| /* sim_timer.c: simulator timer library | |
| Copyright (c) 1993-2010, Robert M Supnik | |
| Permission is hereby granted, free of charge, to any person obtaining a | |
| copy of this software and associated documentation files (the "Software"), | |
| to deal in the Software without restriction, including without limitation | |
| the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
| and/or sell copies of the Software, and to permit persons to whom the | |
| Software is furnished to do so, subject to the following conditions: | |
| The above copyright notice and this permission notice shall be included in | |
| all copies or substantial portions of the Software. | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
| ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
| IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
| CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
| Except as contained in this notice, the name of Robert M Supnik shall not be | |
| used in advertising or otherwise to promote the sale, use or other dealings | |
| in this Software without prior written authorization from Robert M Supnik. | |
| 21-Oct-11 MP Fixed throttling in several ways: | |
| - Sleep for the observed clock tick size while throttling | |
| - Recompute the throttling wait once every 10 seconds | |
| to account for varying instruction mixes during | |
| different phases of a simulator execution or to | |
| accommodate the presence of other load on the host | |
| system. | |
| - Each of the pre-existing throttling modes (Kcps, | |
| Mcps, and %) all compute the appropriate throttling | |
| interval dynamically. These dynamic computations | |
| assume that 100% of the host CPU is dedicated to | |
| the current simulator during this computation. | |
| This assumption may not always be true and under | |
| certain conditions may never provide a way to | |
| correctly determine the appropriate throttling | |
| wait. An additional throttling mode has been added | |
| which allows the simulator operator to explicitly | |
| state the desired throttling wait parameters. | |
| These are specified by: | |
| SET THROT insts/delay | |
| where 'insts' is the number of instructions to | |
| execute before sleeping for 'delay' milliseconds. | |
| 22-Apr-11 MP Fixed Asynch I/O support to reasonably account cycles | |
| when an idle wait is terminated by an external event | |
| 05-Jan-11 MP Added Asynch I/O support | |
| 29-Dec-10 MP Fixed clock resolution determination for Unix platforms | |
| 22-Sep-08 RMS Added "stability threshold" for idle routine | |
| 27-May-08 RMS Fixed bug in Linux idle routines (from Walter Mueller) | |
| 18-Jun-07 RMS Modified idle to exclude counted delays | |
| 22-Mar-07 RMS Added sim_rtcn_init_all | |
| 17-Oct-06 RMS Added idle support (based on work by Mark Pizzolato) | |
| Added throttle support | |
| 16-Aug-05 RMS Fixed C++ declaration and cast problems | |
| 02-Jan-04 RMS Split out from SCP | |
| This library includes the following routines: | |
| sim_timer_init - initialize timing system | |
| sim_rtc_init - initialize calibration | |
| sim_rtc_calb - calibrate clock | |
| sim_timer_init - initialize timing system | |
| sim_idle - virtual machine idle | |
| sim_os_msec - return elapsed time in msec | |
| sim_os_sleep - sleep specified number of seconds | |
| sim_os_ms_sleep - sleep specified number of milliseconds | |
| sim_idle_ms_sleep - sleep specified number of milliseconds | |
| or until awakened by an asynchronous | |
| event | |
| sim_timespec_diff subtract two timespec values | |
| sim_timer_activate_after schedule unit for specific time | |
| The calibration, idle, and throttle routines are OS-independent; the _os_ | |
| routines are not. | |
| */ | |
| #define NOT_MUX_USING_CODE /* sim_tmxr library provider or agnostic */ | |
| #include "sim_defs.h" | |
| #include <ctype.h> | |
| #include <math.h> | |
| t_bool sim_idle_enab = FALSE; /* global flag */ | |
| volatile t_bool sim_idle_wait = FALSE; /* global flag */ | |
| static int32 sim_calb_tmr = -1; /* the system calibrated timer */ | |
| static uint32 sim_idle_rate_ms = 0; | |
| static uint32 sim_os_sleep_min_ms = 0; | |
| static uint32 sim_os_clock_resoluton_ms = 0; | |
| static uint32 sim_idle_stable = SIM_IDLE_STDFLT; | |
| static t_bool sim_idle_idled = FALSE; | |
| static uint32 sim_throt_ms_start = 0; | |
| static uint32 sim_throt_ms_stop = 0; | |
| static uint32 sim_throt_type = 0; | |
| static uint32 sim_throt_val = 0; | |
| static uint32 sim_throt_state = 0; | |
| static uint32 sim_throt_sleep_time = 0; | |
| static int32 sim_throt_wait = 0; | |
| static UNIT *sim_clock_unit[SIM_NTIMERS] = {NULL}; | |
| UNIT *sim_clock_cosched_queue[SIM_NTIMERS] = {NULL}; | |
| t_bool sim_asynch_timer = | |
| #if defined (SIM_ASYNCH_CLOCKS) | |
| TRUE; | |
| #else | |
| FALSE; | |
| #endif | |
| t_stat sim_throt_svc (UNIT *uptr); | |
| t_stat sim_timer_tick_svc (UNIT *uptr); | |
| #define DBG_IDL TIMER_DBG_IDLE /* idling */ | |
| #define DBG_QUE TIMER_DBG_QUEUE /* queue activities */ | |
| #define DBG_MUX TIMER_DBG_MUX /* tmxr queue activities */ | |
| #define DBG_TRC 0x008 /* tracing */ | |
| #define DBG_CAL 0x010 /* calibration activities */ | |
| #define DBG_TIM 0x020 /* timer thread activities */ | |
| #define DBG_THR 0x040 /* throttle activities */ | |
| DEBTAB sim_timer_debug[] = { | |
| {"TRACE", DBG_TRC, "Trace routine calls"}, | |
| {"IDLE", DBG_IDL, "Idling activities"}, | |
| {"QUEUE", DBG_QUE, "Event queuing activities"}, | |
| {"CALIB", DBG_CAL, "Calibration activities"}, | |
| {"TIME", DBG_TIM, "Activation an scheduling activities"}, | |
| {"THROT", DBG_THR, "Throttling activities"}, | |
| {"MUX", DBG_MUX, "Tmxr scheduling activities"}, | |
| {0} | |
| }; | |
| #if defined(SIM_ASYNCH_IO) | |
| uint32 sim_idle_ms_sleep (unsigned int msec) | |
| { | |
| uint32 start_time = sim_os_msec(); | |
| struct timespec done_time; | |
| t_bool timedout = FALSE; | |
| clock_gettime(CLOCK_REALTIME, &done_time); | |
| done_time.tv_sec += (msec/1000); | |
| done_time.tv_nsec += 1000000*(msec%1000); | |
| if (done_time.tv_nsec > 1000000000) { | |
| done_time.tv_sec += done_time.tv_nsec/1000000000; | |
| done_time.tv_nsec = done_time.tv_nsec%1000000000; | |
| } | |
| pthread_mutex_lock (&sim_asynch_lock); | |
| sim_idle_wait = TRUE; | |
| if (!pthread_cond_timedwait (&sim_asynch_wake, &sim_asynch_lock, &done_time)) | |
| sim_asynch_check = 0; /* force check of asynch queue now */ | |
| else | |
| timedout = TRUE; | |
| sim_idle_wait = FALSE; | |
| pthread_mutex_unlock (&sim_asynch_lock); | |
| if (!timedout) { | |
| AIO_UPDATE_QUEUE; | |
| } | |
| return sim_os_msec() - start_time; | |
| } | |
| #define SIM_IDLE_MS_SLEEP sim_idle_ms_sleep | |
| #else | |
| #define SIM_IDLE_MS_SLEEP sim_os_ms_sleep | |
| #endif | |
| /* OS-dependent timer and clock routines */ | |
| /* VMS */ | |
| #if defined (VMS) | |
| #if defined (__VAX) | |
| #define sys$gettim SYS$GETTIM | |
| #define sys$setimr SYS$SETIMR | |
| #define lib$emul LIB$EMUL | |
| #define sys$waitfr SYS$WAITFR | |
| #define lib$subx LIB$SUBX | |
| #define lib$ediv LIB$EDIV | |
| #endif | |
| #include <starlet.h> | |
| #include <lib$routines.h> | |
| #include <unistd.h> | |
| const t_bool rtc_avail = TRUE; | |
| uint32 sim_os_msec (void) | |
| { | |
| uint32 quo, htod, tod[2]; | |
| int32 i; | |
| sys$gettim (tod); /* time 0.1usec */ | |
