blob: fbbcaffb9b33341e599ff99e633f8ad2248c39a2 [file] [log] [blame] [raw]
/* i8237.c: Intel 8237 DMA adapter
Copyright (c) 2016, William A. Beech
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
WILLIAM A. BEECH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of William A. Beech shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from William A. Beech.
MODIFICATIONS:
11 Jul 16 - Original file.
NOTES:
Default is none. Since all channel registers in the i8237 are 16-bit, transfers
are done as two 8-bit operations, low- then high-byte.
Port addressing is as follows (Port offset = 0):
Port Mode Command Function
00 Write Load DMAC Channel 0 Base and Current Address Regsiters
Read Read DMAC Channel 0 Current Address Register
01 Write Load DMAC Channel 0 Base and Current Word Count Registers
Read Read DMAC Channel 0 Current Word Count Register
02 Write Load DMAC Channel 1 Base and Current Address Regsiters
Read Read DMAC Channel 1 Current Address Register
03 Write Load DMAC Channel 1 Base and Current Word Count Registers
Read Read DMAC Channel 1 Current Word Count Register
04 Write Load DMAC Channel 2 Base and Current Address Regsiters
Read Read DMAC Channel 2 Current Address Register
05 Write Load DMAC Channel 2 Base and Current Word Count Registers
Read Read DMAC Channel 2 Current Word Count Register
06 Write Load DMAC Channel 3 Base and Current Address Regsiters
Read Read DMAC Channel 3 Current Address Register
07 Write Load DMAC Channel 3 Base and Current Word Count Registers
Read Read DMAC Channel 3 Current Word Count Register
08 Write Load DMAC Command Register
Read Read DMAC Status Register
09 Write Load DMAC Request Register
0A Write Set/Reset DMAC Mask Register
0B Write Load DMAC Mode Register
0C Write Clear DMAC First/Last Flip-Flop
0D Write DMAC Master Clear
0F Write Load DMAC Mask Register
Register usage is defined in the following paragraphs.
Read/Write DMAC Address Registers
Used to simultaneously load a channel's current-address register and base-address
register with the memory address of the first byte to be transferred. (The Channel
0 current/base address register must be loaded prior to initiating a diskette read
or write operation.) Since each channel's address registers are 16 bits in length
(64K address range), two "write address register" commands must be executed in
order to load the complete current/base address registers for any channel.
Read/Write DMAC Word Count Registers
The Write DMAC Word Count Register command is used to simultaneously load a
channel's current and base word-count registers with the number of bytes
to be transferred during a subsequent DMA operation. Since the word-count
registers are 16-bits in length, two commands must be executed to load both
halves of the registers.
Write DMAC Command Register
The Write DMAC Command Register command loads an 8-bit byte into the
DMAC's command register to define the operating characteristics of the
DMAC. The functions of the individual bits in the command register are
defined in the following diagram. Note that only two bits within the
register are applicable to the controller; the remaining bits select
functions that are not supported and, accordingly, must always be set
to zero.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+
| |
| +---------- 0 CONTROLLER ENABLE
| 1 CONTROLLER DISABLE
|
+------------------ 0 FIXED PRIORITY
1 ROTATING PRIORITY
