULL, "48K", &cpu_set_size }, | |
| { UNIT_MSIZE, 65536, NULL, "64K", &cpu_set_size }, | |
| { 0 } }; | |
| DEVICE cpu_dev = { | |
| "CPU", &cpu_unit, cpu_reg, cpu_mod, | |
| 1, 8, ASIZE, 1, 8, 18, | |
| &cpu_ex, &cpu_dep, &cpu_reset, | |
| NULL, NULL, NULL }; | |
| t_stat sim_instr (void) | |
| { | |
| extern int32 sim_interval; | |
| int32 IR, MA, op, i, t, xct_count; | |
| int32 sign, signd, v; | |
| int32 dev, io_data, sc, skip; | |
| t_stat reason; | |
| static int32 fs_test[8] = { | |
| 0, 040, 020, 010, 04, 02, 01, 077 }; | |
| #define EPC_WORD ((OV << 17) | (extm << 16) | PC) | |
| #define INCR_ADDR(x) (((x) & EPCMASK) | (((x) + 1) & DAMASK)) | |
| #define DECR_ADDR(x) (((x) & EPCMASK) | (((x) - 1) & DAMASK)) | |
| #define ABS(x) ((x) ^ (((x) & 0400000)? 0777777: 0)) | |
| /* Main instruction fetch/decode loop: check events and interrupts */ | |
| reason = 0; | |
| while (reason == 0) { /* loop until halted */ | |
| if (sim_interval <= 0) { /* check clock queue */ | |
| if (reason = sim_process_event ()) break; } | |
| if (sbs == (SB_ON | SB_RQ)) { /* interrupt? */ | |
| sbs = SB_ON | SB_IP; /* set in prog flag */ | |
| old_PC = PC; /* save old PC */ | |
| M[0] = AC; /* save state */ | |
| M[1] = EPC_WORD; | |
| M[2] = IO; | |
| PC = 3; /* fetch next from 3 */ | |
| extm = 0; /* extend off */ | |
| OV = 0; } /* clear overflow */ | |
| if (PC == ibkpt_addr) { /* breakpoint? */ | |
| save_ibkpt = ibkpt_addr; /* save ibkpt */ | |
| ibkpt_addr = ibkpt_addr | ILL_ADR_FLAG; /* disable */ | |
| sim_activate (&cpu_unit, 1); /* sched re-enable */ | |
| reason = STOP_IBKPT; /* stop simulation */ | |
| break; } | |
| /* Fetch, decode instruction */ | |
| MA = PC; /* PC to MA */ | |
| IR = M[MA]; /* fetch instruction */ | |
| PC = INCR_ADDR (PC); /* increment PC */ | |
| xct_count = 0; /* track nested XCT's */ | |
| sim_interval = sim_interval - 1; | |
| xct_instr: /* label for XCT */ | |
| if ((IR == 0610001) && ((MA & EPCMASK) == 0) && (sbs & SB_ON)) { | |
| sbs = sbs & ~SB_IP; /* seq debreak */ | |
| old_PC = PC; /* save old PC */ | |
| OV = (M[1] >> 17) & 1; /* restore OV */ | |
| extm = (M[1] >> 16) & 1; /* restore ext mode */ | |
| PC = M[1] & AMASK; /* JMP I 1 */ | |
| continue; } | |
| op = ((IR >> 13) & 037); /* get opcode */ | |
| if ((op < 032) && (op != 007)) { /* mem ref instr */ | |
| MA = (MA & EPCMASK) | (IR & DAMASK); /* direct address */ | |
| if (IR & IA) { /* indirect addr? */ | |
| if (extm) MA = M[MA] & AMASK; /* if ext, one level */ | |
| else { for (i = 0; i < ind_max; i++) { /* count indirects */ | |
| t = M[MA]; /* get indirect word */ | |
| MA = (MA & EPCMASK) | (t & DAMASK); | |
| if ((t & IA) == 0) break; } | |
| if (i >= ind_max) { /* indirect loop? */ | |
| reason = STOP_IND; | |
| break; } } } } | |
| switch (op) { /* decode IR<0:4> */ | |