| /* To convert to msec, must divide a 64b quantity by 10000. This is actually done | |
| by dividing the 96b quantity 0'time by 10000, producing 64b of quotient, the | |
| high 32b of which are discarded. This can probably be done by a clever multiply... | |
| */ | |
| quo = htod = 0; | |
| for (i = 0; i < 64; i++) { /* 64b quo */ | |
| htod = (htod << 1) | ((tod[1] >> 31) & 1); /* shift divd */ | |
| tod[1] = (tod[1] << 1) | ((tod[0] >> 31) & 1); | |
| tod[0] = tod[0] << 1; | |
| quo = quo << 1; /* shift quo */ | |
| if (htod >= 10000) { /* divd work? */ | |
| htod = htod - 10000; /* subtract */ | |
| quo = quo | 1; /* set quo bit */ | |
| } | |
| } | |
| return quo; | |
| } | |
| void sim_os_sleep (unsigned int sec) | |
| { | |
| sleep (sec); | |
| return; | |
| } | |
| uint32 sim_os_ms_sleep_init (void) | |
| { | |
| #if defined (__VAX) | |
| sim_os_sleep_min_ms = 10; /* VAX/VMS is 10ms */ | |
| #else | |
| sim_os_sleep_min_ms = 1; /* Alpha/VMS is 1ms */ | |
| #endif | |
| return sim_os_sleep_min_ms; | |
| } | |
| uint32 sim_os_ms_sleep (unsigned int msec) | |
| { | |
| uint32 stime = sim_os_msec (); | |
| uint32 qtime[2]; | |
| int32 nsfactor = -10000; | |
| static int32 zero = 0; | |
| lib$emul (&msec, &nsfactor, &zero, qtime); | |
| sys$setimr (2, qtime, 0, 0); | |
| sys$waitfr (2); | |
| return sim_os_msec () - stime; | |
| } | |
| #ifdef NEED_CLOCK_GETTIME | |
| int clock_gettime(int clk_id, struct timespec *tp) | |
| { | |
| uint32 secs, ns, tod[2], unixbase[2] = {0xd53e8000, 0x019db1de}; | |
| if (clk_id != CLOCK_REALTIME) | |
| return -1; | |
| sys$gettim (tod); /* time 0.1usec */ | |
| lib$subx(tod, unixbase, tod); /* convert to unix base */ | |
| lib$ediv(&10000000, tod, &secs, &ns); /* isolate seconds & 100ns parts */ | |
| tp->tv_sec = secs; | |
| tp->tv_nsec = ns*100; | |
| return 0; | |
| } | |
| #endif /* CLOCK_REALTIME */ | |
| #elif defined (_WIN32) | |
| /* Win32 routines */ | |
| #include <windows.h> | |
| const t_bool rtc_avail = TRUE; | |
| uint32 sim_os_msec (void) | |
| { | |
| if (sim_idle_rate_ms) | |
| return timeGetTime (); | |
| else return GetTickCount (); | |
| } | |
| void sim_os_sleep (unsigned int sec) | |
| { | |
| Sleep (sec * 1000); | |
| return; | |
| } | |
| void sim_timer_exit (void) | |
| { | |
| timeEndPeriod (sim_idle_rate_ms); | |
| return; | |
| } | |
| uint32 sim_os_ms_sleep_init (void) | |
| { | |
| TIMECAPS timers; | |
| if (timeGetDevCaps (&timers, sizeof (timers)) != TIMERR_NOERROR) | |
| return 0; | |
| sim_os_sleep_min_ms = timers.wPeriodMin; | |
| if ((timers.wPeriodMin == 0) || (timers.wPeriodMin > SIM_IDLE_MAX)) | |
| return 0; | |
| if (timeBeginPeriod (timers.wPeriodMin) != TIMERR_NOERROR) | |
| return 0; | |
| atexit (sim_timer_exit); | |
| Sleep (1); | |
| Sleep (1); | |
| Sleep (1); | |
| Sleep (1); | |
| Sleep (1); | |
| return sim_os_sleep_min_ms; /* sim_idle_rate_ms */ | |
| } | |
| uint32 sim_os_ms_sleep (unsigned int msec) | |
| { | |
| uint32 stime = sim_os_msec(); | |
| Sleep (msec); | |
| return sim_os_msec () - stime; | |
| } | |
| #if defined(NEED_CLOCK_GETTIME) | |
| int clock_gettime(int clk_id, struct timespec *tp) | |
| { | |
| t_uint64 now, unixbase; | |
| if (clk_id != CLOCK_REALTIME) | |
| return -1; | |
| unixbase = 116444736; | |
| unixbase *= 1000000000; | |
| GetSystemTimeAsFileTime((FILETIME*)&now); | |
| now -= unixbase; | |
| tp->tv_sec = (long)(now/10000000); | |
| tp->tv_nsec = (now%10000000)*100; | |
| return 0; | |
| } | |
| #endif | |
| #elif defined (__OS2__) | |
| /* OS/2 routines, from Bruce Ray */ | |
| const t_bool rtc_avail = FALSE; | |
| uint32 sim_os_msec (void) | |
| { | |
| return 0; | |
| } | |
| void sim_os_sleep (unsigned int sec) | |
| { | |
| return; | |
| } | |
| uint32 sim_os_ms_sleep_init (void) | |
| { | |
| return 0; | |
| } | |
| uint32 sim_os_ms_sleep (unsigned int msec) | |
| { | |
| return 0; | |
| } | |
| /* Metrowerks CodeWarrior Macintosh routines, from Ben Supnik */ | |
| #elif defined (__MWERKS__) && defined (macintosh) | |
| #include <Timer.h> | |
| #include <Mactypes.h> | |
| #include <sioux.h> | |
| #include <unistd.h> | |
| #include <siouxglobals.h> | |
| #define NANOS_PER_MILLI 1000000 | |
| #define MILLIS_PER_SEC 1000 | |
| const t_bool rtc_avail = TRUE; | |
| uint32 sim_os_msec (void) | |
| { | |
| unsigned long long micros; | |
| UnsignedWide macMicros; | |
| unsigned long millis; | |
| Microseconds (&macMicros); | |
| micros = *((unsigned long long *) &macMicros); | |
| millis = micros / 1000LL; | |
| return (uint32) millis; | |
| } | |
| void sim_os_sleep (unsigned int sec) | |
| { | |
| sleep (sec); | |
| return; | |
| } | |
| uint32 sim_os_ms_sleep_init (void) | |
| { | |
| return sim_os_sleep_min_ms = 1; | |
| } | |
| uint32 sim_os_ms_sleep (unsigned int milliseconds) | |
| { | |
| uint32 stime = sim_os_msec (); | |
| struct timespec treq; | |
| treq.tv_sec = milliseconds / MILLIS_PER_SEC; | |
| treq.tv_nsec = (milliseconds % MILLIS_PER_SEC) * NANOS_PER_MILLI; | |
| (void) nanosleep (&treq, NULL); | |
| return sim_os_msec () - stime; | |
| } | |
| #if defined(NEED_CLOCK_GETTIME) | |
| int clock_gettime(int clk_id, struct timespec *tp) | |
| { | |
| struct timeval cur; | |
| struct timezone foo; | |
| if (clk_id != CLOCK_REALTIME) | |
| return -1; | |
| gettimeofday (&cur, &foo); | |
| tp->tv_sec = cur.tv_sec; | |
| tp->tv_nsec = cur.tv_usec*1000; | |
| return 0; | |
| } | |
| #endif | |
| #else | |
| /* UNIX routines */ | |
| #include <time.h> | |
| #include <sys/time.h> | |
| #include <unistd.h> | |
| #define NANOS_PER_MILLI 1000000 | |
| #define MILLIS_PER_SEC 1000 | |
| #define sleep1Samples 100 | |
| const t_bool rtc_avail = TRUE; | |
| uint32 sim_os_msec (void) | |
| { | |
| struct timeval cur; | |
| struct timezone foo; | |
| uint32 msec; | |
| gettimeofday (&cur, &foo); | |
| msec = (((uint32) cur.tv_sec) * 1000) + (((uint32) cur.tv_usec) / 1000); | |
| return msec; | |
| } | |
| void sim_os_sleep (unsigned int sec) | |
| { | |
| sleep (sec); | |
| return; | |
| } | |
| uint32 sim_os_ms_sleep_init (void) | |
| { | |
| uint32 i, t1, t2, tot, tim; | |
| SIM_IDLE_MS_SLEEP (1); /* Start sampling on a tick boundary */ | |
| for (i = 0, tot = 0; i < sleep1Samples; i++) { | |
| t1 = sim_os_msec (); | |
| SIM_IDLE_MS_SLEEP (1); | |
| t2 = sim_os_msec (); | |
| tot += (t2 - t1); | |
| } | |
| tim = (tot + (sleep1Samples - 1)) / sleep1Samples; | |
| sim_os_sleep_min_ms = tim; | |
| if (tim > SIM_IDLE_MAX) | |
| tim = 0; | |
| return tim; | |
| } | |
| #if !defined(_POSIX_SOURCE) | |
| #ifdef NEED_CLOCK_GETTIME | |
| typedef int clockid_t; | |
| int clock_gettime(clockid_t clk_id, struct timespec *tp) | |
| { | |
| struct timeval cur; | |
| struct timezone foo; | |
| if (clk_id != CLOCK_REALTIME) | |
| return -1; | |
| gettimeofday (&cur, &foo); | |
| tp->tv_sec = cur.tv_sec; | |
| tp->tv_nsec = cur.tv_usec*1000; | |
| return 0; | |
| } | |
| #endif /* CLOCK_REALTIME */ | |
| #endif /* !defined(_POSIX_SOURCE) && defined(SIM_ASYNCH_IO) */ | |
| uint32 sim_os_ms_sleep (unsigned int milliseconds) | |
| { | |
| uint32 stime = sim_os_msec (); | |
| struct timespec treq; | |
| treq.tv_sec = milliseconds / MILLIS_PER_SEC; | |
| treq.tv_nsec = (milliseconds % MILLIS_PER_SEC) * NANOS_PER_MILLI; | |
| (void) nanosleep (&treq, NULL); | |
| return sim_os_msec () - stime; | |
| } | |
| #endif | |
| /* diff = min - sub */ | |
| void | |