Read DMAC Status Register Command
The Read DMAC Status Register command accesses an 8-bit status byte that
identifies the DMA channels that have reached terminal count or that
have a pending DMA request.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| 0 0 |
+---+---+---+---+---+---+---+---+
| | | | | |
| | | | | +-- CHANNEL 0 TC
| | | | +---------- CHANNEL 2 TC
| | | +-------------- CHANNEL 3 TC
| | +------------------ CHANNEL 0 DMA REQUEST
| +-------------------------- CHANNEL 2 DMA REQUEST
+------------------------------ CHANNEL 3 DMA REQUEST
Write DMAC Request Register
The data byte associated with the Write DMAC Request Register command
sets or resets a channel's associated request bit within the DMAC's
internal 4-bit request register.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| X X X X X |
+---+---+---+---+---+---+---+---+
| | |
| +---+-- 00 SELECT CHANNEL 0
| 01 SELECT CHANNEL 1
| 10 SELECT CHANNEL 2
| 11 SELECT CHANNEL 3
|
+---------- 0 RESET REQUEST BIT
1 SET REQUEST BIT
Set/Reset DMAC Mask Register
Prior to a DREQ-initiated DMA transfer, the channel's mask bit must
be reset to enable recognition of the DREQ input. When the transfer
is complete (terminal count reached or external EOP applied) and
the channel is not programmed to autoinitialize, the channel's
mask bit is automatically set (disabling DREQ) and must be reset
prior to a subsequent DMA transfer. All four bits of the mask
register are set (disabling the DREQ inputs) by a DMAC master
clear or controller reset. Additionally, all four bits can be
set/reset by a single Write DMAC Mask Register command.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| X X X X X |
+---+---+---+---+---+---+---+---+
| | |
| +---+-- 00 SELECT CHANNEL 0
| 01 SELECT CHANNEL 1
| 10 SELECT CHANNEL 2
| 11 SELECT CHANNEL 3
|
+---------- 0 RESET REQUEST BIT
1 SET REQUEST BIT
Write DMAC Mode Register
The Write DMAC Mode Register command is used to define the
operating mode characteristics for each DMA channel. Each
channel has an internal 6-bit mode register; the high-order
six bits of the associated data byte are written into the
mode register addressed by the two low-order bits.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| |
+---+---+---+---+---+---+---+---+
| | | | | | | |
| | | | | | +---+-- 00 SELECT CHANNEL 0
| | | | | | 01 SELECT CHANNEL 1
| | | | | | 10 SELECT CHANNEL 2
| | | | | | 11 SELECT CHANNEL 3
| | | | | |
| | | | +---+---------- 00 VERIFY TRANSFER
| | | | 01 WRITE TRANSFER
| | | | 10 READ TRANSFER
| | | |
| | | +------------------ 0 AUTOINITIALIZE DISABLE
| | | 1 AUTOINITIALIZE ENABLE
| | |
| | +---------------------- 0 ADDRESS INCREMENT
| | 1 ADDRESS DECREMENT
| |
+---+-------------------------- 00 DEMAND MODE
01 SINGLE MODE
10 BLOCK MODE
Clear DMAC First/Last Flip-Flop
The Clear DMAC First/Last Flip-Flop command initializes
the DMAC's internal first/last flip-flop so that the
next byte written to or re~d from the 16-bit address
or word-count registers is the low-order byte. The
flip-flop is toggled with each register access so that
a second register read or write command accesses the
high-order byte.
DMAC Master Clear
The DMAC Master Clear command clears the DMAC's command, status,
request, and temporary registers to zero, initializes the
first/last flip-flop, and sets the four channel mask bits in
the mask register to disable all DMA requests (i.e., the DMAC
is placed in an idle state).
