blob: 042ac259a7b7a5cd188bc47cdb08cf48f1a6379f [file] [log] [blame] [raw]
/* isbc202.c: Intel double density disk adapter adapter
Copyright (c) 2010, William A. Beech
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
WILLIAM A. BEECH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of William A. Beech shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from William A. Beech.
MODIFICATIONS:
27 Jun 16 - Original file.
NOTES:
This controller will mount 4 DD disk images on drives :F0: thru :F3: addressed
at ports 078H to 07FH.
Registers:
078H - Read - Subsystem status
bit 0 - ready status of drive 0
bit 1 - ready status of drive 1
bit 2 - state of channel's interrupt FF
bit 3 - controller presence indicator
bit 4 - DD controller presence indicator
bit 5 - ready status of drive 2
bit 6 - ready status of drive 3
bit 7 - zero
079H - Read - Read result type (bits 2-7 are zero)
00 - I/O complete with error
01 - Reserved
10 - Result byte contains diskette ready status
11 - Reserved
079H - Write - IOPB address low byte.
07AH - Write - IOPB address high byte and start operation.
07BH - Read - Read result byte
If result type is 00H
bit 0 - deleted record
bit 1 - CRC error
bit 2 - seek error
bit 3 - address error
bit 4 - data overrun/underrun
bit 5 - write protect
bit 6 - write error
bit 7 - not ready
If result type is 02H and ready has changed
bit 0 - zero
bit 1 - zero
bit 2 - zero
bit 3 - zero
bit 4 - drive 2 ready
bit 5 - drive 3 ready
bit 6 - drive 0 ready
bit 7 - drive 1 ready
else return 0
07FH - Write - Reset diskette system.
Operations:
NOP - 0x00
Seek - 0x01
Format Track - 0x02
Recalibrate - 0x03
Read Data - 0x04
Verify CRC - 0x05
Write Data - 0x06
Write Deleted Data - 0x07
IOPB - I/O Parameter Block
Byte 0 - Channel Word
bit 3 - data word length (=8-bit, 1=16-bit)
bit 4-5 - interrupt control
00 - I/O complete interrupt to be issued
01 - I/O complete interrupts are disabled
10 - illegal code
11 - illegal code
bit 6- randon format sequence
Byte 1 - Diskette Instruction
bit 0-2 - operation code
000 - no operation
001 - seek
010 - format track
011 - recalibrate
100 - read data
101 - verify CRC
110 - write data
111 - write deleted data
bit 3 - data word length ( same as byte-0, bit-3)
bit 4-5 - unit select
00 - drive 0
01 - drive 1
10 - drive 2
11 - drive 3
bit 6-7 - reserved (zero)
Byte 2 - Number of Records
Byte 4 - Track Address
Byte 5 - Sector Address
Byte 6 - Buffer Low Address
Byte 7 - Buffer High Address
u3 -
u4 -
u5 - fdc number (board instance number).
u6 - fdd number.