| sim_timespec_diff (struct timespec *diff, struct timespec *min, struct timespec *sub) | |
| { | |
| /* move the minuend value to the difference and operate there. */ | |
| *diff = *min; | |
| /* Borrow as needed for the nsec value */ | |
| while (sub->tv_nsec > diff->tv_nsec) { | |
| --diff->tv_sec; | |
| diff->tv_nsec += 1000000000; | |
| } | |
| diff->tv_nsec -= sub->tv_nsec; | |
| diff->tv_sec -= sub->tv_sec; | |
| /* Normalize the result */ | |
| while (diff->tv_nsec > 1000000000) { | |
| ++diff->tv_sec; | |
| diff->tv_nsec -= 1000000000; | |
| } | |
| } | |
| #if defined(SIM_ASYNCH_IO) && defined(SIM_ASYNCH_CLOCKS) | |
| static int sim_timespec_compare (struct timespec *a, struct timespec *b) | |
| { | |
| while (a->tv_nsec > 1000000000) { | |
| a->tv_nsec -= 1000000000; | |
| ++a->tv_sec; | |
| } | |
| while (b->tv_nsec > 1000000000) { | |
| b->tv_nsec -= 1000000000; | |
| ++b->tv_sec; | |
| } | |
| if (a->tv_sec < b->tv_sec) | |
| return -1; | |
| if (a->tv_sec > b->tv_sec) | |
| return 1; | |
| if (a->tv_nsec < b->tv_nsec) | |
| return -1; | |
| if (a->tv_nsec > b->tv_nsec) | |
| return 1; | |
| else | |
| return 0; | |
| } | |
| #endif /* defined(SIM_ASYNCH_IO) && defined(SIM_ASYNCH_CLOCKS) */ | |
| /* OS independent clock calibration package */ | |
| static int32 rtc_ticks[SIM_NTIMERS] = { 0 }; /* ticks */ | |
| static int32 rtc_hz[SIM_NTIMERS] = { 0 }; /* tick rate */ | |
| static uint32 rtc_rtime[SIM_NTIMERS] = { 0 }; /* real time */ | |
| static uint32 rtc_vtime[SIM_NTIMERS] = { 0 }; /* virtual time */ | |
| static double rtc_gtime[SIM_NTIMERS] = { 0 }; /* instruction time */ | |
| static uint32 rtc_nxintv[SIM_NTIMERS] = { 0 }; /* next interval */ | |
| static int32 rtc_based[SIM_NTIMERS] = { 0 }; /* base delay */ | |
| static int32 rtc_currd[SIM_NTIMERS] = { 0 }; /* current delay */ | |
| static int32 rtc_initd[SIM_NTIMERS] = { 0 }; /* initial delay */ | |
| static uint32 rtc_elapsed[SIM_NTIMERS] = { 0 }; /* sec since init */ | |
| static uint32 rtc_calibrations[SIM_NTIMERS] = { 0 }; /* calibration count */ | |
| static double rtc_clock_skew_max[SIM_NTIMERS] = { 0 }; /* asynchronous max skew */ | |
| UNIT sim_timer_units[SIM_NTIMERS+2]; /* one for each timer and one for throttle */ | |
| /* plus one for an internal clock if no clocks are registered */ | |
| void sim_rtcn_init_all (void) | |
| { | |
| uint32 i; | |
| for (i = 0; i < SIM_NTIMERS; i++) | |
| if (rtc_initd[i] != 0) | |
| sim_rtcn_init (rtc_initd[i], i); | |
| return; | |
| } | |
| int32 sim_rtcn_init (int32 time, int32 tmr) | |
| { | |
| return sim_rtcn_init_unit (NULL, time, tmr); | |
| } | |
| int32 sim_rtcn_init_unit (UNIT *uptr, int32 time, int32 tmr) | |
| { | |
| sim_debug (DBG_CAL, &sim_timer_dev, "sim_rtcn_init(time=%d, tmr=%d)\n", time, tmr); | |
| if (time == 0) | |
| time = 1; | |
| if ((tmr < 0) || (tmr >= SIM_NTIMERS)) | |
| return time; | |
| if (uptr) { | |
| sim_clock_unit[tmr] = uptr; | |
| sim_clock_cosched_queue[tmr] = QUEUE_LIST_END; | |
| } | |
| rtc_rtime[tmr] = sim_os_msec (); | |
| rtc_vtime[tmr] = rtc_rtime[tmr]; | |
| rtc_nxintv[tmr] = 1000; | |
| rtc_ticks[tmr] = 0; | |
| rtc_hz[tmr] = 0; | |
| rtc_based[tmr] = time; | |
| rtc_currd[tmr] = time; | |
| rtc_initd[tmr] = time; | |
| rtc_elapsed[tmr] = 0; | |
| rtc_calibrations[tmr] = 0; | |
| if (sim_calb_tmr == -1) /* save first initialized clock as the system timer */ | |
| sim_calb_tmr = tmr; | |
| return time; | |
| } | |
| int32 sim_rtcn_calb (int32 ticksper, int32 tmr) | |
| { | |
| uint32 new_rtime, delta_rtime; | |
| int32 delta_vtime; | |
| double new_gtime; | |
| int32 new_currd; | |
| if ((tmr < 0) || (tmr >= SIM_NTIMERS)) | |
| return 10000; | |
| rtc_hz[tmr] = ticksper; | |
| rtc_ticks[tmr] = rtc_ticks[tmr] + 1; /* count ticks */ | |
| if (rtc_ticks[tmr] < ticksper) { /* 1 sec yet? */ | |
| return rtc_currd[tmr]; | |
| } | |
| rtc_ticks[tmr] = 0; /* reset ticks */ | |
| rtc_elapsed[tmr] = rtc_elapsed[tmr] + 1; /* count sec */ | |
| if (!rtc_avail) { /* no timer? */ | |
| return rtc_currd[tmr]; | |
| } | |
| new_rtime = sim_os_msec (); /* wall time */ | |
| sim_debug (DBG_TRC, &sim_timer_dev, "sim_rtcn_calb(ticksper=%d, tmr=%d) rtime=%d\n", ticksper, tmr, new_rtime); | |
| if (sim_idle_idled) { | |
| rtc_rtime[tmr] = new_rtime; /* save wall time */ | |
| rtc_vtime[tmr] = rtc_vtime[tmr] + 1000; /* adv sim time */ | |
| rtc_gtime[tmr] = sim_gtime(); /* save instruction time */ | |
| sim_idle_idled = FALSE; /* reset idled flag */ | |
| sim_debug (DBG_CAL, &sim_timer_dev, "skipping calibration due to idling - result: %d\n", rtc_currd[tmr]); | |
| return rtc_currd[tmr]; /* avoid calibrating idle checks */ | |
| } | |
| if (new_rtime < rtc_rtime[tmr]) { /* time running backwards? */ | |
| rtc_rtime[tmr] = new_rtime; /* reset wall time */ | |
| sim_debug (DBG_CAL, &sim_timer_dev, "time running backwards - result: %d\n", rtc_currd[tmr]); | |
| return rtc_currd[tmr]; /* can't calibrate */ | |
| } | |
| ++rtc_calibrations[tmr]; /* count calibrations */ | |
| delta_rtime = new_rtime - rtc_rtime[tmr]; /* elapsed wtime */ | |
| rtc_rtime[tmr] = new_rtime; /* adv wall time */ | |
| rtc_vtime[tmr] = rtc_vtime[tmr] + 1000; /* adv sim time */ | |
| if (delta_rtime > 30000) { /* gap too big? */ | |
| /* This simulator process has somehow been suspended for a significant */ | |
| /* amount of time. This will certainly happen if the host system has */ | |
| /* slept or hibernated. It also might happen when a simulator */ | |
| /* developer stops the simulator at a breakpoint (a process, not simh */ | |
| /* breakpoint). To accomodate this, we set the calibration state to */ | |
| /* ignore what happened and proceed from here. */ | |
| rtc_vtime[tmr] = rtc_rtime[tmr]; /* sync virtual and real time */ | |
| rtc_nxintv[tmr] = 1000; /* reset next interval */ | |
| rtc_gtime[tmr] = sim_gtime(); /* save instruction time */ | |
| sim_debug (DBG_CAL, &sim_timer_dev, "gap too big: delta = %d - result: %d\n", delta_rtime, rtc_currd[tmr]); | |
| return rtc_currd[tmr]; /* can't calibr */ | |
| } | |
| new_gtime = sim_gtime(); | |
| if (sim_asynch_enabled && sim_asynch_timer) { | |
| if (rtc_elapsed[tmr] > sim_idle_stable) { | |
| /* An asynchronous clock, merely needs to divide the number of */ | |
| /* instructions actually executed by the clock rate. */ | |
| new_currd = (int32)((new_gtime - rtc_gtime[tmr])/ticksper); | |
| /* avoid excessive swings in the calibrated result */ | |
| if (new_currd > 10*rtc_currd[tmr]) /* don't swing big too fast */ | |
| new_currd = 10*rtc_currd[tmr]; | |
| else | |
| if (new_currd < rtc_currd[tmr]/10) /* don't swing small too fast */ | |
| new_currd = rtc_currd[tmr]/10; | |
| rtc_currd[tmr] = new_currd; | |
| rtc_gtime[tmr] = new_gtime; /* save instruction time */ | |
| if (rtc_currd[tmr] == 127) { | |
| sim_debug (DBG_CAL, &sim_timer_dev, "asynch calibration small: %d\n", rtc_currd[tmr]); | |
| } | |
| sim_debug (DBG_CAL, &sim_timer_dev, "asynch calibration result: %d\n", rtc_currd[tmr]); | |
| return rtc_currd[tmr]; /* calibrated result */ | |
| } | |
| else { | |
| rtc_currd[tmr] = rtc_initd[tmr]; | |
| rtc_gtime[tmr] = new_gtime; /* save instruction time */ | |
| sim_debug (DBG_CAL, &sim_timer_dev, "asynch not stable calibration result: %d\n", rtc_initd[tmr]); | |
| return rtc_initd[tmr]; /* initial result until stable */ | |
| } | |
| } | |
| rtc_gtime[tmr] = new_gtime; /* save instruction time */ | |
| /* This self regulating algorithm depends directly on the assumption */ | |