| /* Logical, load, store instructions */ | |
| case 001: /* AND */ | |
| AC = AC & M[MA]; | |
| break; | |
| case 002: /* IOR */ | |
| AC = AC | M[MA]; | |
| break; | |
| case 003: /* XOR */ | |
| AC = AC ^ M[MA]; | |
| break; | |
| case 004: /* XCT */ | |
| if (xct_count >= xct_max) { /* too many XCT's? */ | |
| reason = STOP_XCT; | |
| break; } | |
| xct_count = xct_count + 1; /* count XCT's */ | |
| IR = M[MA]; /* get instruction */ | |
| goto xct_instr; /* go execute */ | |
| case 007: /* CAL, JDA */ | |
| MA = (PC & EPCMASK) | ((IR & IA)? (IR & DAMASK): 0100); | |
| old_PC = PC; | |
| M[MA] = AC; | |
| AC = EPC_WORD; | |
| PC = INCR_ADDR (MA); | |
| break; | |
| case 010: /* LAC */ | |
| AC = M[MA]; | |
| break; | |
| case 011: /* LIO */ | |
| IO = M[MA]; | |
| break; | |
| case 012: /* DAC */ | |
| if (MEM_ADDR_OK (MA)) M[MA] = AC; | |
| break; | |
| case 013: /* DAP */ | |
| if (MEM_ADDR_OK (MA)) M[MA] = (AC & DAMASK) | (M[MA] & ~DAMASK); | |
| break; | |
| case 014: /* DIP */ | |
| if (MEM_ADDR_OK (MA)) M[MA] = (AC & ~DAMASK) | (M[MA] & DAMASK); | |
| break; | |
| case 015: /* DIO */ | |
| if (MEM_ADDR_OK (MA)) M[MA] = IO; | |
| break; | |
| case 016: /* DZM */ | |
| if (MEM_ADDR_OK (MA)) M[MA] = 0; | |
| break; | |
| /* Add, subtract, control | |
| Add is performed in sequential steps, as follows: | |
| 1. add | |
| 2. end around carry propagate | |
| 3. overflow check | |
| 4. -0 cleanup | |
| Subtract is performed in sequential steps, as follows: | |
| 1. complement AC | |
| 2. add | |
| 3. end around carry propagate | |
| 4. overflow check | |
| 5. complement AC | |
| Because no -0 check is done, (-0) - (+0) yields a result of -0 | |
| */ | |
| case 020: /* ADD */ | |
| t = AC; | |
| AC = AC + M[MA]; | |
| if (AC > 0777777) AC = (AC + 1) & 0777777; /* end around carry */ | |
| if (((~t ^ M[MA]) & (t ^ AC)) & 0400000) OV = 1; | |
| if (AC == 0777777) AC = 0; /* minus 0 cleanup */ | |
| break; | |
| case 021: /* SUB */ | |
| t = AC ^ 0777777; /* complement AC */ | |
| AC = t + M[MA]; /* -AC + MB */ | |
| if (AC > 0777777) AC = (AC + 1) & 0777777; /* end around carry */ | |
| if (((~t ^ M[MA]) & (t ^ AC)) & 0400000) OV = 1; | |
| AC = AC ^ 0777777; /* recomplement AC */ | |
| break; | |
| case 022: /* IDX */ | |
| AC = M[MA] + 1; | |
| if (AC >= 0777777) AC = (AC + 1) & 0777777; | |
| if (MEM_ADDR_OK (MA)) M[MA] = AC; | |
| break; | |
| case 023: /* ISP */ | |
| AC = M[MA] + 1; | |
| if (AC >= 0777777) AC = (AC + 1) & 0777777; | |
| if (MEM_ADDR_OK (MA)) M[MA] = AC; | |
| if (AC < 0400000) PC = INCR_ADDR (PC); | |
| break; | |
| case 024: /* SAD */ | |
| if (AC != M[MA]) PC = INCR_ADDR (PC); | |
| break; | |
| case 025: /* SAS */ | |
| if (AC == M[MA]) PC = INCR_ADDR (PC); | |
| break; | |
| case 030: /* JMP */ | |