Write DMAC Mask Register
The Write DMAC Mask Register command allows all four bits of the
DMAC's mask register to be written with a single command.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| X X X X X |
+---+---+---+---+---+---+---+---+
| | |
| | +-- 0 CLEAR CHANNEL 0 MASK BIT
| | 1 SET CHANNEL 0 MASK BIT
| |
| +---------- 0 CLEAR CHANNEL 2 MASK BIT
| 1 SET CHANNEL 2 MASK BIT
|
+-------------- 0 CLEAR CHANNEL 3 MASK BIT
1 SET CHANNEL 3 MASK BIT
*/
#include "system_defs.h"
/* external globals */
extern uint16 port; //port called in dev_table[port]
/* globals */
int32 i8237_devnum = 0; //actual number of 8253 instances + 1
uint16 i8237_port[4]; //base port registered to each instance
/* function prototypes */
t_stat i8237_svc(UNIT *uptr);
t_stat i8237_reset(DEVICE *dptr, uint16 base);
void i8237_reset1(int32 devnum);
t_stat i8237_set_mode (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
uint8 i8237_r0x(t_bool io, uint8 data);
uint8 i8237_r1x(t_bool io, uint8 data);
uint8 i8237_r2x(t_bool io, uint8 data);
uint8 i8237_r3x(t_bool io, uint8 data);
uint8 i8237_r4x(t_bool io, uint8 data);
uint8 i8237_r5x(t_bool io, uint8 data);
uint8 i8237_r6x(t_bool io, uint8 data);
uint8 i8237_r7x(t_bool io, uint8 data);
uint8 i8237_r8x(t_bool io, uint8 data);
uint8 i8237_r9x(t_bool io, uint8 data);
uint8 i8237_rAx(t_bool io, uint8 data);
uint8 i8237_rBx(t_bool io, uint8 data);
uint8 i8237_rCx(t_bool io, uint8 data);
uint8 i8237_rDx(t_bool io, uint8 data);
uint8 i8237_rEx(t_bool io, uint8 data);
uint8 i8237_rFx(t_bool io, uint8 data);
/* external function prototypes */
extern uint16 reg_dev(uint8 (*routine)(t_bool, uint8), uint16);
/* 8237 physical register definitions */
uint16 i8237_r0[4]; // 8237 ch 0 address register
uint16 i8237_r1[4]; // 8237 ch 0 count register
uint16 i8237_r2[4]; // 8237 ch 1 address register
uint16 i8237_r3[4]; // 8237 ch 1 count register
uint16 i8237_r4[4]; // 8237 ch 2 address register
uint16 i8237_r5[4]; // 8237 ch 2 count register
uint16 i8237_r6[4]; // 8237 ch 3 address register
uint16 i8237_r7[4]; // 8237 ch 3 count register
uint8 i8237_r8[4]; // 8237 status register
uint8 i8237_r9[4]; // 8237 command register
uint8 i8237_rA[4]; // 8237 mode register
uint8 i8237_rB[4]; // 8237 mask register
uint8 i8237_rC[4]; // 8237 request register
uint8 i8237_rD[4]; // 8237 first/last ff
uint8 i8237_rE[4]; // 8237
uint8 i8237_rF[4]; // 8237
/* i8237 physical register definitions */
uint16 i8237_sr[4]; // isbc-208 segment register
uint8 i8237_i[4]; // iSBC-208 interrupt register
uint8 i8237_a[4]; // iSBC-208 auxillary port register
/* i8237 Standard SIMH Device Data Structures - 1 unit */
UNIT i8237_unit[] = {
{ UDATA (0, 0, 0) ,20 }, /* i8237 0 */
{ UDATA (0, 0, 0) ,20 }, /* i8237 1 */
{ UDATA (0, 0, 0) ,20 }, /* i8237 2 */
{ UDATA (0, 0, 0) ,20 } /* i8237 3 */
};
REG i8237_reg[] = {
{ HRDATA (CH0ADR, i8237_r0[devnum], 16) },
{ HRDATA (CH0CNT, i8237_r1[devnum], 16) },
{ HRDATA (CH1ADR, i8237_r2[devnum], 16) },
{ HRDATA (CH1CNT, i8237_r3, 16) },
{ HRDATA (CH2ADR, i8237_r4, 16) },
{ HRDATA (CH2CNT, i8237_r5, 16) },
{ HRDATA (CH3ADR, i8237_r6, 16) },
{ HRDATA (CH3CNT, i8237_r7, 16) },
{ HRDATA (STAT37, i8237_r8, 8) },
{ HRDATA (CMD37, i8237_r9, 8) },
{ HRDATA (MODE, i8237_rA, 8) },
{ HRDATA (MASK, i8237_rB, 8) },
{ HRDATA (REQ, i8237_rC, 8) },