| /* that this routine is called back after processing the number of */ | |
| /* instructions which was returned the last time it was called. */ | |
| if (delta_rtime == 0) /* gap too small? */ | |
| rtc_based[tmr] = rtc_based[tmr] * ticksper; /* slew wide */ | |
| else rtc_based[tmr] = (int32) (((double) rtc_based[tmr] * (double) rtc_nxintv[tmr]) / | |
| ((double) delta_rtime)); /* new base rate */ | |
| delta_vtime = rtc_vtime[tmr] - rtc_rtime[tmr]; /* gap */ | |
| if (delta_vtime > SIM_TMAX) /* limit gap */ | |
| delta_vtime = SIM_TMAX; | |
| else if (delta_vtime < -SIM_TMAX) | |
| delta_vtime = -SIM_TMAX; | |
| rtc_nxintv[tmr] = 1000 + delta_vtime; /* next wtime */ | |
| rtc_currd[tmr] = (int32) (((double) rtc_based[tmr] * (double) rtc_nxintv[tmr]) / | |
| 1000.0); /* next delay */ | |
| if (rtc_based[tmr] <= 0) /* never negative or zero! */ | |
| rtc_based[tmr] = 1; | |
| if (rtc_currd[tmr] <= 0) /* never negative or zero! */ | |
| rtc_currd[tmr] = 1; | |
| sim_debug (DBG_CAL, &sim_timer_dev, "calibrated result: %d\n", rtc_currd[tmr]); | |
| AIO_SET_INTERRUPT_LATENCY(rtc_currd[tmr]*ticksper); /* set interrrupt latency */ | |
| return rtc_currd[tmr]; | |
| } | |
| /* Prior interfaces - default to timer 0 */ | |
| int32 sim_rtc_init (int32 time) | |
| { | |
| return sim_rtcn_init (time, 0); | |
| } | |
| int32 sim_rtc_calb (int32 ticksper) | |
| { | |
| return sim_rtcn_calb (ticksper, 0); | |
| } | |
| /* sim_timer_init - get minimum sleep time available on this host */ | |
| t_bool sim_timer_init (void) | |
| { | |
| int i; | |
| uint32 clock_start, clock_last, clock_now; | |
| sim_debug (DBG_TRC, &sim_timer_dev, "sim_timer_init()\n"); | |
| for (i=0; i<SIM_NTIMERS; i++) { | |
| sim_timer_units[i].action = &sim_timer_tick_svc; | |
| sim_timer_units[i].flags = UNIT_DIS; | |
| } | |
| sim_timer_units[SIM_NTIMERS].action = &sim_throt_svc; | |
| sim_timer_units[SIM_NTIMERS].flags = UNIT_DIS; | |
| sim_register_internal_device (&sim_timer_dev); | |
| sim_idle_enab = FALSE; /* init idle off */ | |
| sim_idle_rate_ms = sim_os_ms_sleep_init (); /* get OS timer rate */ | |
| clock_last = clock_start = sim_os_msec (); | |
| sim_os_clock_resoluton_ms = 1000; | |
| do { | |
| uint32 clock_diff; | |
| clock_now = sim_os_msec (); | |
| clock_diff = clock_now - clock_last; | |
| if ((clock_diff > 0) && (clock_diff < sim_os_clock_resoluton_ms)) | |
| sim_os_clock_resoluton_ms = clock_diff; | |
| clock_last = clock_now; | |
| } while (clock_now < clock_start + 100); | |
| return (sim_idle_rate_ms != 0); | |
| } | |
| /* sim_timer_idle_capable - tell if the host is Idle capable and what the host OS tick size is */ | |
| t_bool sim_timer_idle_capable (uint32 *host_ms_sleep_1, uint32 *host_tick_ms) | |
| { | |
| if (host_tick_ms) | |
| *host_tick_ms = sim_os_clock_resoluton_ms; | |
| if (host_ms_sleep_1) | |
| *host_ms_sleep_1 = sim_os_sleep_min_ms; | |
| return (sim_idle_rate_ms != 0); | |
| } | |
| /* sim_show_timers - show running timer information */ | |
| t_stat sim_show_timers (FILE* st, DEVICE *dptr, UNIT* uptr, int32 val, char* desc) | |
| { | |
| int tmr, clocks; | |
| fprintf (st, "Minimum Host Sleep Time: %dms\n", sim_os_sleep_min_ms); | |
| fprintf (st, "Host Clock Resolution: %dms\n", sim_os_clock_resoluton_ms); | |
| fprintf (st, "Time before Clock Calibration: %d seconds\n\n", sim_idle_stable); | |
| for (tmr=clocks=0; tmr<SIM_NTIMERS; ++tmr) { | |
| if (0 == rtc_initd[tmr]) | |
| continue; | |
| if (sim_clock_unit[tmr]) { | |
| ++clocks; | |
| fprintf (st, "%s clock device is %s\n", sim_name, sim_uname(sim_clock_unit[tmr])); | |
| } | |
| fprintf (st, "%s%sTimer %d:\n", (sim_asynch_enabled && sim_asynch_timer) ? "Asynchronous " : "", rtc_hz[tmr] ? "Calibrated " : "Uncalibrated ", tmr); | |
| if (rtc_hz[tmr]) { | |
| fprintf (st, " Running at: %dhz\n", rtc_hz[tmr]); | |
| fprintf (st, " Ticks in current second: %d\n", rtc_ticks[tmr]); | |
| } | |
| fprintf (st, " Seconds Running: %u\n", rtc_elapsed[tmr]); | |
| fprintf (st, " Calibrations: %u\n", rtc_calibrations[tmr]); | |
| fprintf (st, " Instruction Time: %.0f\n", rtc_gtime[tmr]); | |
| if (!(sim_asynch_enabled && sim_asynch_timer)) { | |
| fprintf (st, " Real Time: %u\n", rtc_rtime[tmr]); | |
| fprintf (st, " Virtual Time: %u\n", rtc_vtime[tmr]); | |
| fprintf (st, " Next Interval: %u\n", rtc_nxintv[tmr]); | |
| fprintf (st, " Base Tick Delay: %d\n", rtc_based[tmr]); | |
| fprintf (st, " Initial Insts Per Tick: %d\n", rtc_initd[tmr]); | |
| } | |
| fprintf (st, " Current Insts Per Tick: %d\n", rtc_currd[tmr]); | |
| if (rtc_clock_skew_max[tmr] != 0.0) | |
| fprintf (st, " Peak Clock Skew: %.0fms\n", rtc_clock_skew_max[tmr]); | |
| } | |
| if (clocks == 0) | |
| fprintf (st, "%s clock device is not specified, co-scheduling is unavailable\n", sim_name); | |
| return SCPE_OK; | |
| } | |
| t_stat sim_show_clock_queues (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr) | |
| { | |
| #if defined (SIM_ASYNCH_IO) | |
| int tmr; | |
| pthread_mutex_lock (&sim_timer_lock); | |
| if (sim_wallclock_queue == QUEUE_LIST_END) | |
| fprintf (st, "%s wall clock event queue empty\n", sim_name); | |
| else { | |
| fprintf (st, "%s wall clock event queue status\n", sim_name); | |
| for (uptr = sim_wallclock_queue; uptr != QUEUE_LIST_END; uptr = uptr->a_next) { | |
| if ((dptr = find_dev_from_unit (uptr)) != NULL) { | |
| fprintf (st, " %s", sim_dname (dptr)); | |
| if (dptr->numunits > 1) | |
| fprintf (st, " unit %d", (int32) (uptr - dptr->units)); | |
| } | |
| else fprintf (st, " Unknown"); | |
| fprintf (st, " after "); | |
| fprint_val (st, (t_value)uptr->a_usec_delay, 10, 0, PV_RCOMMA); | |
| fprintf (st, " usec\n"); | |
| } | |
| } | |
| if (sim_asynch_timer) { | |
| for (tmr=0; tmr<SIM_NTIMERS; ++tmr) { | |
| if (sim_clock_unit[tmr] == NULL) | |
| continue; | |
| if (sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) { | |
| fprintf (st, "%s clock (%s) co-schedule event queue status\n", | |
| sim_name, sim_uname(sim_clock_unit[tmr])); | |
| for (uptr = sim_clock_cosched_queue[tmr]; uptr != QUEUE_LIST_END; uptr = uptr->a_next) { | |
| if ((dptr = find_dev_from_unit (uptr)) != NULL) { | |
| fprintf (st, " %s", sim_dname (dptr)); | |
| if (dptr->numunits > 1) | |
| fprintf (st, " unit %d", (int32) (uptr - dptr->units)); | |
| } | |
| else fprintf (st, " Unknown"); | |
| fprintf (st, "\n"); | |
| } | |
| } | |
| } | |
| } | |
| pthread_mutex_unlock (&sim_timer_lock); | |
| #endif /* SIM_ASYNCH_IO */ | |
| return SCPE_OK; | |
| } | |
| REG sim_timer_reg[] = { | |
| { DRDATAD (TICKS_PER_SEC, rtc_hz[0], 32, "Ticks Per Second"), PV_RSPC|REG_RO}, | |
| { DRDATAD (INSTS_PER_TICK, rtc_currd[0], 32, "Instructions Per Tick"), PV_RSPC|REG_RO}, | |
| { FLDATAD (IDLE_ENAB, sim_idle_enab, 0, "Idle Enabled"), REG_RO}, | |
| { DRDATAD (IDLE_RATE_MS, sim_idle_rate_ms, 32, "Idle Rate Milliseconds"), PV_RSPC|REG_RO}, | |
| { DRDATAD (OS_SLEEP_MIN_MS, sim_os_sleep_min_ms, 32, "Minimum Sleep Resolution"), PV_RSPC|REG_RO}, | |
| { DRDATAD (IDLE_STABLE, sim_idle_stable, 32, "Idle Stable"), PV_RSPC}, | |
| { FLDATAD (IDLE_IDLED, sim_idle_idled, 0, ""), REG_RO}, | |
| { DRDATAD (TMR, sim_calb_tmr, 32, ""), PV_RSPC|REG_RO}, | |
| { DRDATAD (THROT_MS_START, sim_throt_ms_start, 32, ""), PV_RSPC|REG_RO}, | |
| { DRDATAD (THROT_MS_STOP, sim_throt_ms_stop, 32, ""), PV_RSPC|REG_RO}, | |
