blob: d945d63c600f84911b3740566172b938ad1ca297 [file] [log] [blame] [raw]
/*
* (C) Copyright 2002, Brian Knittel.
* You may freely use this program, but: it offered strictly on an AS-IS, AT YOUR OWN
* RISK basis, there is no warranty of fitness for any purpose, and the rest of the
* usual yada-yada. Please keep this notice and the copyright in any distributions
* or modifications.
*
* This is not a supported product, but I welcome bug reports and fixes.
* Mail to sim@ibm1130.org
*/
// ---------------------------------------------------------------------------------
// MKBOOT - reads card loader format cards and produces an absolute core image that
// can then be dumped out in 1130 IPL, 1800 IPL or Core Image loader formats.
//
// Usage: mkboot [-v] binfile outfile [1130|1800|core [loaddr [hiaddr [ident]]]]"
//
// Arguments:
// binfile - name of assembler output file (card loader format, absolute output)
// outfile - name of output file to create
// mode - output mode, default is 1130 IPL format
// loaddr - low address to dump. Default is lowest address loaded from binfile
// hiaddr - high address to dump. Defult is highest address loaded from binfile
// ident - ident string to write in last 8 columns. Omit when when writing an
// 1130 IPL card that requires all 80 columns of data.
//
// Examples:
// mkboot somefile.bin somefile.ipl 1130
//
// loads somefile.bin, writes object in 1130 IPL format to somefile.ipl
// Up to 80 columns will be written depending on what the object actually uses
//
// mkboot somefile.bin somefile.ipl 1130 0 48 SOMEF
//
// loads somefile.bin. Writes 72 columns (hex 48), with ident columns 73-80 = SOMEF001
//
// mkboot somefile.bin somefile.dat core 0 0 SOMEF001
//
// loads somefile.bin and writes a core image format deck with ident SOMEF001, SOMEF002, etc
//
// For other examples of usage, see MKDMS.BAT
//
// 1.00 - 2002Apr18 - first release. Tested only under Win32. The core image
// loader format is almost certainly wrong. Cannot handle
// relocatable input decks, but it works well enough to
// load DSYSLDR1 which is what we are after here.
// ---------------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#ifndef TRUE
#define BOOL int
#define TRUE 1
#define FALSE 0
#endif
#ifndef WIN32
int strnicmp (char *a, char *b, int n);
int strcmpi (char *a, char *b);
#endif
#define BETWEEN(v,a,b) (((v) >= (a)) && ((v) <= (b)))
#define MIN(a,b) (((a) <= (b)) ? (a) : (b))
#define MAX(a,b) (((a) >= (b)) ? (a) : (b))
#define MAXADDR 4096
typedef enum {R_ABSOLUTE = 0, R_RELATIVE = 1, R_LIBF = 2, R_CALL = 3} RELOC;
typedef enum {B_1130, B_1800, B_CORE} BOOTMODE;
BOOL verbose = FALSE;
char *infile = NULL, *outfile = NULL;
BOOTMODE mode = B_1130;
int addr_from = 0, addr_to = 79;
int outcols = 0; // columns written in using card output
int maxiplcols = 80;
char cardid[9]; // characters used for IPL card ID
int pta = 0;
int load_low = 0x7FFFFFF;
int load_high = 0;
unsigned short mem[MAXADDR]; // small core!