{ HRDATA (FF, i8237_rD, 8) },
{ HRDATA (SEGREG, i8237_sr, 8) },
{ HRDATA (AUX, i8237_a, 8) },
{ HRDATA (INT, i8237_i, 8) },
{ NULL }
};
MTAB i8237_mod[] = {
{ 0 }
};
DEBTAB i8237_debug[] = {
{ "ALL", DEBUG_all },
{ "FLOW", DEBUG_flow },
{ "READ", DEBUG_read },
{ "WRITE", DEBUG_write },
{ "LEV1", DEBUG_level1 },
{ "LEV2", DEBUG_level2 },
{ "REG", DEBUG_reg },
{ NULL }
};
DEVICE i8237_dev = {
"I8237", //name
i8237_unit, //units
i8237_reg, //registers
i8237_mod, //modifiers
1, //numunits
16, //aradix
32, //awidth
1, //aincr
16, //dradix
8, //dwidth
NULL, //examine
NULL, //deposit
// &i8237_reset, //deposit
NULL, //reset
NULL, //boot
NULL, //attach
NULL, //detach
NULL, //ctxt
DEV_DEBUG+DEV_DISABLE+DEV_DIS, //flags
0, //dctrl
// DEBUG_flow + DEBUG_read + DEBUG_write, //dctrl
i8237_debug, //debflags
NULL, //msize
NULL //lname
};
/* Service routines to handle simulator functions */
/* service routine - actually does the simulated DMA */
t_stat i8237_svc(UNIT *uptr)
{
sim_printf("uptr=%08X\n", uptr);
sim_activate (&i8237_unit[uptr->u6], i8237_unit[uptr->u6].wait);
return SCPE_OK;
}
/* Reset routine */
t_stat i8237_reset(DEVICE *dptr, uint16 base)
{
if (i8237_devnum > I8237_NUM) {
sim_printf("i8237_reset: too many devices!\n");
return SCPE_MEM;
}
sim_printf(" 8237 Reset\n");
sim_printf(" 8237: Registered at %03X\n", base);
i8237_port[i8237_devnum] = reg_dev(i8237_r0x, base);
reg_dev(i8237_r1x, base + 1);
reg_dev(i8237_r2x, base + 2);
reg_dev(i8237_r3x, base + 3);
reg_dev(i8237_r4x, base + 4);
reg_dev(i8237_r5x, base + 5);
reg_dev(i8237_r6x, base + 6);
reg_dev(i8237_r7x, base + 7);
reg_dev(i8237_r8x, base + 8);
reg_dev(i8237_r9x, base + 9);
reg_dev(i8237_rAx, base + 10);
reg_dev(i8237_rBx, base + 11);
reg_dev(i8237_rCx, base + 12);
reg_dev(i8237_rDx, base + 13);
reg_dev(i8237_rEx, base + 14);
reg_dev(i8237_rFx, base + 15);
sim_printf(" 8237 Reset\n");
sim_printf(" 8237: Registered at %03X\n", base);
sim_activate (&i8237_unit[i8237_devnum], i8237_unit[i8237_devnum].wait); /* activate unit */
if ((i8237_dev.flags & DEV_DIS) == 0)
i8237_reset1(i8237_devnum);
i8237_devnum++;
return SCPE_OK;
}
uint8 i8237_get_dn(void)
{
int i;
for (i=0; i<I8237_NUM; i++)
if (port >=i8237_port[i] && port <= i8237_port[i] + 16)
return i;
sim_printf("i8237_get_dn: port %03X not in 8237 device table\n", port);
return 0xFF;
}
void i8237_reset1(int32 devnum)
{
int32 i;
UNIT *uptr;
uptr = i8237_dev[devnum].units;
if (uptr->capac == 0) { /* if not configured */
uptr->capac = 0; /* initialize unit */
uptr->u3 = 0;
uptr->u4 = 0;
uptr->u5 = 0;
uptr->u6 = i; /* unit number - only set here! */
sim_activate (&i8237_unit[devnum], i8237_unit[devnum].wait);
}
i8237_r8[devnum] = 0; /* status */
i8237_r9[devnum] = 0; /* command */
i8237_rB[devnum] = 0x0F; /* mask */
i8237_rC[devnum] = 0; /* request */
i8237_rD[devnum] = 0; /* first/last FF */
}
/* i8237 set mode = 8- or 16-bit data bus */
/* always 8-bit mode for current simulators */
t_stat i8237_set_mode(UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
sim_debug (DEBUG_flow, &i8237_dev, " i8237_set_mode: Entered with val=%08XH uptr->flags=%08X\n", val, uptr->flags);
sim_debug (DEBUG_flow, &i8237_dev, " i8237_set_mode: Done\n");
return SCPE_OK;
}
/* I/O instruction handlers, called from the CPU module when an
IN or OUT instruction is issued.