*/
#include "system_defs.h" /* system header in system dir */
#define DEBUG 0
#define UNIT_V_WPMODE (UNIT_V_UF) /* Write protect */
#define UNIT_WPMODE (1 << UNIT_V_WPMODE)
#define FDD_NUM 4
//disk controoler operations
#define DNOP 0x00 //disk no operation
#define DSEEK 0x01 //disk seek
#define DFMT 0x02 //disk format
#define DHOME 0x03 //disk home
#define DREAD 0x04 //disk read
#define DVCRC 0x05 //disk verify CRC
#define DWRITE 0x06 //disk write
//status
#define RDY0 0x01 //FDD 0 ready
#define RDY1 0x02 //FDD 1 ready
#define FDCINT 0x04 //FDC interrupt flag
#define FDCPRE 0x08 //FDC board present
#define FDCDD 0x10 //fdc is DD
#define RDY2 0x20 //FDD 2 ready
#define RDY3 0x40 //FDD 3 ready
//result type
#define RERR 0x00 //FDC returned error
#define ROK 0x02 //FDC returned ok
// If result type is RERR then rbyte is
#define RB0DR 0x01 //deleted record
#define RB0CRC 0x02 //CRC error
#define RB0SEK 0x04 //seek error
#define RB0ADR 0x08 //address error
#define RB0OU 0x10 //data overrun/underrun
#define RB0WP 0x20 //write protect
#define RB0WE 0x40 //write error
#define RB0NR 0x80 //not ready
// If result type is ROK then rbyte is
#define RB1RD2 0x10 //drive 2 ready
#define RB1RD3 0x20 //drive 3 ready
#define RB1RD0 0x40 //drive 0 ready
#define RB1RD1 0x80 //drive 1 ready
//disk geometry values
#define MDSSD 256256 //single density FDD size
#define MDSDD 512512 //double density FDD size
#define MAXSECSD 26 //single density last sector
#define MAXSECDD 52 //double density last sector
#define MAXTRK 76 //last track
/* external globals */
extern uint16 port; //port called in dev_table[port]
extern int32 PCX;
/* external function prototypes */
extern uint16 reg_dev(uint8 (*routine)(t_bool, uint8), uint16, uint8);
extern uint8 multibus_get_mbyte(uint16 addr);
extern uint16 multibus_get_mword(uint16 addr);
extern void multibus_put_mbyte(uint16 addr, uint8 val);
extern uint8 multibus_put_mword(uint16 addr, uint16 val);
/* function prototypes */
t_stat isbc202_reset(DEVICE *dptr, uint16 base);
void isbc202_reset1(uint8 fdcnum);
t_stat isbc202_attach (UNIT *uptr, CONST char *cptr);
t_stat isbc202_set_mode (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
uint8 isbc202_get_dn(void);
uint8 isbc2020(t_bool io, uint8 data); /* isbc202 0 */
uint8 isbc2021(t_bool io, uint8 data); /* isbc202 1 */
uint8 isbc2022(t_bool io, uint8 data); /* isbc202 2 */
uint8 isbc2023(t_bool io, uint8 data); /* isbc202 3 */
uint8 isbc2027(t_bool io, uint8 data); /* isbc202 7 */
void isbc202_diskio(uint8 fdcnum); //do actual disk i/o
/* globals */
int32 isbc202_fdcnum = 0; //actual number of SBC-202 instances + 1
typedef struct { //FDD definition
int t0;
int rdy;
uint8 sec;
uint8 cyl;
} FDDDEF;
typedef struct { //FDC definition
uint16 baseport; //FDC base port