// mkboot - load a binary object deck into core and dump requested bytes as a boot card
void bail (char *msg);
void verify_checksum(unsigned short *card);
char *upcase (char *str);
void unpack (unsigned short *card, unsigned short *buf);
void dump (char *fname);
void loaddata (char *fname);
void write_1130 (void);
void write_1800 (void);
void write_core (void);
void flushcard(void);
int ascii_to_hollerith (int ch);
void corecard_init (void);
void corecard_writecard (char *sbrk_text);
void corecard_writedata (void);
void corecard_flush (void);
void corecard_setorg (int neworg);
void corecard_writew (int word, RELOC relative);
void corecard_endcard (void);
char *fname = NULL;
FILE *fout;
int main (int argc, char **argv)
{
char *arg;
static char usestr[] = "Usage: mkboot [-v] binfile outfile [1130|1800|core [loaddr [hiaddr [ident]]]]";
int i, ano = 0, ok;
for (i = 1; i < argc; i++) {
arg = argv[i];
if (*arg == '-') {
arg++;
while (*arg) {
switch (*arg++) {
case 'v':
verbose = TRUE;
break;
default:
bail(usestr);
}
}
}
else {
switch (ano++) {
case 0:
infile = arg;
break;
case 1:
outfile = arg;
break;
case 2:
if (strcmp(arg, "1130") == 0) mode = B_1130;
else if (strcmp(arg, "1800") == 0) mode = B_1800;
else if (strcmpi(arg, "core") == 0) mode = B_CORE;
else bail(usestr);
break;
case 3:
if (strnicmp(arg, "0x", 2) == 0) ok = sscanf(arg+2, "%x", &addr_from);
else if (arg[0] == '/') ok = sscanf(arg+1, "%x", &addr_from);
else ok = sscanf(arg, "%d", &addr_from);
if (ok != 1) bail(usestr);
break;
case 4:
if (strnicmp(arg, "0x", 2) == 0) ok = sscanf(arg+2, "%x", &addr_to);
else if (arg[0] == '/') ok = sscanf(arg+1, "%x", &addr_to);
else ok = sscanf(arg, "%d", &addr_to);
if (ok != 1) bail(usestr);
break;
case 5:
strncpy(cardid, arg, 9);
cardid[8] = '\0';
upcase(cardid);
break;
default:
bail(usestr);
}
}
}
if (*cardid == '\0')
maxiplcols = (mode == B_1130) ? 80 : 72;
else {
while (strlen(cardid) < 8)
strcat(cardid, "0");
maxiplcols = 72;
}
loaddata(infile);
if (mode == B_1800)
write_1800();
else if (mode == B_CORE)
write_core();
else
write_1130();
return 0;
}
void write_1130 (void)
{
int addr;
unsigned short word;
if ((fout = fopen(outfile, "wb")) == NULL) {
perror(outfile);
exit(1);
}
for (addr = addr_from; addr <= addr_to; addr++) {
if (outcols >= maxiplcols)
flushcard();
word = mem[addr];
// if F or L bits are set, or if high 2 bits of displacement are unequal, it's bad
if ((word & 0x0700) || ! (((word & 0x00C0) == 0) || ((word & 0x00C0) == 0x00C0)))
printf("Warning: word %04x @ %04x may not IPL properly\n", word & 0xFFFF, addr);
word = ((word & 0xF800) >> 4) | (word & 0x7F); // convert to 1130 IPL format
putc((word & 0x000F) << 4, fout); // write the 12 bits in little-endian binary AABBCC00 as CC00 AABB
putc((word & 0x0FF0) >> 4, fout);
outcols++;
}
flushcard();
fclose(fout);
}
void write_1800 (void)
{
int addr;
unsigned short word;
if ((fout = fopen(outfile, "wb")) == NULL) {
perror(outfile);
exit(1);
}
for (addr = addr_from; addr <= addr_to; addr++) {
word = mem[addr];
if (outcols >= maxiplcols)
flushcard();
putc(0, fout);
putc(word & 0xFF, fout); // write the low 8 bits in little-endian binary
outcols++;
putc(0, fout);
putc((word >> 8) & 0xFF, fout); // write the high 8 bits in little-endian binary
outcols++;
}
flushcard();
fclose(fout);
}
void write_core (void)
{
int addr;
if ((fout = fopen(outfile, "wb")) == NULL) {
perror(outfile);
exit(1);
}
addr_from = load_low;
addr_to = load_high;
maxiplcols = 72;
corecard_init();
corecard_setorg(addr_from);
for (addr = addr_from; addr <= addr_to; addr++) {
corecard_writew(mem[addr], 0);
}
corecard_flush();
corecard_endcard();
fclose(fout);
}
void flushcard (void)
{
int i, hol, ndig;
char fmt[20], newdig[20];
if (outcols <= 0)
return; // nothing to flush
while (outcols < maxiplcols) { // pad to required number of columns with blanks (no punches)