Each function is passed an 'io' flag, where 0 means a read from
the port, and 1 means a write to the port. On input, the actual
input is passed as the return value, on output, 'data' is written
to the device.
*/
uint8 i8237_r0x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current address CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0[%d](H) read as %04X\n", devnum, i8237_r0[devnum]);
return (i8237_r0[devnum] >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0[%d](L) read as %04X\n", devnum, i8237_r0[devnum]);
return (i8237_r0[devnum] & 0xFF);
}
} else { /* write base & current address CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r0[devnum] |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0[%d](H) set to %04X\n", devnum, i8237_r0[devnum]);
} else { /* low byte */
i8237_rD++;
i8237_r0[devnum] = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0[%d](L) set to %04X\n"devnum, , i8237_r0[devnum]);
}
return 0;
}
}
}
uint8 i8237_r1x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current word count CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1[%d](H) read as %04X\n", devnum, i8237_r1[devnum]);
return (i8237_r1[devnum][devnum] >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1[%d](L) read as %04X\n", devnum, i8237_r1[devnum]);
return (i8237_r1[devnum] & 0xFF);
}
} else { /* write base & current address CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r1[devnum] |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1[%d](H) set to %04X\n", devnum, i8237_r1[devnum]);
} else { /* low byte */
i8237_rD++;
i8237_r1[devnum] = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1[%d](L) set to %04X\n", devnum, i8237_r1[devnum]);
}
return 0;
}
}
}
uint8 i8237_r2x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current address CH 1 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2[%d](H) read as %04X\n", devnum, i8237_r2[devnum]);
return (i8237_r2[devnum] >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2[%d](L) read as %04X\n", devnum, i8237_r2[devnum]);
return (i8237_r2[devnum] & 0xFF);
}
} else { /* write base & current address CH 1 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r2[devnum] |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2[%d](H) set to %04X\n", devnum, i8237_r2[devnum]);
} else { /* low byte */
i8237_rD++;
i8237_r2[devnum] = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2[%d](L) set to %04X\n", devnum, i8237_r2[devnum]);
}
return 0;
}
}
}
uint8 i8237_r3x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current word count CH 1 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r3(H) read as %04X\n", i8237_r3);
return (i8237_r3 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r3(L) read as %04X\n", i8237_r3);
return (i8237_r3 & 0xFF);
}
} else { /* write base & current address CH 1 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r3 |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r3(H) set to %04X\n", i8237_r3);
} else { /* low byte */
i8237_rD++;
i8237_r3 = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r3(L) set to %04X\n", i8237_r3);
}
return 0;
}
}
}
uint8 i8237_r4x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current address CH 2 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r4(H) read as %04X\n", i8237_r4);
return (i8237_r4 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r4(L) read as %04X\n", i8237_r4);
return (i8237_r4 & 0xFF);
}
} else { /* write base & current address CH 2 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r4 |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r4(H) set to %04X\n", i8237_r4);
} else { /* low byte */
i8237_rD++;
i8237_r4 = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r4(L) set to %04X\n", i8237_r4);
}
return 0;
}
}
}
uint8 i8237_r5x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current word count CH 2 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r5(H) read as %04X\n", i8237_r5);
return (i8237_r5 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r5(L) read as %04X\n", i8237_r5);
return (i8237_r5 & 0xFF);
}
} else { /* write base & current address CH 2 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r5 |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r5(H) set to %04X\n", i8237_r5);