| old_PC = PC; | |
| PC = MA; | |
| break; | |
| case 031: /* JSP */ | |
| AC = EPC_WORD; | |
| old_PC = PC; | |
| PC = MA; | |
| break; | |
| case 034: /* LAW */ | |
| AC = (IR & 07777) ^ ((IR & IA)? 0777777: 0); | |
| break; | |
| /* Multiply and divide | |
| Multiply and divide step and hardware multiply are exact implementations. | |
| Hardware divide is a 2's complement analog to the actual hardware. | |
| */ | |
| case 026: /* MUL */ | |
| if (cpu_unit.flags & UNIT_MDV) { /* hardware? */ | |
| sign = AC ^ M[MA]; /* result sign */ | |
| IO = ABS (AC); /* IO = |AC| */ | |
| v = ABS (M[MA]); /* v = |mpy| */ | |
| for (i = AC = 0; i < 17; i++) { | |
| if (IO & 1) AC = AC + v; | |
| IO = (IO >> 1) | ((AC & 1) << 17); | |
| AC = AC >> 1; } | |
| if ((sign & 0400000) && (AC | IO)) { /* negative, > 0? */ | |
| AC = AC ^ 0777777; | |
| IO = IO ^ 0777777; } } | |
| else { if (IO & 1) AC = AC + M[MA]; /* multiply step */ | |
| if (AC > 0777777) AC = (AC + 1) & 0777777; | |
| if (AC == 0777777) AC = 0; | |
| IO = (IO >> 1) | ((AC & 1) << 17); | |
| AC = AC >> 1; } | |
| break; | |
| case 027: /* DIV */ | |
| if (cpu_unit.flags & UNIT_MDV) { /* hardware */ | |
| sign = AC ^ M[MA]; /* result sign */ | |
| signd = AC; /* remainder sign */ | |
| if (AC & 0400000) { | |
| AC = AC ^ 0777777; /* AC'IO = |AC'IO| */ | |
| IO = IO ^ 0777777; } | |
| v = ABS (M[MA]); /* v = |divr| */ | |
| if (AC >= v) break; /* overflow? */ | |
| for (i = t = 0; i < 18; i++) { | |
| if (t) AC = (AC + v) & 0777777; | |
| else AC = (AC - v) & 0777777; | |
| t = AC >> 17; | |
| if (i != 17) AC = ((AC << 1) | (IO >> 17)) & 0777777; | |
| IO = ((IO << 1) | (t ^ 1)) & 0777777; } | |
| if (t) AC = (AC + v) & 0777777; /* correct remainder */ | |
| t = ((signd & 0400000) && AC)? AC ^ 0777777: AC; | |
| AC = ((sign & 0400000) && IO)? IO ^ 0777777: IO; | |
| IO = t; | |
| PC = INCR_ADDR (PC); } /* skip */ | |
| else { t = AC >> 17; /* divide step */ | |
| AC = ((AC << 1) | (IO >> 17)) & 0777777; | |
| IO = ((IO << 1) | (t ^ 1)) & 0777777; | |
| if (IO & 1) AC = AC + (M[MA] ^ 0777777); | |
| else AC = AC + M[MA] + 1; | |
| if (AC > 0777777) AC = (AC + 1) & 0777777; | |
| if (AC == 0777777) AC = 0; } | |
| break; | |
| /* Skip and operate | |
| Operates execute in the order shown; there are no timing conflicts | |
| */ | |
| case 032: /* skip */ | |
| v = (IR >> 3) & 07; /* sense switches */ | |
| t = IR & 07; /* program flags */ | |
| skip = (((IR & 02000) && (IO < 0400000)) || /* SPI */ | |
| ((IR & 01000) && (OV == 0)) || /* SZO */ | |
| ((IR & 00400) && (AC >= 0400000)) || /* SMA */ | |
| ((IR & 00200) && (AC < 0400000)) || /* SPA */ | |
| ((IR & 00100) && (AC == 0)) || /* SZA */ | |
| (v && ((SS & fs_test[v]) == 0)) || /* SZSn */ | |
| (t && ((PF & fs_test[t]) == 0))); /* SZFn */ | |