putc(0, fout);
putc(0, fout);
outcols++;
}
if (*cardid) { // add label
for (i = 0; i < 8; i++) { // write label as specified
hol = ascii_to_hollerith(cardid[i] & 0x7F);
putc(hol & 0xFF, fout);
putc((hol >> 8) & 0xFF, fout);
}
ndig = 0; // count trailing digits in the label
for (i = 8; --i >= 0; ndig++)
if (! isdigit(cardid[i]))
break;
i++; // index of first digit in trailing sequence
if (ndig > 0) { // if any, increment them
sprintf(fmt, "%%0%dd", ndig); // make, e.g. %03d
sprintf(newdig, fmt, atoi(cardid+i)+1);
newdig[ndig] = '\0'; // clip if necessary
strcpy(cardid+i, newdig); // replace for next card's sequence number
}
}
outcols = 0;
}
void show_data (unsigned short *buf)
{
int i, n, jrel, rflag, nout, ch, reloc;
n = buf[2] & 0x00FF;
printf("%04x: ", buf[0]);
jrel = 3;
nout = 0;
rflag = buf[jrel++];
for (i = 0; i < n; i++) {
if (nout >= 8) {
rflag = buf[jrel++];
putchar('\n');
printf(" ");
nout = 0;
}
reloc = (rflag >> 14) & 0x03;
ch = (reloc == R_ABSOLUTE) ? ' ' :
(reloc == R_RELATIVE) ? 'R' :
(reloc == R_LIBF) ? 'L' : '@';
printf("%04x%c ", buf[9+i], ch);
rflag << 2;
nout++;
}
putchar('\n');
}
void loadcard (unsigned short *buf)
{
int addr, n, i;
addr = buf[0];
n = buf[2] & 0x00FF;
for (i = 0; i < n; i++) {
if (addr >= MAXADDR)
bail("Program doesn't fit into 4K");
mem[addr] = buf[9+i];
load_low = MIN(addr, load_low);
load_high = MAX(addr, load_high);
addr++;
}
}
void loaddata (char *fname)
{
FILE *fp;
BOOL first = TRUE;
unsigned short card[80], buf[54], cardtype;
if ((fp = fopen(fname, "rb")) == NULL) {
perror(fname);
exit(1);
}
if (verbose)
printf("\n%s:\n", fname);
while (fread(card, sizeof(card[0]), 80, fp) > 0) {
unpack(card, buf);
verify_checksum(card);
cardtype = (buf[2] >> 8) & 0xFF;
if (cardtype == 1 && ! first) { // sector break
if (verbose)
printf("*SBRK\n");
continue;
}
else {
switch (cardtype) {
case 0x01:
if (verbose)
printf("*ABS\n");
break;
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
bail("Data must be in absolute format");
break;
case 0x0F:
pta = buf[3]; // save program transfer address
if (verbose)
printf("*END\n");
break;
case 0x0A:
if (verbose)
show_data(buf);
loadcard(buf);
break;
default:
bail("Unexpected card type");
}
}
first = FALSE;
}
fclose(fp);
}
void bail (char *msg)
{
fprintf(stderr, "%s\n", msg);
exit(1);
}
void unpack (unsigned short *card, unsigned short *buf)
{
int i, j;
unsigned short wd1, wd2, wd3, wd4;
for (i = j = 0; i < 54; i += 3, j += 4) {
wd1 = card[j];
wd2 = card[j+1];
wd3 = card[j+2];
wd4 = card[j+3];
buf[i ] = (wd1 & 0xFFF0) | ((wd2 >> 12) & 0x000F);
buf[i+1] = ((wd2 << 4) & 0xFF00) | ((wd3 >> 8) & 0x00FF);
buf[i+2] = ((wd3 << 8) & 0xF000) | ((wd4 >> 4) & 0x0FFF);
}
}
void verify_checksum (unsigned short *card)
{
// unsigned short sum;
if (card[1] == 0) // no checksum
return;
// if (sum != card[1])
// printf("Checksum %04x doesn't match card %04x\n", sum, card[1]);
}
typedef struct {
int hollerith;
char ascii;
} CPCODE;
static CPCODE cardcode_029[] =
{
0x0000, ' ',
0x8000, '&', // + in 026 Fortran
0x4000, '-',
0x2000, '0',
0x1000, '1',
0x0800, '2',
0x0400, '3',
0x0200, '4',
0x0100, '5',
0x0080, '6',
0x0040, '7',
0x0020, '8',
0x0010, '9',
0x9000, 'A',
0x8800, 'B',
0x8400, 'C',
0x8200, 'D',
0x8100, 'E',
0x8080, 'F',
0x8040, 'G',
0x8020, 'H',
0x8010, 'I',
0x5000, 'J',
0x4800, 'K',
0x4400, 'L',
0x4200, 'M',
0x4100, 'N',
0x4080, 'O',
0x4040, 'P',
0x4020, 'Q',
0x4010, 'R',
0x3000, '/',
0x2800, 'S',
0x2400, 'T',
0x2200, 'U',
0x2100, 'V',
0x2080, 'W',
0x2040, 'X',
0x2020, 'Y',
0x2010, 'Z',
0x0820, ':',
0x0420, '#', // = in 026 Fortran
0x0220, '@', // ' in 026 Fortran
0x0120, '\'',
0x00A0, '=',
0x0060, '"',
0x8820, 'c', // cent
0x8420, '.',
0x8220, '<', // ) in 026 Fortran
0x8120, '(',
0x80A0, '+',
0x8060, '|',
0x4820, '!',
0x4420, '$',
0x4220, '*',
0x4120, ')',
0x40A0, ';',
0x4060, 'n', // not
0x2820, 'x', // what?