} else { /* low byte */
i8237_rD++;
i8237_r5 = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r5(L) set to %04X\n", i8237_r5);
}
return 0;
}
}
}
uint8 i8237_r6x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current address CH 3 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r6(H) read as %04X\n", i8237_r6);
return (i8237_r6 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r6(L) read as %04X\n", i8237_r6);
return (i8237_r6 & 0xFF);
}
} else { /* write base & current address CH 3 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r6 |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r6(H) set to %04X\n", i8237_r6);
} else { /* low byte */
i8237_rD++;
i8237_r6 = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r6(L) set to %04X\n", i8237_r6);
}
return 0;
}
}
}
uint8 i8237_r7x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current word count CH 3 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r7(H) read as %04X\n", i8237_r7);
return (i8237_r7 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r7(L) read as %04X\n", i8237_r7);
return (i8237_r7 & 0xFF);
}
} else { /* write base & current address CH 3 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r7 |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r7(H) set to %04X\n", i8237_r7);
} else { /* low byte */
i8237_rD++;
i8237_r7 = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r7(L) set to %04X\n", i8237_r7);
}
return 0;
}
}
}
uint8 i8237_r8x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read status register */
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r8 (status) read as %02X\n", i8237_r8);
return (i8237_r8);
} else { /* write command register */
i8237_r9 = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r9 (command) set to %02X\n", i8237_r9);
return 0;
}
}
}
uint8 i8237_r9x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) {
sim_debug (DEBUG_reg, &i8237_dev, "Illegal read of i8237_r9\n");
return 0;
} else { /* write request register */
i8237_rC = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_rC (request) set to %02X\n", i8237_rC);
return 0;
}
}
}
uint8 i8237_rAx(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) {
sim_debug (DEBUG_reg, &i8237_dev, "Illegal read of i8237_rA\n");
return 0;
} else { /* write single mask register */
switch(data & 0x03) {
case 0:
if (data & 0x04)
i8237_rB |= 1;
else
i8237_rB &= ~1;
break;
case 1:
if (data & 0x04)
i8237_rB |= 2;
else
i8237_rB &= ~2;
break;
case 2:
if (data & 0x04)
i8237_rB |= 4;
else
i8237_rB &= ~4;
break;
case 3:
if (data & 0x04)
i8237_rB |= 8;
else
i8237_rB &= ~8;
break;
}
sim_debug (DEBUG_reg, &i8237_dev, "i8237_rB (mask) set to %02X\n", i8237_rB);
return 0;
}
}
}
uint8 i8237_rBx(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) {
sim_debug (DEBUG_reg, &i8237_dev, "Illegal read of i8237_rB\n");
return 0;
} else { /* write mode register */
i8237_rA = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_rA (mode) set to %02X\n", i8237_rA);
return 0;
}
}
}
uint8 i8237_rCx(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) {
sim_debug (DEBUG_reg, &i8237_dev, "Illegal read of i8237_rC\n");
return 0;
} else { /* clear byte pointer FF */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_rD (FF) cleared\n");
return 0;
}
}
}
uint8 i8237_rDx(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read temporary register */
sim_debug (DEBUG_reg, &i8237_dev, "Illegal read of i8237_rD\n");
return 0;
} else { /* master clear */
i8237_reset1();
sim_debug (DEBUG_reg, &i8237_dev, "i8237 master clear\n");
return 0;
}
}
}
uint8 i8237_rEx(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) {
sim_debug (DEBUG_reg, &i8237_dev, "Illegal read of i8237_rE\n");
return 0;
} else { /* clear mask register */
i8237_rB = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_rB (mask) cleared\n");
return 0;
}
}
}
uint8 i8237_rFx(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) {
sim_debug (DEBUG_reg, &i8237_dev, "Illegal read of i8237_rF\n");
return 0;
} else { /* write all mask register bits */
i8237_rB = data & 0x0F;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_rB (mask) set to %02X\n", i8237_rB);
return 0;
}
}
}
/* end of i8237.c */