uint16 iopb; //FDC IOPB
uint8 stat; //FDC status
uint8 rdychg; //FDC ready change
uint8 rtype; //FDC result type
uint8 rbyte0; //FDC result byte for type 00
uint8 rbyte1; //FDC result byte for type 10
uint8 intff; //fdc interrupt FF
FDDDEF fdd[FDD_NUM]; //indexed by the FDD number
} FDCDEF;
FDCDEF fdc202[4]; //indexed by the isbc-202 instance number
UNIT isbc202_unit[] = {
{ UDATA (0, UNIT_ATTABLE+UNIT_DISABLE+UNIT_BUFABLE+UNIT_MUSTBUF, MDSDD), 20 },
{ UDATA (0, UNIT_ATTABLE+UNIT_DISABLE+UNIT_BUFABLE+UNIT_MUSTBUF, MDSDD), 20 },
{ UDATA (0, UNIT_ATTABLE+UNIT_DISABLE+UNIT_BUFABLE+UNIT_MUSTBUF, MDSDD), 20 },
{ UDATA (0, UNIT_ATTABLE+UNIT_DISABLE+UNIT_BUFABLE+UNIT_MUSTBUF, MDSDD), 20 }
};
REG isbc202_reg[] = {
{ HRDATA (STAT0, fdc202[0].stat, 8) }, /* isbc202 0 status */
{ HRDATA (RTYP0, fdc202[0].rtype, 8) }, /* isbc202 0 result type */
{ HRDATA (RBYT0A, fdc202[0].rbyte0, 8) }, /* isbc202 0 result byte 0 */
{ HRDATA (RBYT0B, fdc202[0].rbyte1, 8) }, /* isbc202 0 result byte 1 */
{ HRDATA (INTFF0, fdc202[0].intff, 8) }, /* isbc202 0 interrupt f/f */
{ HRDATA (STAT1, fdc202[1].stat, 8) }, /* isbc202 1 status */
{ HRDATA (RTYP1, fdc202[1].rtype, 8) }, /* isbc202 1 result type */
{ HRDATA (RBYT1A, fdc202[1].rbyte0, 8) }, /* isbc202 1 result byte 0 */
{ HRDATA (RBYT1B, fdc202[1].rbyte1, 8) }, /* isbc202 1 result byte 1 */
{ HRDATA (INTFF1, fdc202[1].intff, 8) }, /* isbc202 1 interrupt f/f */
{ HRDATA (STAT2, fdc202[2].stat, 8) }, /* isbc202 2 status */
{ HRDATA (RTYP2, fdc202[2].rtype, 8) }, /* isbc202 2 result type */
{ HRDATA (RBYT2A, fdc202[2].rbyte0, 8) }, /* isbc202 2 result byte 0 */
{ HRDATA (RBYT2B, fdc202[2].rbyte1, 8) }, /* isbc202 2 result byte 1 */
{ HRDATA (INTFF2, fdc202[2].intff, 8) }, /* isbc202 2 interrupt f/f */
{ HRDATA (STAT3, fdc202[3].stat, 8) }, /* isbc202 3 status */
{ HRDATA (RTYP3, fdc202[3].rtype, 8) }, /* isbc202 3 result type */
{ HRDATA (RBYT3A, fdc202[3].rbyte0, 8) }, /* isbc202 3 result byte 0 */
{ HRDATA (RBYT3B, fdc202[3].rbyte1, 8) }, /* isbc202 3 result byte 1 */
{ HRDATA (INTFF3, fdc202[3].intff, 8) }, /* isbc202 3 interrupt f/f */
{ NULL }
};
MTAB isbc202_mod[] = {
{ UNIT_WPMODE, 0, "RW", "RW", &isbc202_set_mode },
{ UNIT_WPMODE, UNIT_WPMODE, "WP", "WP", &isbc202_set_mode },
{ 0 }
};
DEBTAB isbc202_debug[] = {
{ "ALL", DEBUG_all },
{ "FLOW", DEBUG_flow },
{ "READ", DEBUG_read },
{ "WRITE", DEBUG_write },
{ "XACK", DEBUG_xack },
{ "LEV1", DEBUG_level1 },
{ "LEV2", DEBUG_level2 },
{ NULL }
};
/* address width is set to 16 bits to use devices in 8086/8088 implementations */
DEVICE isbc202_dev = {
"SBC202", //name
isbc202_unit, //units
isbc202_reg, //registers
isbc202_mod, //modifiers
FDD_NUM, //numunits
16, //aradix
16, //awidth
1, //aincr
16, //dradix
8, //dwidth
NULL, //examine