| { DRDATAD (THROT_TYPE, sim_throt_type, 32, ""), PV_RSPC|REG_RO}, | |
| { DRDATAD (THROT_VAL, sim_throt_val, 32, ""), PV_RSPC|REG_RO}, | |
| { DRDATAD (THROT_STATE, sim_throt_state, 32, ""), PV_RSPC|REG_RO}, | |
| { DRDATAD (THROT_SLEEP_TIME, sim_throt_sleep_time, 32, ""), PV_RSPC|REG_RO}, | |
| { DRDATAD (THROT_WAIT, sim_throt_wait, 32, ""), PV_RSPC|REG_RO}, | |
| { NULL } | |
| }; | |
| /* Clear, Set and show asynch */ | |
| /* Clear asynch */ | |
| t_stat sim_timer_clr_async (UNIT *uptr, int32 val, char *cptr, void *desc) | |
| { | |
| if (sim_asynch_timer) { | |
| sim_asynch_timer = FALSE; | |
| sim_timer_change_asynch (); | |
| } | |
| return SCPE_OK; | |
| } | |
| t_stat sim_timer_set_async (UNIT *uptr, int32 val, char *cptr, void *desc) | |
| { | |
| if (!sim_asynch_timer) { | |
| sim_asynch_timer = TRUE; | |
| sim_timer_change_asynch (); | |
| } | |
| return SCPE_OK; | |
| } | |
| t_stat sim_timer_show_async (FILE *st, UNIT *uptr, int32 val, void *desc) | |
| { | |
| fprintf (st, "%s", (sim_asynch_enabled && sim_asynch_timer) ? "Asynchronous" : "Synchronous"); | |
| return SCPE_OK; | |
| } | |
| MTAB sim_timer_mod[] = { | |
| #if defined (SIM_ASYNCH_IO) && defined (SIM_ASYNCH_CLOCKS) | |
| { MTAB_VDV, MTAB_VDV, "ASYNC", "ASYNC", &sim_timer_set_async, &sim_timer_show_async, NULL, "Enables/Displays Asynchronous Timer operation mode" }, | |
| { MTAB_VDV, 0, NULL, "NOASYNC", &sim_timer_clr_async, NULL, NULL, "Disables Asynchronous Timer operation" }, | |
| #endif | |
| { 0 }, | |
| }; | |
| static t_stat sim_timer_clock_reset (DEVICE *dptr); | |
| DEVICE sim_timer_dev = { | |
| "TIMER", sim_timer_units, sim_timer_reg, sim_timer_mod, | |
| SIM_NTIMERS+2, 0, 0, 0, 0, 0, | |
| NULL, NULL, &sim_timer_clock_reset, NULL, NULL, NULL, | |
| NULL, DEV_DEBUG | DEV_NOSAVE, 0, sim_timer_debug}; | |
| /* sim_idle - idle simulator until next event or for specified interval | |
| Inputs: | |
| tmr = calibrated timer to use | |
| Must solve the linear equation | |
| ms_to_wait = w * ms_per_wait | |
| Or | |
| w = ms_to_wait / ms_per_wait | |
| */ | |
| t_bool sim_idle (uint32 tmr, t_bool sin_cyc) | |
| { | |
| static uint32 cyc_ms = 0; | |
| uint32 w_ms, w_idle, act_ms; | |
| int32 act_cyc; | |
| if ((!sim_idle_enab) || /* idling disabled */ | |
| ((sim_clock_queue == QUEUE_LIST_END) && /* or clock queue empty? */ | |
| (!(sim_asynch_enabled && sim_asynch_timer)))|| /* and not asynch? */ | |
| ((sim_clock_queue != QUEUE_LIST_END) && /* or clock queue not empty */ | |
| ((sim_clock_queue->flags & UNIT_IDLE) == 0))|| /* and event not idle-able? */ | |
| (rtc_elapsed[tmr] < sim_idle_stable)) { /* or timer not stable? */ | |
| if (sin_cyc) | |
| sim_interval = sim_interval - 1; | |
| return FALSE; | |
| } | |
| /* | |
| When a simulator is in an instruction path (or under other conditions | |
| which would indicate idling), the countdown of sim_interval will not | |
| be happening at a pace which is consistent with the rate it happens | |
| when not in the 'idle capable' state. The consequence of this is that | |
| the clock calibration may produce calibrated results which vary much | |
| more than they do when not in the idle able state. Sim_idle also uses | |
| the calibrated tick size to approximate an adjustment to sim_interval | |
| to reflect the number of instructions which would have executed during | |
| the actual idle time, so consistent calibrated numbers produce better | |
| adjustments. | |
| To negate this effect, we set a flag (sim_idle_idled) here and the | |
| sim_rtcn_calb routine checks this flag before performing an actual | |
| calibration and skips calibration if the flag was set and then clears | |
| the flag. Thus recalibration only happens if things didn't idle. | |
| we also check check sim_idle_enab above so that all simulators can avoid | |
| directly checking sim_idle_enab before calling sim_idle so that all of | |
| the bookkeeping on sim_idle_idled is done here in sim_timer where it | |
| means something, while not idling when it isn't enabled. | |
| */ | |
| //sim_idle_idled = TRUE; /* record idle attempt */ | |
| sim_debug (DBG_TRC, &sim_timer_dev, "sim_idle(tmr=%d, sin_cyc=%d)\n", tmr, sin_cyc); | |
| if (cyc_ms == 0) /* not computed yet? */ | |
| cyc_ms = (rtc_currd[tmr] * rtc_hz[tmr]) / 1000; /* cycles per msec */ | |
| if ((sim_idle_rate_ms == 0) || (cyc_ms == 0)) { /* not possible? */ | |
| if (sin_cyc) | |
| sim_interval = sim_interval - 1; | |
| sim_debug (DBG_IDL, &sim_timer_dev, "not possible %d - %d\n", sim_idle_rate_ms, cyc_ms); | |
| return FALSE; | |
| } | |
| w_ms = (uint32) sim_interval / cyc_ms; /* ms to wait */ | |
| w_idle = w_ms / sim_idle_rate_ms; /* intervals to wait */ | |
| if (w_idle == 0) { /* none? */ | |
| if (sin_cyc) | |
| sim_interval = sim_interval - 1; | |
| sim_debug (DBG_IDL, &sim_timer_dev, "no wait\n"); | |
| return FALSE; | |
| } | |
| if (sim_clock_queue == QUEUE_LIST_END) | |
| sim_debug (DBG_IDL, &sim_timer_dev, "sleeping for %d ms - pending event in %d instructions\n", w_ms, sim_interval); | |
| else | |
| sim_debug (DBG_IDL, &sim_timer_dev, "sleeping for %d ms - pending event on %s in %d instructions\n", w_ms, sim_uname(sim_clock_queue), sim_interval); | |
| act_ms = SIM_IDLE_MS_SLEEP (w_ms); /* wait */ | |
| act_cyc = act_ms * cyc_ms; | |
| if (act_ms < w_ms) /* awakened early? */ | |
| act_cyc += (cyc_ms * sim_idle_rate_ms) / 2; /* account for half an interval's worth of cycles */ | |
| if (sim_interval > act_cyc) | |
| sim_interval = sim_interval - act_cyc; /* count down sim_interval */ | |
| else sim_interval = 0; /* or fire immediately */ | |
| if (sim_clock_queue == QUEUE_LIST_END) | |
| sim_debug (DBG_IDL, &sim_timer_dev, "slept for %d ms - pending event in %d instructions\n", act_ms, sim_interval); | |
| else | |
| sim_debug (DBG_IDL, &sim_timer_dev, "slept for %d ms - pending event on %s in %d instructions\n", act_ms, sim_uname(sim_clock_queue), sim_interval); | |
| return TRUE; | |
| } | |
| /* Set idling - implicitly disables throttling */ | |
| t_stat sim_set_idle (UNIT *uptr, int32 val, char *cptr, void *desc) | |
| { | |
| t_stat r; | |
| uint32 v; | |
| if (sim_idle_rate_ms == 0) | |
| return sim_messagef (SCPE_NOFNC, "Idling is not available, Minimum OS sleep time is %dms\n", sim_os_sleep_min_ms); | |
| if ((val != 0) && (sim_idle_rate_ms > (uint32) val)) | |
| return sim_messagef (SCPE_NOFNC, "Idling is not available, Minimum OS sleep time is %dms, Requied minimum OS sleep is %dms\n", sim_os_sleep_min_ms, val); | |
| if (cptr && *cptr) { | |
| v = (uint32) get_uint (cptr, 10, SIM_IDLE_STMAX, &r); | |
| if ((r != SCPE_OK) || (v < SIM_IDLE_STMIN)) | |
| return sim_messagef (SCPE_ARG, "Invalid Stability value: %s. Valid values range from %d to %d.\n", cptr, SIM_IDLE_STMIN, SIM_IDLE_STMAX); | |
| sim_idle_stable = v; | |
| } | |
| sim_idle_enab = TRUE; | |
| if (sim_throt_type != SIM_THROT_NONE) { | |
| sim_set_throt (0, NULL); | |
| sim_printf ("Throttling disabled\n"); | |
| } | |
| return SCPE_OK; | |
| } | |
| /* Clear idling */ | |
| t_stat sim_clr_idle (UNIT *uptr, int32 val, char *cptr, void *desc) | |
| { | |
| sim_idle_enab = FALSE; | |
| return SCPE_OK; | |
| } | |
| /* Show idling */ | |
| t_stat sim_show_idle (FILE *st, UNIT *uptr, int32 val, void *desc) | |
| { | |
| if (sim_idle_enab) | |
| fprintf (st, "idle enabled"); | |
| else | |
| fprintf (st, "idle disabled"); | |
| if (sim_switches & SWMASK ('D')) | |