| if (IR & IA) skip = skip ^ 1; /* invert skip? */ | |
| if (skip) PC = INCR_ADDR (PC); | |
| if (IR & 01000) OV = 0; /* SOV clears OV */ | |
| break; | |
| case 037: /* operate */ | |
| if (IR & 04000) IO = 0; /* CLI */ | |
| if (IR & 00200) AC = 0; /* CLA */ | |
| if (IR & 02000) AC = AC | TW; /* LAT */ | |
| if (IR & 00100) AC = AC | EPC_WORD; /* LAP */ | |
| if (IR & 01000) AC = AC ^ 0777777; /* CMA */ | |
| if (IR & 00400) reason = STOP_HALT; /* HALT */ | |
| t = IR & 07; /* flag select */ | |
| if (IR & 010) PF = PF | fs_test[t]; /* STFn */ | |
| else PF = PF & ~fs_test[t]; /* CLFn */ | |
| break; | |
| /* Shifts */ | |
| case 033: | |
| sc = sc_map[IR & 0777]; /* map shift count */ | |
| switch ((IR >> 9) & 017) { /* case on IR<5:8> */ | |
| case 001: /* RAL */ | |
| AC = ((AC << sc) | (AC >> (18 - sc))) & 0777777; | |
| break; | |
| case 002: /* RIL */ | |
| IO = ((IO << sc) | (IO >> (18 - sc))) & 0777777; | |
| break; | |
| case 003: /* RCL */ | |
| t = AC; | |
| AC = ((AC << sc) | (IO >> (18 - sc))) & 0777777; | |
| IO = ((IO << sc) | (t >> (18 - sc))) & 0777777; | |
| break; | |
| case 005: /* SAL */ | |
| t = (AC & 0400000)? 0777777: 0; | |
| AC = (AC & 0400000) | ((AC << sc) & 0377777) | | |
| (t >> (18 - sc)); | |
| break; | |
| case 006: /* SIL */ | |
| t = (IO & 0400000)? 0777777: 0; | |
| IO = (IO & 0400000) | ((IO << sc) & 0377777) | | |
| (t >> (18 - sc)); | |
| break; | |
| case 007: /* SCL */ | |
| t = (AC & 0400000)? 0777777: 0; | |
| AC = (AC & 0400000) | ((AC << sc) & 0377777) | | |
| (IO >> (18 - sc)); | |
| IO = ((IO << sc) | (t >> (18 - sc))) & 0777777; | |
| break; | |
| case 011: /* RAR */ | |
| AC = ((AC >> sc) | (AC << (18 - sc))) & 0777777; | |
| break; | |
| case 012: /* RIR */ | |
| IO = ((IO >> sc) | (IO << (18 - sc))) & 0777777; | |
| break; | |
| case 013: /* RCR */ | |
| t = IO; | |
| IO = ((IO >> sc) | (AC << (18 - sc))) & 0777777; | |
| AC = ((AC >> sc) | (t << (18 - sc))) & 0777777; | |
| break; | |
| case 015: /* SAR */ | |
| t = (AC & 0400000)? 0777777: 0; | |
| AC = ((AC >> sc) | (t << (18 - sc))) & 0777777; | |
| break; | |
| case 016: /* SIR */ | |
| t = (IO & 0400000)? 0777777: 0; | |
| IO = ((IO >> sc) | (t << (18 - sc))) & 0777777; | |
| break; | |
| case 017: /* SCR */ | |
| t = (AC & 0400000)? 0777777: 0; | |
| IO = ((IO >> sc) | (AC << (18 - sc))) & 0777777; | |
| AC = ((AC >> sc) | (t << (18 - sc))) & 0777777; | |
| break; | |
| default: /* undefined */ | |
| reason = stop_inst; | |
| break; } /* end switch shifts */ | |
| break; | |
| /* IOT */ | |
| case 035: | |
| if (IR & IO_WAIT) { /* wait? */ | |
| if (ioh) { /* I/O halt? */ | |
| if (ioc) ioh = 0; /* comp pulse? done */ | |
| else { sim_interval = 0; /* force event */ | |
| PC = DECR_ADDR (PC); } /* re-execute */ | |
| break; } /* skip iot */ | |