NULL, //deposit
NULL, //reset
NULL, //boot
&isbc202_attach, //attach
NULL, //detach
NULL, //ctxt
DEV_DEBUG+DEV_DISABLE+DEV_DIS, //flags
DEBUG_flow + DEBUG_read + DEBUG_write, //dctrl
isbc202_debug, //debflags
NULL, //msize
NULL //lname
};
/* Hardware reset routine */
t_stat isbc202_reset(DEVICE *dptr, uint16 base)
{
int32 i;
UNIT *uptr;
sim_printf(" iSBC-202 FDC Board");
if (SBC202_NUM) {
sim_printf(" - Found\n");
sim_printf(" isbc202-%d: Hardware Reset\n", isbc202_fdcnum);
sim_printf(" isbc202-%d: Registered at %04X\n", isbc202_fdcnum, base);
//register base port address for this FDC instance
fdc202[isbc202_fdcnum].baseport = base;
//register I/O port addresses for each function
reg_dev(isbc2020, base, isbc202_fdcnum); //read status
reg_dev(isbc2021, base + 1, isbc202_fdcnum); //read rslt type/write IOPB addr-l
reg_dev(isbc2022, base + 2, isbc202_fdcnum); //write IOPB addr-h and start
reg_dev(isbc2023, base + 3, isbc202_fdcnum); //read rstl byte
reg_dev(isbc2027, base + 7, isbc202_fdcnum); //write reset isbc202
// one-time initialization for all FDDs for this FDC instance
for (i = 0; i < FDD_NUM; i++) {
uptr = isbc202_dev.units + i;
uptr->u5 = isbc202_fdcnum; //fdc device number
uptr->u6 = i; //fdd unit number
uptr->flags |= UNIT_WPMODE; //set WP in unit flags
}
isbc202_reset1(isbc202_fdcnum); //software reset
isbc202_reset1(isbc202_fdcnum);
isbc202_fdcnum++;
} else
sim_printf(" - Not Found\n");
return SCPE_OK;
}
/* Software reset routine */
void isbc202_reset1(uint8 fdcnum)
{
int32 i;
UNIT *uptr;
sim_printf(" isbc202-%d: Software Reset\n", fdcnum);
fdc202[fdcnum].stat = 0; //clear status
for (i = 0; i < FDD_NUM; i++) { /* handle all units */
uptr = isbc202_dev.units + i;
fdc202[fdcnum].stat |= FDCPRE | FDCDD; //set the FDC status
fdc202[fdcnum].rtype = ROK;
if (uptr->capac == 0) { /* if not configured */
sim_printf(" SBC202%d: Configured, Status=%02X Not attached\n", i, fdc202[fdcnum].stat);
} else {
switch(i){
case 0:
fdc202[fdcnum].stat |= RDY0; //set FDD 0 ready
fdc202[fdcnum].rbyte1 |= RB1RD0;
break;
case 1:
fdc202[fdcnum].stat |= RDY1; //set FDD 1 ready
fdc202[fdcnum].rbyte1 |= RB1RD1;
break;
case 2:
fdc202[fdcnum].stat |= RDY2; //set FDD 2 ready
fdc202[fdcnum].rbyte1 |= RB1RD2;
break;
case 3:
fdc202[fdcnum].stat |= RDY3; //set FDD 3 ready
fdc202[fdcnum].rbyte1 |= RB1RD3;
break;
}
fdc202[fdcnum].rdychg = 0;
sim_printf(" SBC202%d: Configured, Status=%02X Attached to %s\n",
i, fdc202[fdcnum].stat, uptr->filename);
}
}
}
/* isbc202 attach - attach an .IMG file to a FDD */
t_stat isbc202_attach (UNIT *uptr, CONST char *cptr)
{
t_stat r;
uint8 fdcnum, fddnum;
sim_debug (DEBUG_flow, &isbc202_dev, " isbc202_attach: Entered with cptr=%s\n", cptr);
// sim_printf(" isbc202_attach: Entered with cptr=%s\n", cptr);