| fprintf (st, ", stability wait = %ds, minimum sleep resolution = %dms", sim_idle_stable, sim_os_sleep_min_ms); | |
| return SCPE_OK; | |
| } | |
| /* Throttling package */ | |
| t_stat sim_set_throt (int32 arg, char *cptr) | |
| { | |
| const char *tptr; | |
| char c; | |
| t_value val, val2 = 0; | |
| if (arg == 0) { | |
| if ((cptr != 0) && (*cptr != 0)) | |
| return SCPE_ARG; | |
| sim_throt_type = SIM_THROT_NONE; | |
| sim_throt_cancel (); | |
| } | |
| else if (sim_idle_rate_ms == 0) { | |
| sim_printf ("Throttling is not available, Minimum OS sleep time is %dms\n", sim_os_sleep_min_ms); | |
| return SCPE_NOFNC; | |
| } | |
| else { | |
| val = strtotv (cptr, &tptr, 10); | |
| if (cptr == tptr) | |
| return SCPE_ARG; | |
| sim_throt_sleep_time = sim_idle_rate_ms; | |
| c = (char)toupper (*tptr++); | |
| if (c == '/') | |
| val2 = strtotv (tptr, &tptr, 10); | |
| if ((*tptr != 0) || (val == 0)) | |
| return SCPE_ARG; | |
| if (c == 'M') | |
| sim_throt_type = SIM_THROT_MCYC; | |
| else if (c == 'K') | |
| sim_throt_type = SIM_THROT_KCYC; | |
| else if ((c == '%') && (val > 0) && (val < 100)) | |
| sim_throt_type = SIM_THROT_PCT; | |
| else if ((c == '/') && (val2 != 0)) { | |
| sim_throt_type = SIM_THROT_SPC; | |
| } | |
| else return SCPE_ARG; | |
| if (sim_idle_enab) { | |
| sim_printf ("Idling disabled\n"); | |
| sim_clr_idle (NULL, 0, NULL, NULL); | |
| } | |
| sim_throt_val = (uint32) val; | |
| if (sim_throt_type == SIM_THROT_SPC) { | |
| if (val2 >= sim_idle_rate_ms) | |
| sim_throt_sleep_time = (uint32) val2; | |
| else { | |
| sim_throt_sleep_time = (uint32) (val2 * sim_idle_rate_ms); | |
| sim_throt_val = (uint32) (val * sim_idle_rate_ms); | |
| } | |
| } | |
| } | |
| return SCPE_OK; | |
| } | |
| t_stat sim_show_throt (FILE *st, DEVICE *dnotused, UNIT *unotused, int32 flag, char *cptr) | |
| { | |
| if (sim_idle_rate_ms == 0) | |
| fprintf (st, "Throttling not available\n"); | |
| else { | |
| switch (sim_throt_type) { | |
| case SIM_THROT_MCYC: | |
| fprintf (st, "Throttle = %d megacycles\n", sim_throt_val); | |
| break; | |
| case SIM_THROT_KCYC: | |
| fprintf (st, "Throttle = %d kilocycles\n", sim_throt_val); | |
| break; | |
| case SIM_THROT_PCT: | |
| fprintf (st, "Throttle = %d%%\n", sim_throt_val); | |
| break; | |
| case SIM_THROT_SPC: | |
| fprintf (st, "Throttle = %d ms every %d cycles\n", sim_throt_sleep_time, sim_throt_val); | |
| break; | |
| default: | |
| fprintf (st, "Throttling disabled\n"); | |
| break; | |
| } | |
| if (sim_switches & SWMASK ('D')) { | |
| if (sim_throt_type != 0) | |
| fprintf (st, "Throttle interval = %d cycles\n", sim_throt_wait); | |
| } | |
| } | |
| if (sim_switches & SWMASK ('D')) | |
| fprintf (st, "minimum sleep resolution = %d ms\n", sim_os_sleep_min_ms); | |
| return SCPE_OK; | |
| } | |
| void sim_throt_sched (void) | |
| { | |
| sim_throt_state = 0; | |
| if (sim_throt_type) | |
| sim_activate (&sim_timer_units[SIM_NTIMERS], SIM_THROT_WINIT); | |
| } | |
| void sim_throt_cancel (void) | |
| { | |
| sim_cancel (&sim_timer_units[SIM_NTIMERS]); | |
| } | |
| /* Throttle service | |
| Throttle service has three distinct states used while dynamically | |
| determining a throttling interval: | |
| 0 take initial measurement | |
| 1 take final measurement, calculate wait values | |
| 2 periodic waits to slow down the CPU | |
| */ | |
| t_stat sim_throt_svc (UNIT *uptr) | |
| { | |
| uint32 delta_ms; | |
| double a_cps, d_cps; | |
| if (sim_throt_type == SIM_THROT_SPC) { /* Non dynamic? */ | |
| sim_throt_state = 2; /* force state */ | |
| sim_throt_wait = sim_throt_val; | |
| } | |
| switch (sim_throt_state) { | |
| case 0: /* take initial reading */ | |
| sim_throt_ms_start = sim_os_msec (); | |
| sim_throt_wait = SIM_THROT_WST; | |
| sim_throt_state = 1; /* next state */ | |
| break; /* reschedule */ | |
| case 1: /* take final reading */ | |
| sim_throt_ms_stop = sim_os_msec (); | |
| delta_ms = sim_throt_ms_stop - sim_throt_ms_start; | |
| if (delta_ms < SIM_THROT_MSMIN) { /* not enough time? */ | |
| if (sim_throt_wait >= 100000000) { /* too many inst? */ | |
| sim_throt_state = 0; /* fails in 32b! */ | |
| return SCPE_OK; | |
| } | |
| sim_throt_wait = sim_throt_wait * SIM_THROT_WMUL; | |
| sim_throt_ms_start = sim_throt_ms_stop; | |
| } | |
| else { /* long enough */ | |
| a_cps = ((double) sim_throt_wait) * 1000.0 / (double) delta_ms; | |
| if (sim_throt_type == SIM_THROT_MCYC) /* calc desired cps */ | |
| d_cps = (double) sim_throt_val * 1000000.0; | |
| else if (sim_throt_type == SIM_THROT_KCYC) | |
| d_cps = (double) sim_throt_val * 1000.0; | |
| else d_cps = (a_cps * ((double) sim_throt_val)) / 100.0; | |
| if (d_cps >= a_cps) { | |
| sim_throt_sched (); /* start over */ | |
| return SCPE_OK; | |
| } | |
| sim_throt_wait = (int32) /* time between waits */ | |
| ((a_cps * d_cps * ((double) sim_idle_rate_ms)) / | |
| (1000.0 * (a_cps - d_cps))); | |
| if (sim_throt_wait < SIM_THROT_WMIN) { /* not long enough? */ | |
| sim_throt_sched (); /* start over */ | |
| return SCPE_OK; | |
| } | |
| sim_throt_ms_start = sim_throt_ms_stop; | |
| sim_throt_state = 2; | |
| sim_debug (DBG_THR, &sim_timer_dev, "sim_throt_svc() Throttle values a_cps = %f, d_cps = %f, wait = %d\n", | |
| a_cps, d_cps, sim_throt_wait); | |
| } | |
| break; | |
| case 2: /* throttling */ | |
| SIM_IDLE_MS_SLEEP (sim_throt_sleep_time); | |
| delta_ms = sim_os_msec () - sim_throt_ms_start; | |
| if ((sim_throt_type != SIM_THROT_SPC) && /* when dynamic throttling */ | |
| (delta_ms >= 10000)) { /* recompute every 10 sec */ | |
| sim_throt_ms_start = sim_os_msec (); | |
| sim_throt_wait = SIM_THROT_WST; | |
| sim_throt_state = 1; /* next state */ | |
| } | |
| break; | |
| } | |
| sim_activate (uptr, sim_throt_wait); /* reschedule */ | |
| return SCPE_OK; | |
| } | |
| t_stat sim_timer_tick_svc (UNIT *uptr) | |
| { | |
| return SCPE_OK; | |
| } | |
| #if defined(SIM_ASYNCH_IO) && defined(SIM_ASYNCH_CLOCKS) | |
| static double _timespec_to_double (struct timespec *time) | |
| { | |
| return ((double)time->tv_sec)+(double)(time->tv_nsec)/1000000000.0; | |
| } | |
| static void _double_to_timespec (struct timespec *time, double dtime) | |
| { | |
| time->tv_sec = (time_t)floor(dtime); | |
| time->tv_nsec = (long)((dtime-floor(dtime))*1000000000.0); | |
| } | |
| double sim_timenow_double (void) | |
| { | |
| struct timespec now; | |
| clock_gettime(CLOCK_REALTIME, &now); | |
| return _timespec_to_double (&now); | |
| } | |
| extern UNIT * volatile sim_wallclock_queue; | |
| extern UNIT * volatile sim_wallclock_entry; | |
| pthread_t sim_timer_thread; /* Wall Clock Timing Thread Id */ | |
| pthread_cond_t sim_timer_startup_cond; | |
| t_bool sim_timer_thread_running = FALSE; | |
| t_bool sim_timer_event_canceled = FALSE; | |
| static void * | |
| _timer_thread(void *arg) | |
| { | |
| int sched_policy; | |
| struct sched_param sched_priority; | |
| /* Boost Priority for this I/O thread vs the CPU instruction execution | |
| thread which, in general, won't be readily yielding the processor when | |
| this thread needs to run */ | |
| pthread_getschedparam (pthread_self(), &sched_policy, &sched_priority); | |
| ++sched_priority.sched_priority; | |
| pthread_setschedparam (pthread_self(), sched_policy, &sched_priority); | |
| sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - starting\n"); | |
| pthread_mutex_lock (&sim_timer_lock); | |