0x2420, ',',
0x2220, '%', // ( in 026 Fortran
0x2120, '_',
0x20A0, '>',
0x2060, '>',
};
int ascii_to_hollerith (int ch)
{
int i;
for (i = 0; i < sizeof(cardcode_029) / sizeof(CPCODE); i++)
if (cardcode_029[i].ascii == ch)
return cardcode_029[i].hollerith;
return 0;
}
// ---------------------------------------------------------------------------------
// corecard - routines to write IBM 1130 Card object format
// ---------------------------------------------------------------------------------
unsigned short corecard[54]; // the 54 data words that can fit on a binary format card
int corecard_n = 0; // number of object words stored in corecard (0-45)
int corecard_seq = 1; // card output sequence number
int corecard_org = 0; // origin of current card-full
int corecard_maxaddr = 0;
BOOL corecard_first = TRUE; // TRUE when we're to write the program type card
// corecard_init - prepare a new object data output card
void corecard_init (void)
{
memset(corecard, 0, sizeof(corecard)); // clear card data
corecard_n = 0; // no data
corecard[0] = corecard_org; // store load address
corecard_maxaddr = MAX(corecard_maxaddr, corecard_org-1); // save highest address written-to (this may be a BSS)
}
// binard_writecard - emit a card. sbrk_text = NULL for normal data cards, points to comment text for sbrk card
void corecard_writecard (char *sbrk_text)
{
unsigned short binout[80];
int i, j;
for (i = j = 0; i < 54; i += 3, j += 4) {
binout[j ] = ( corecard[i] & 0xFFF0);
binout[j+1] = ((corecard[i] << 12) & 0xF000) | ((corecard[i+1] >> 4) & 0x0FF0);
binout[j+2] = ((corecard[i+1] << 8) & 0xFF00) | ((corecard[i+2] >> 8) & 0x00F0);
binout[j+3] = ((corecard[i+2] << 4) & 0xFFF0);
}
for (i = 0; i < 72; i++) {
putc(binout[i] & 0xFF, fout);
putc((binout[i] >> 8) & 0xFF, fout);
}
outcols = 72; // add the ident
flushcard();
}
// binard_writedata - emit an object data card
void corecard_writedata (void)
{
corecard[1] = 0; // checksum
corecard[2] = 0x0000 | corecard_n; // data card type + word count
corecard_writecard(FALSE); // emit the card
}
// corecard_flush - flush any pending binary data
void corecard_flush (void)
{
if (corecard_n > 0)
corecard_writedata();
corecard_init();
}
// corecard_setorg - set the origin
void corecard_setorg (int neworg)
{
corecard_org = neworg; // set origin for next card
corecard_flush(); // flush any current data & store origin
}
// corecard_writew - write a word to the current output card.
void corecard_writew (int word, RELOC relative)
{
if (corecard_n >= 50) // flush full card buffer (must be even)
corecard_flush();
corecard[3+corecard_n++] = word;
corecard_org++;
}
// corecard_endcard - write end of program card
void corecard_endcard (void)
{
corecard_flush();
corecard[0] = 0; // effective length: add 1 to max origin, then 1 more to round up
corecard[1] = 0;
corecard[2] = 0x8000; // they look for negative bit but all else must be zero
corecard[52] = 0xabcd; // index register 3 value, this is for fun
corecard[53] = pta; // hmmm
corecard_writecard(NULL);
}
/* ------------------------------------------------------------------------
* upcase - force a string to uppercase (ASCII)
* ------------------------------------------------------------------------ */
char *upcase (char *str)
{
char *s;
for (s = str; *s; s++) {
if (*s >= 'a' && *s <= 'z')
*s -= 32;
}
return str;
}
#ifndef WIN32
int strnicmp (char *a, char *b, int n)
{
int ca, cb;
for (;;) {
if (--n < 0) // still equal after n characters? quit now
return 0;
if ((ca = *a) == 0) // get character, stop on null terminator
return *b ? -1 : 0;
if (ca >= 'a' && ca <= 'z') // fold lowercase to uppercase
ca -= 32;
cb = *b;
if (cb >= 'a' && cb <= 'z')
cb -= 32;
if ((ca -= cb) != 0) // if different, return comparison
return ca;
a++, b++;
}
}
int strcmpi (char *a, char *b)
{
int ca, cb;
for (;;) {
if ((ca = *a) == 0) // get character, stop on null terminator
return *b ? -1 : 0;
if (ca >= 'a' && ca <= 'z') // fold lowercase to uppercase
ca -= 32;
cb = *b;
if (cb >= 'a' && cb <= 'z')
cb -= 32;
if ((ca -= cb) != 0) // if different, return comparison
return ca;
a++, b++;
}
}
#endif