if ((r = attach_unit (uptr, cptr)) != SCPE_OK) {
sim_printf(" isbc202_attach: Attach error\n");
return r;
}
fdcnum = uptr->u5;
fddnum = uptr->u6;
switch(fddnum){
case 0:
fdc202[fdcnum].stat |= RDY0; //set FDD 0 ready
fdc202[fdcnum].rbyte1 |= RB1RD0;
break;
case 1:
fdc202[fdcnum].stat |= RDY1; //set FDD 1 ready
fdc202[fdcnum].rbyte1 |= RB1RD1;
break;
case 2:
fdc202[fdcnum].stat |= RDY2; //set FDD 2 ready
fdc202[fdcnum].rbyte1 |= RB1RD2;
break;
case 3:
fdc202[fdcnum].stat |= RDY3; //set FDD 3 ready
fdc202[fdcnum].rbyte1 |= RB1RD3;
break;
}
fdc202[fdcnum].rtype = ROK;
sim_printf(" iSBC-202%d: FDD %d Configured %d bytes, Attached to %s\n",
fdcnum, fddnum, uptr->capac, uptr->filename);
sim_debug (DEBUG_flow, &isbc202_dev, " isbc202_attach: Done\n");
return SCPE_OK;
}
/* isbc202 set mode = Write protect */
t_stat isbc202_set_mode (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
// sim_debug (DEBUG_flow, &isbc202_dev, " isbc202_set_mode: Entered with val=%08XH uptr->flags=%08X\n",
// val, uptr->flags);
if (val & UNIT_WPMODE) { /* write protect */
uptr->flags |= val;
} else { /* read write */
uptr->flags &= ~val;
}
// sim_debug (DEBUG_flow, &isbc202_dev, " isbc202_set_mode: Done\n");
return SCPE_OK;
}
uint8 isbc202_get_dn(void)
{
int i;
for (i=0; i<SBC202_NUM; i++)
if (port >= fdc202[i].baseport && port <= fdc202[i].baseport + 7)
return i;
sim_printf("isbc202_get_dn: port %04X not in isbc202 device table\n", port);
return 0xFF;
}
/* ISBC202 control port functions */
uint8 isbc2020(t_bool io, uint8 data)
{
uint8 fdcnum;
if ((fdcnum = isbc202_get_dn()) != 0xFF) {
if (io == 0) { /* read ststus*/
if (DEBUG)
sim_printf("\n isbc202-%d: 0x78 returned status=%02X PCX=%04X",
fdcnum, fdc202[fdcnum].stat, PCX);
return fdc202[fdcnum].stat;
}
}
return 0;
}
uint8 isbc2021(t_bool io, uint8 data)
{
uint8 fdcnum;
if ((fdcnum = isbc202_get_dn()) != 0xFF) {
if (io == 0) { /* read data port */
fdc202[fdcnum].intff = 0; //clear interrupt FF
fdc202[fdcnum].stat &= ~FDCINT;
if (DEBUG)
sim_printf("\n isbc202-%d: 0x79 returned rtype=%02X intff=%02X status=%02X PCX=%04X",
fdcnum, fdc202[fdcnum].rtype, fdc202[fdcnum].intff, fdc202[fdcnum].stat, PCX);
return fdc202[fdcnum].rtype;
} else { /* write data port */
fdc202[fdcnum].iopb = data;
if (DEBUG)
sim_printf("\n isbc202-%d: 0x79 IOPB low=%02X PCX=%04X",
fdcnum, data, PCX);
}
}
return 0;
}
uint8 isbc2022(t_bool io, uint8 data)
{
uint8 fdcnum;
if ((fdcnum = isbc202_get_dn()) != 0xFF) {
if (io == 0) { /* read data port */
;
} else { /* write data port */
fdc202[fdcnum].iopb |= (data << 8);
if (DEBUG)
sim_printf("\n isbc202-%d: 0x7A IOPB=%04X PCX=%04X",
fdcnum, fdc202[fdcnum].iopb, PCX);
isbc202_diskio(fdcnum);
if (fdc202[fdcnum].intff)
fdc202[fdcnum].stat |= FDCINT;
}
}
return 0;
}