| pthread_cond_signal (&sim_timer_startup_cond); /* Signal we're ready to go */ | |
| while (sim_asynch_enabled && sim_asynch_timer && sim_is_running) { | |
| struct timespec start_time, stop_time; | |
| struct timespec due_time; | |
| double wait_usec; | |
| int32 inst_delay; | |
| double inst_per_sec; | |
| UNIT *uptr; | |
| if (sim_wallclock_entry) { /* something to insert in queue? */ | |
| UNIT *cptr, *prvptr; | |
| sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - timing %s for %d usec\n", | |
| sim_uname(sim_wallclock_entry), sim_wallclock_entry->time); | |
| uptr = sim_wallclock_entry; | |
| sim_wallclock_entry = NULL; | |
| prvptr = NULL; | |
| for (cptr = sim_wallclock_queue; cptr != QUEUE_LIST_END; cptr = cptr->a_next) { | |
| if (uptr->a_due_time < cptr->a_due_time) | |
| break; | |
| prvptr = cptr; | |
| } | |
| if (prvptr == NULL) { /* insert at head */ | |
| cptr = uptr->a_next = sim_wallclock_queue; | |
| sim_wallclock_queue = uptr; | |
| } | |
| else { | |
| cptr = uptr->a_next = prvptr->a_next; /* insert at prvptr */ | |
| prvptr->a_next = uptr; | |
| } | |
| } | |
| /* determine wait time */ | |
| if (sim_wallclock_queue != QUEUE_LIST_END) { | |
| /* due time adjusted by 1/2 a minimal sleep interval */ | |
| /* the goal being to let the last fractional part of the due time */ | |
| /* be done by counting instructions */ | |
| _double_to_timespec (&due_time, sim_wallclock_queue->a_due_time-(((double)sim_idle_rate_ms)*0.0005)); | |
| } | |
| else { | |
| due_time.tv_sec = 0x7FFFFFFF; /* Sometime when 32 bit time_t wraps */ | |
| due_time.tv_nsec = 0; | |
| } | |
| clock_gettime(CLOCK_REALTIME, &start_time); | |
| wait_usec = floor(1000000.0*(_timespec_to_double (&due_time) - _timespec_to_double (&start_time))); | |
| if (sim_wallclock_queue == QUEUE_LIST_END) | |
| sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - waiting forever\n"); | |
| else | |
| sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - waiting for %.0f usecs until %.6f for %s\n", wait_usec, sim_wallclock_queue->a_due_time, sim_uname(sim_wallclock_queue)); | |
| if ((wait_usec <= 0.0) || | |
| (0 != pthread_cond_timedwait (&sim_timer_wake, &sim_timer_lock, &due_time))) { | |
| int tmr; | |
| if (sim_wallclock_queue == QUEUE_LIST_END) /* queue empty? */ | |
| continue; /* wait again */ | |
| inst_per_sec = sim_timer_inst_per_sec (); | |
| uptr = sim_wallclock_queue; | |
| sim_wallclock_queue = uptr->a_next; | |
| uptr->a_next = NULL; /* hygiene */ | |
| clock_gettime(CLOCK_REALTIME, &stop_time); | |
| if (1 != sim_timespec_compare (&due_time, &stop_time)) { | |
| inst_delay = 0; | |
| uptr->a_last_fired_time = _timespec_to_double(&stop_time); | |
| } | |
| else { | |
| inst_delay = (int32)(inst_per_sec*(_timespec_to_double(&due_time)-_timespec_to_double(&stop_time))); | |
| uptr->a_last_fired_time = uptr->a_due_time; | |
| } | |
| sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - slept %.0fms - activating(%s,%d)\n", | |
| 1000.0*(_timespec_to_double (&stop_time)-_timespec_to_double (&start_time)), sim_uname(uptr), inst_delay); | |
| for (tmr=0; tmr<SIM_NTIMERS; tmr++) | |
| if (sim_clock_unit[tmr] == uptr) | |
| break; | |
| if (tmr != SIM_NTIMERS) { | |
| /* | |
| * Some devices may depend on executing during the same instruction or immediately | |
| * after the clock tick event. To satisfy this, we link the clock unit to the head | |
| * of the clock coschedule queue and then insert that list in the asynch event | |
| * queue in a single operation | |
| */ | |
| uptr->a_next = sim_clock_cosched_queue[tmr]; | |
| sim_clock_cosched_queue[tmr] = QUEUE_LIST_END; | |
| AIO_ACTIVATE_LIST(sim_activate, uptr, inst_delay); | |
| } | |
| else | |
| sim_activate (uptr, inst_delay); | |
| } | |
| else {/* Something wants to adjust the queue since the wait condition was signaled */ | |
| if (sim_timer_event_canceled) | |
| sim_timer_event_canceled = FALSE; /* reset flag and continue */ | |
| } | |
| } | |
| pthread_mutex_unlock (&sim_timer_lock); | |
| sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - exiting\n"); | |
| return NULL; | |
| } | |
| #endif /* defined(SIM_ASYNCH_IO) && defined(SIM_ASYNCH_CLOCKS) */ | |
| /* | |
| In the event that there are no active clock devices, no instruction | |
| rate calibration will be performed. This is more likely on simpler | |
| simulators which don't have a full spectrum of standard devices or | |
| possibly when a clock device exists but its use is optional. | |
| To solve this we merely run an internal clock at 50Hz. | |
| */ | |
| #define CLK_TPS 50 | |
| static t_stat sim_timer_clock_tick_svc (UNIT *uptr) | |
| { | |
| sim_rtcn_calb (CLK_TPS, SIM_NTIMERS-1); | |
| sim_activate_after (uptr, 1000000/CLK_TPS); /* reactivate unit */ | |
| return SCPE_OK; | |
| } | |
| static t_stat sim_timer_clock_reset (DEVICE *dptr) | |
| { | |
| uint32 i; | |
| for (i = 0; i < SIM_NTIMERS; i++) | |
| if (rtc_initd[i] != 0) | |
| break; | |
| if (i == SIM_NTIMERS) { /* No clocks have signed in. */ | |
| /* setup internal clock */ | |
| sim_timer_units[SIM_NTIMERS+1].action = &sim_timer_clock_tick_svc; | |
| sim_timer_units[SIM_NTIMERS+1].flags = UNIT_DIS; | |
| } | |
| if (sim_timer_units[SIM_NTIMERS+1].action == &sim_timer_clock_tick_svc) { | |
| /* actual clock reset */ | |
| sim_rtcn_init_unit (&sim_timer_units[SIM_NTIMERS+1], 5000, SIM_NTIMERS-1); | |
| sim_activate_abs (&sim_timer_units[SIM_NTIMERS+1], 5000); | |
| } | |
| return SCPE_OK; | |
| } | |
| void sim_start_timer_services (void) | |
| { | |
| uint32 i; | |
| for (i = 0; i < SIM_NTIMERS; i++) | |
| if (rtc_initd[i] != 0) | |
| break; | |
| if (i == SIM_NTIMERS) { /* No clocks have signed in. */ | |
| /* setup internal clock */ | |
| sim_timer_units[SIM_NTIMERS+1].action = &sim_timer_clock_tick_svc; | |
| sim_rtcn_init_unit (&sim_timer_units[SIM_NTIMERS+1], 5000, SIM_NTIMERS-1); | |
| sim_activate_abs (&sim_timer_units[SIM_NTIMERS+1], 5000); | |
| } | |
| #if defined(SIM_ASYNCH_IO) && defined(SIM_ASYNCH_CLOCKS) | |
| pthread_mutex_lock (&sim_timer_lock); | |
| if (sim_asynch_enabled && sim_asynch_timer) { | |
| pthread_attr_t attr; | |
| UNIT *cptr; | |
| double delta_due_time = 0; | |
| /* when restarting after being manually stopped the due times for all */ | |
| /* timer events needs to slide so they fire in the future. (clock ticks */ | |
| /* don't accumulate when the simulator is stopped) */ | |
| for (cptr = sim_wallclock_queue; cptr != QUEUE_LIST_END; cptr = cptr->a_next) { | |
| if (cptr == sim_wallclock_queue) { /* Handle first entry */ | |
| struct timespec now; | |
| double due_time; | |
| clock_gettime(CLOCK_REALTIME, &now); | |
| due_time = _timespec_to_double(&now) + ((double)(cptr->a_usec_delay)/1000000.0); | |
| delta_due_time = due_time - cptr->a_due_time; | |
| } | |
| cptr->a_due_time += delta_due_time; | |
| } | |
| sim_debug (DBG_TRC, &sim_timer_dev, "sim_start_timer_services() - starting\n"); | |
| pthread_cond_init (&sim_timer_startup_cond, NULL); | |
| pthread_attr_init (&attr); | |
| pthread_attr_setscope (&attr, PTHREAD_SCOPE_SYSTEM); | |
| pthread_create (&sim_timer_thread, &attr, _timer_thread, NULL); | |
| pthread_attr_destroy( &attr); | |
| pthread_cond_wait (&sim_timer_startup_cond, &sim_timer_lock); /* Wait for thread to stabilize */ | |
| pthread_cond_destroy (&sim_timer_startup_cond); | |
| sim_timer_thread_running = TRUE; | |
| } | |
| pthread_mutex_unlock (&sim_timer_lock); | |