| ioh = 1; /* turn on halt */ | |
| PC = DECR_ADDR (PC); } /* re-execute */ | |
| dev = IR & 077; /* get dev addr */ | |
| io_data = IO; /* default data */ | |
| switch (dev) { /* case on dev */ | |
| case 000: /* I/O wait */ | |
| break; | |
| case 001: case 002: case 030: /* paper tape rdr */ | |
| io_data = ptr (IR, dev, IO); | |
| break; | |
| case 003: /* typewriter */ | |
| io_data = tto (IR, dev, IO); | |
| break; | |
| case 004: /* keyboard */ | |
| io_data = tti (IR, dev, IO); | |
| break; | |
| case 005: case 006: /* paper tape punch */ | |
| io_data = ptp (IR, dev, IO); | |
| break; | |
| case 033: /* check status */ | |
| io_data = iosta | ((sbs & SB_ON)? IOS_SQB: 0); | |
| break; | |
| case 045: /* line printer */ | |
| io_data = lpt (IR, dev, IO); | |
| break; | |
| case 054: /* seq brk off */ | |
| sbs = sbs & ~SB_ON; | |
| break; | |
| case 055: /* seq brk on */ | |
| sbs = sbs | SB_ON; | |
| break; | |
| case 056: /* clear seq brk */ | |
| sbs = sbs & ~SB_IP; | |
| break; | |
| case 074: /* extend mode */ | |
| extm = (IR >> 11) & 1; /* set from IR<6> */ | |
| break; | |
| default: /* undefined */ | |
| reason = stop_inst; | |
| break; } /* end switch dev */ | |
| IO = io_data & 0777777; | |
| if (io_data >= IOT_REASON) reason = io_data >> IOT_V_REASON; | |
| break; | |
| default: /* undefined */ | |
| reason = STOP_RSRV; /* halt */ | |
| break; } /* end switch opcode */ | |
| } /* end while */ | |
| return reason; | |
| } | |
| /* Reset routine */ | |
| t_stat cpu_reset (DEVICE *dptr) | |
| { | |
| sbs = sbs_init; | |
| extm = extm_init; | |
| ioh = ioc = 0; | |
| OV = 0; | |
| PF = 0; | |
| return cpu_svc (&cpu_unit); | |
| } | |
| /* Memory examine */ | |
| t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw) | |
| { | |
| if (addr >= MEMSIZE) return SCPE_NXM; | |
| if (vptr != NULL) *vptr = M[addr] & 0777777; | |
| return SCPE_OK; | |
| } | |
| /* Memory deposit */ | |
| t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw) | |
| { | |
| if (addr >= MEMSIZE) return SCPE_NXM; | |
| M[addr] = val & 0777777; | |
| return SCPE_OK; | |
| } | |
| /* Service breakpoint */ | |
| t_stat cpu_svc (UNIT *uptr) | |
| { | |
| if ((ibkpt_addr & ~ILL_ADR_FLAG) == save_ibkpt) ibkpt_addr = save_ibkpt; | |
| save_ibkpt = -1; | |
| return SCPE_OK; | |
| } | |
| /* Change memory size */ | |
| t_stat cpu_set_size (UNIT *uptr, int32 value) | |
| { | |
| int32 mc = 0; | |
| t_addr i; | |
| if ((value <= 0) || (value > MAXMEMSIZE) || ((value & 07777) != 0)) | |
| return SCPE_ARG; | |
| for (i = value; i < MEMSIZE; i++) mc = mc | M[i]; | |
| if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE))) | |
| return SCPE_OK; | |
| MEMSIZE = value; | |
| for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0; | |
| return SCPE_OK; | |
| } |