uint8 isbc2023(t_bool io, uint8 data)
{
uint8 fdcnum;
if ((fdcnum = isbc202_get_dn()) != 0xFF) {
if (io == 0) { /* read data port */
if (fdc202[fdcnum].rtype == 0) {
if (DEBUG)
sim_printf("\n isbc202-%d: 0x7B returned rbyte0=%02X PCX=%04X",
fdcnum, fdc202[fdcnum].rbyte0, PCX);
return fdc202[fdcnum].rbyte0;
} else {
if (fdc202[fdcnum].rdychg) {
if (DEBUG)
sim_printf("\n isbc202-%d: 0x7B returned rbyte1=%02X PCX=%04X",
fdcnum, fdc202[fdcnum].rbyte1, PCX);
return fdc202[fdcnum].rbyte1;
} else {
if (DEBUG)
sim_printf("\n isbc202-%d: 0x7B returned rbytex=%02X PCX=%04X",
fdcnum, 0, PCX);
return 0;
}
}
} else { /* write data port */
; //stop diskette operation
}
}
return 0;
}
uint8 isbc2027(t_bool io, uint8 data)
{
uint8 fdcnum;
if ((fdcnum = isbc202_get_dn()) != 0xFF) {
if (io == 0) { /* read data port */
;
} else { /* write data port */
isbc202_reset1(fdcnum);
}
}
return 0;
}
// perform the actual disk I/O operation
void isbc202_diskio(uint8 fdcnum)
{
uint8 cw, di, nr, ta, sa, data, nrptr;
uint16 ba;
uint32 dskoff;
uint8 fddnum, fmtb;
uint32 i;
UNIT *uptr;
uint8 *fbuf;
//parse the IOPB
cw = multibus_get_mbyte(fdc202[fdcnum].iopb);
di = multibus_get_mbyte(fdc202[fdcnum].iopb + 1);
nr = multibus_get_mbyte(fdc202[fdcnum].iopb + 2);
ta = multibus_get_mbyte(fdc202[fdcnum].iopb + 3);
sa = multibus_get_mbyte(fdc202[fdcnum].iopb + 4);
ba = multibus_get_mword(fdc202[fdcnum].iopb + 5);
fddnum = (di & 0x30) >> 4;
uptr = isbc202_dev.units + fddnum;
fbuf = (uint8 *) (isbc202_dev.units + fddnum)->filebuf;
if (DEBUG) {
sim_printf("\n isbc202-%d: isbc202_diskio IOPB=%04X FDD=%02X STAT=%02X",
fdcnum, fdc202[fdcnum].iopb, fddnum, fdc202[fdcnum].stat);
sim_printf("\n isbc202-%d: cw=%02X di=%02X nr=%02X ta=%02X sa=%02X ba=%04X",
fdcnum, cw, di, nr, ta, sa, ba);
}
//check for not ready
switch(fddnum) {
case 0:
if ((fdc202[fdcnum].stat & RDY0) == 0) {
fdc202[fdcnum].rtype = RERR;
fdc202[fdcnum].rbyte0 = RB0NR;
fdc202[fdcnum].intff = 1; //set interrupt FF
sim_printf("\n isbc202-%d: Ready error on drive %d", fdcnum, fddnum);
return;
}
break;
case 1:
if ((fdc202[fdcnum].stat & RDY1) == 0) {
fdc202[fdcnum].rtype = RERR;
fdc202[fdcnum].rbyte0 = RB0NR;
fdc202[fdcnum].intff = 1; //set interrupt FF
sim_printf("\n isbc202-%d: Ready error on drive %d", fdcnum, fddnum);
return;
}
break;
case 2:
if ((fdc202[fdcnum].stat & RDY2) == 0) {
fdc202[fdcnum].rtype = RERR;
fdc202[fdcnum].rbyte0 = RB0NR;
fdc202[fdcnum].intff = 1; //set interrupt FF
sim_printf("\n isbc202-%d: Ready error on drive %d", fdcnum, fddnum);
return;
}
break;
case 3:
if ((fdc202[fdcnum].stat & RDY3) == 0) {
fdc202[fdcnum].rtype = RERR;
fdc202[fdcnum].rbyte0 = RB0NR;
fdc202[fdcnum].intff = 1; //set interrupt FF
sim_printf("\n isbc202-%d: Ready error on drive %d", fdcnum, fddnum);
return;
}
break;