| #endif | |
| } | |
| void sim_stop_timer_services (void) | |
| { | |
| #if defined(SIM_ASYNCH_IO) && defined(SIM_ASYNCH_CLOCKS) | |
| pthread_mutex_lock (&sim_timer_lock); | |
| if (sim_timer_thread_running) { | |
| sim_debug (DBG_TRC, &sim_timer_dev, "sim_stop_timer_services() - stopping\n"); | |
| pthread_cond_signal (&sim_timer_wake); | |
| pthread_mutex_unlock (&sim_timer_lock); | |
| pthread_join (sim_timer_thread, NULL); | |
| sim_timer_thread_running = FALSE; | |
| } | |
| else | |
| pthread_mutex_unlock (&sim_timer_lock); | |
| #endif | |
| } | |
| t_stat sim_timer_change_asynch (void) | |
| { | |
| #if defined(SIM_ASYNCH_IO) && defined(SIM_ASYNCH_CLOCKS) | |
| if (sim_asynch_enabled && sim_asynch_timer) | |
| sim_start_timer_services (); | |
| else { | |
| UNIT *uptr; | |
| uint32 accum = 0; | |
| sim_stop_timer_services (); | |
| while (1) { | |
| uptr = sim_wallclock_queue; | |
| if (uptr == QUEUE_LIST_END) | |
| break; | |
| sim_wallclock_queue = uptr->a_next; | |
| accum += uptr->time; | |
| uptr->a_next = NULL; | |
| uptr->a_due_time = 0; | |
| uptr->a_usec_delay = 0; | |
| sim_activate_after (uptr, accum); | |
| } | |
| } | |
| #endif | |
| return SCPE_OK; | |
| } | |
| /* Instruction Execution rate. */ | |
| /* returns a double since it is mostly used in double expressions and | |
| to avoid overflow if/when strange timing delays might produce unexpected results */ | |
| double sim_timer_inst_per_sec (void) | |
| { | |
| double inst_per_sec = SIM_INITIAL_IPS; | |
| if (sim_calb_tmr == -1) | |
| return inst_per_sec; | |
| inst_per_sec = ((double)rtc_currd[sim_calb_tmr])*rtc_hz[sim_calb_tmr]; | |
| if (0 == inst_per_sec) | |
| inst_per_sec = SIM_INITIAL_IPS; | |
| return inst_per_sec; | |
| } | |
| t_stat sim_timer_activate_after (UNIT *uptr, uint32 usec_delay) | |
| { | |
| int inst_delay; | |
| double inst_delay_d, inst_per_sec; | |
| AIO_VALIDATE; | |
| if (sim_is_active (uptr)) /* already active? */ | |
| return SCPE_OK; | |
| inst_per_sec = sim_timer_inst_per_sec (); | |
| inst_delay_d = ((inst_per_sec*usec_delay)/1000000.0); | |
| /* Bound delay to avoid overflow. */ | |
| /* Long delays are usually canceled before they expire */ | |
| if (inst_delay_d > (double)0x7fffffff) | |
| inst_delay_d = (double)0x7fffffff; | |
| inst_delay = (int32)inst_delay_d; | |
| if ((inst_delay == 0) && (usec_delay != 0)) | |
| inst_delay = 1; /* Minimum non-zero delay is 1 instruction */ | |
| #if defined(SIM_ASYNCH_IO) && defined(SIM_ASYNCH_CLOCKS) | |
| if ((sim_calb_tmr == -1) || /* if No timer initialized */ | |
| (inst_delay < rtc_currd[sim_calb_tmr]) || /* or sooner than next clock tick? */ | |
| (rtc_elapsed[sim_calb_tmr] < sim_idle_stable) || /* or not idle stable yet */ | |
| (!(sim_asynch_enabled && sim_asynch_timer))) { /* or asynch disabled */ | |
| sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - activating %s after %d instructions\n", | |
| sim_uname(uptr), inst_delay); | |
| return _sim_activate (uptr, inst_delay); /* queue it now */ | |
| } | |
| if (1) { | |
| struct timespec now; | |
| double d_now; | |
| clock_gettime (CLOCK_REALTIME, &now); | |
| d_now = _timespec_to_double (&now); | |
| /* Determine if this is a clock tick like invocation | |
| or an ocaisional measured device delay */ | |
| if ((uptr->a_usec_delay == usec_delay) && | |
| (uptr->a_due_time != 0.0) && | |
| (1)) { | |
| double d_delay = ((double)usec_delay)/1000000.0; | |
| uptr->a_due_time += d_delay; | |
| if (uptr->a_due_time < (d_now + d_delay*0.1)) { /* Accumulate lost time */ | |
| uptr->a_skew += (d_now + d_delay*0.1) - uptr->a_due_time; | |
| uptr->a_due_time = d_now + d_delay/10.0; | |
| if (uptr->a_skew > 30.0) { /* Gap too big? */ | |
| uptr->a_usec_delay = usec_delay; | |
| uptr->a_skew = uptr->a_last_fired_time = 0.0; | |
| uptr->a_due_time = d_now + (double)(usec_delay)/1000000.0; | |
| } | |
| if (uptr->a_skew > rtc_clock_skew_max[sim_calb_tmr]) | |
| rtc_clock_skew_max[sim_calb_tmr] = uptr->a_skew; | |
| } | |
| else { | |
| if (uptr->a_skew > 0.0) { /* Lost time to make up? */ | |
| if (uptr->a_skew > d_delay*0.9) { | |
| uptr->a_skew -= d_delay*0.9; | |
| uptr->a_due_time -= d_delay*0.9; | |
| } | |
| else { | |
| uptr->a_due_time -= uptr->a_skew; | |
| uptr->a_skew = 0.0; | |
| } | |
| } | |
| } | |
| } | |
| else { | |
| uptr->a_usec_delay = usec_delay; | |
| uptr->a_skew = uptr->a_last_fired_time = 0.0; | |
| uptr->a_due_time = d_now + (double)(usec_delay)/1000000.0; | |
| } | |
| uptr->time = usec_delay; | |
| sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - queue addition %s at %.6f\n", | |
| sim_uname(uptr), uptr->a_due_time); | |
| } | |
| pthread_mutex_lock (&sim_timer_lock); | |
| while (sim_wallclock_entry) { | |
| sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - queue insert entry %s busy waiting for 1ms\n", | |
| sim_uname(sim_wallclock_entry)); | |
| pthread_mutex_unlock (&sim_timer_lock); | |
| sim_os_ms_sleep (1); | |
| pthread_mutex_lock (&sim_timer_lock); | |
| } | |
| sim_wallclock_entry = uptr; | |
| pthread_mutex_unlock (&sim_timer_lock); | |
| pthread_cond_signal (&sim_timer_wake); /* wake the timer thread to deal with it */ | |
| return SCPE_OK; | |
| #else | |
| sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - queue addition %s at %d (%d usecs)\n", | |
| sim_uname(uptr), inst_delay, usec_delay); | |
| return _sim_activate (uptr, inst_delay); /* queue it now */ | |
| #endif | |
| } | |
| /* Clock coscheduling routines */ | |
| t_stat sim_register_clock_unit (UNIT *uptr) | |
| { | |
| sim_clock_unit[0] = uptr; | |
| sim_clock_cosched_queue[0] = QUEUE_LIST_END; | |
| return SCPE_OK; | |
| } | |
| t_stat sim_clock_coschedule (UNIT *uptr, int32 interval) | |
| { | |
| return sim_clock_coschedule_tmr (uptr, 0, interval); | |
| } | |
| t_stat sim_clock_coschedule_abs (UNIT *uptr, int32 interval) | |
| { | |
| sim_cancel (uptr); | |
| return sim_clock_coschedule_tmr (uptr, 0, interval); | |
| } | |
| t_stat sim_clock_coschedule_tmr (UNIT *uptr, int32 tmr, int32 interval) | |
| { | |
| if (NULL == sim_clock_unit[tmr]) | |
| return sim_activate (uptr, interval); | |
| else | |
| if (sim_asynch_enabled && sim_asynch_timer) { | |
| if (!sim_is_active (uptr)) { /* already active? */ | |
| #if defined(SIM_ASYNCH_IO) && defined(SIM_ASYNCH_CLOCKS) | |
| if ((sim_calb_tmr != -1) && | |
| (rtc_elapsed[sim_calb_tmr ] >= sim_idle_stable)) { | |
| sim_debug (DBG_TIM, &sim_timer_dev, "sim_clock_coschedule() - queueing %s for clock co-schedule\n", sim_uname (uptr)); | |
| pthread_mutex_lock (&sim_timer_lock); | |
| uptr->a_next = sim_clock_cosched_queue[tmr]; | |
| sim_clock_cosched_queue[tmr] = uptr; | |
| pthread_mutex_unlock (&sim_timer_lock); | |
| return SCPE_OK; | |
| } | |
| else { | |
| #else | |
| if (1) { | |
| #endif | |
| int32 t; | |
| t = sim_activate_time (sim_clock_unit[tmr]); | |
| return sim_activate (uptr, t? t - 1: interval); | |
| } | |
| } | |
| sim_debug (DBG_TIM, &sim_timer_dev, "sim_clock_coschedule() - %s is already active\n", sim_uname (uptr)); | |
| return SCPE_OK; | |
| } | |
| else { | |
| int32 t; | |
| t = sim_activate_time (sim_clock_unit[tmr]); | |
| return sim_activate (uptr, t? t - 1: interval); | |
| } | |
| } | |
| t_stat sim_clock_coschedule_tmr_abs (UNIT *uptr, int32 tmr, int32 interval) | |
| { | |
| sim_cancel (uptr); | |
| return sim_clock_coschedule_tmr (uptr, tmr, interval); | |
| } | |