}
//check for address error
if (
((di & 0x07) != DHOME) && (
(sa > MAXSECDD) ||
((sa + nr) > (MAXSECDD + 1)) ||
(sa == 0) ||
(ta > MAXTRK)
)) {
fdc202[fdcnum].rtype = RERR;
fdc202[fdcnum].rbyte0 = RB0ADR;
fdc202[fdcnum].intff = 1; //set interrupt FF
sim_printf("\n isbc202-%d: Address error on drive %d", fdcnum, fddnum);
return;
}
switch (di & 0x07) {
case DNOP:
fdc202[fdcnum].rtype = ROK;
fdc202[fdcnum].intff = 1; //set interrupt FF
break;
case DSEEK:
fdc202[fdcnum].fdd[fddnum].sec = sa;
fdc202[fdcnum].fdd[fddnum].cyl = ta;
fdc202[fdcnum].rtype = ROK;
fdc202[fdcnum].intff = 1; //set interrupt FF
break;
case DHOME:
fdc202[fdcnum].fdd[fddnum].sec = sa;
fdc202[fdcnum].fdd[fddnum].cyl = 0;
fdc202[fdcnum].rtype = ROK;
fdc202[fdcnum].intff = 1; //set interrupt FF
break;
case DVCRC:
fdc202[fdcnum].rtype = ROK;
fdc202[fdcnum].intff = 1; //set interrupt FF
break;
case DFMT:
//check for WP
if(uptr->flags & UNIT_WPMODE) {
fdc202[fdcnum].rtype = RERR;
fdc202[fdcnum].rbyte0 = RB0WP;
fdc202[fdcnum].intff = 1; //set interrupt FF
sim_printf("\n isbc202-%d: Write protect error 1 on drive %d", fdcnum, fddnum);
return;
}
fmtb = multibus_get_mbyte(ba); //get the format byte
//calculate offset into disk image
dskoff = ((ta * MAXSECDD) + (sa - 1)) * 128;
for(i=0; i<=((uint32)(MAXSECDD) * 128); i++) {
*(fbuf + (dskoff + i)) = fmtb;
}
fdc202[fdcnum].rtype = ROK;
fdc202[fdcnum].intff = 1; //set interrupt FF
break;
case DREAD:
nrptr = 0;
while(nrptr < nr) {
//calculate offset into disk image
dskoff = ((ta * MAXSECDD) + (sa - 1)) * 128;
if (DEBUG)
sim_printf("\n isbc202-%d: cw=%02X di=%02X nr=%02X ta=%02X sa=%02X ba=%04X dskoff=%06X",
fdcnum, cw, di, nr, ta, sa, ba, dskoff);
//copy sector from image to RAM
for (i=0; i<128; i++) {
data = *(fbuf + (dskoff + i));
multibus_put_mbyte(ba + i, data);
}
sa++;
ba+=0x80;
nrptr++;
}
fdc202[fdcnum].rtype = ROK;
fdc202[fdcnum].intff = 1; //set interrupt FF
break;
case DWRITE:
//check for WP
if(uptr->flags & UNIT_WPMODE) {
fdc202[fdcnum].rtype = RERR;
fdc202[fdcnum].rbyte0 = RB0WP;
fdc202[fdcnum].intff = 1; //set interrupt FF
sim_printf("\n isbc202-%d: Write protect error 2 on drive %d", fdcnum, fddnum);
return;
}
nrptr = 0;
while(nrptr < nr) {
//calculate offset into disk image
dskoff = ((ta * MAXSECDD) + (sa - 1)) * 128;
if (DEBUG)
sim_printf("\n isbc202-%d: cw=%02X di=%02X nr=%02X ta=%02X sa=%02X ba=%04X dskoff=%06X",
fdcnum, cw, di, nr, ta, sa, ba, dskoff);
for (i=0; i<128; i++) { //copy sector from image to RAM
data = multibus_get_mbyte(ba + i);
*(fbuf + (dskoff + i)) = data;
}
sa++;
ba+=0x80;
nrptr++;
}
fdc202[fdcnum].rtype = ROK;
fdc202[fdcnum].intff = 1; //set interrupt FF
break;
default:
sim_printf("\n isbc202-%d: isbc202_diskio bad di=%02X", fdcnum, di & 0x07);
break;
}
}
/* end of isbc202.c */