/* sim_timer.c: simulator timer library | |
Copyright (c) 1993-2010, Robert M Supnik | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name of Robert M Supnik shall not be | |
used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from Robert M Supnik. | |
21-Oct-11 MP Fixed throttling in several ways: | |
- Sleep for the observed clock tick size while throttling | |
- Recompute the throttling wait once every 10 seconds | |
to account for varying instruction mixes during | |
different phases of a simulator execution or to | |
accommodate the presence of other load on the host | |
system. | |
- Each of the pre-existing throttling modes (Kcps, | |
Mcps, and %) all compute the appropriate throttling | |
interval dynamically. These dynamic computations | |
assume that 100% of the host CPU is dedicated to | |
the current simulator during this computation. | |
This assumption may not always be true and under | |
certain conditions may never provide a way to | |
correctly determine the appropriate throttling | |
wait. An additional throttling mode has been added | |
which allows the simulator operator to explicitly | |
state the desired throttling wait parameters. | |
These are specified by: | |
SET THROT insts/delay | |
where 'insts' is the number of instructions to | |
execute before sleeping for 'delay' milliseconds. | |
22-Apr-11 MP Fixed Asynch I/O support to reasonably account cycles | |
when an idle wait is terminated by an external event | |
05-Jan-11 MP Added Asynch I/O support | |
29-Dec-10 MP Fixed clock resolution determination for Unix platforms | |
22-Sep-08 RMS Added "stability threshold" for idle routine | |
27-May-08 RMS Fixed bug in Linux idle routines (from Walter Mueller) | |
18-Jun-07 RMS Modified idle to exclude counted delays | |
22-Mar-07 RMS Added sim_rtcn_init_all | |
17-Oct-06 RMS Added idle support (based on work by Mark Pizzolato) | |
Added throttle support | |
16-Aug-05 RMS Fixed C++ declaration and cast problems | |
02-Jan-04 RMS Split out from SCP | |
This library includes the following routines: | |
sim_timer_init - initialize timing system | |
sim_rtc_init - initialize calibration | |
sim_rtc_calb - calibrate clock | |
sim_idle - virtual machine idle | |
sim_os_msec - return elapsed time in msec | |
sim_os_sleep - sleep specified number of seconds | |
sim_os_ms_sleep - sleep specified number of milliseconds | |
sim_idle_ms_sleep - sleep specified number of milliseconds | |
or until awakened by an asynchronous | |
event | |
sim_timespec_diff subtract two timespec values | |
sim_timer_activate_after schedule unit for specific time | |
The calibration, idle, and throttle routines are OS-independent; the _os_ | |
routines are not. | |
*/ | |
#define NOT_MUX_USING_CODE /* sim_tmxr library provider or agnostic */ | |
#include "sim_defs.h" | |
#include <ctype.h> | |
#include <math.h> | |
#define SIM_INTERNAL_CLK (SIM_NTIMERS+(1<<30)) | |
#define SIM_INTERNAL_UNIT sim_timer_units[SIM_NTIMERS] | |
#ifndef MIN | |
#define MIN(a,b) (((a) < (b)) ? (a) : (b)) | |
#endif | |
#ifndef MAX | |
#define MAX(a,b) (((a) > (b)) ? (a) : (b)) | |
#endif | |
//#define MS_MIN_GRANULARITY 20 | |
#define MS_MIN_GRANULARITY 1 | |
t_bool sim_idle_enab = FALSE; /* global flag */ | |
volatile t_bool sim_idle_wait = FALSE; /* global flag */ | |
static int32 sim_calb_tmr = -1; /* the system calibrated timer */ | |
static uint32 sim_idle_rate_ms = 0; | |
static uint32 sim_os_sleep_min_ms = 0; | |
static uint32 sim_os_sleep_inc_ms = 0; | |
static uint32 sim_os_clock_resoluton_ms = 0; | |
static uint32 sim_os_tick_hz = 0; | |
static uint32 sim_idle_stable = SIM_IDLE_STDFLT; | |
static uint32 sim_idle_calib_pct = 0; | |
static uint32 sim_throt_ms_start = 0; | |
static uint32 sim_throt_ms_stop = 0; | |
static uint32 sim_throt_type = 0; | |
static uint32 sim_throt_val = 0; | |
static uint32 sim_throt_state = 0; | |
static double sim_throt_cps; | |
static double sim_throt_inst_start; | |
static uint32 sim_throt_sleep_time = 0; | |
static int32 sim_throt_wait = 0; | |
static UNIT *sim_clock_unit[SIM_NTIMERS+1] = {NULL}; | |
UNIT * volatile sim_clock_cosched_queue[SIM_NTIMERS+1] = {NULL}; | |
static int32 sim_cosched_interval[SIM_NTIMERS+1]; | |
static t_bool sim_catchup_ticks = FALSE; | |
#if defined (SIM_ASYNCH_CLOCKS) && !defined (SIM_ASYNCH_IO) | |
#undef SIM_ASYNCH_CLOCKS | |
#endif | |
t_bool sim_asynch_timer = FALSE; | |
#if defined (SIM_ASYNCH_CLOCKS) | |
UNIT * volatile sim_wallclock_queue = QUEUE_LIST_END; | |
UNIT * volatile sim_wallclock_entry = NULL; | |
#endif | |
t_stat sim_throt_svc (UNIT *uptr); | |
t_stat sim_timer_tick_svc (UNIT *uptr); | |
#define DBG_IDL TIMER_DBG_IDLE /* idling */ | |
#define DBG_QUE TIMER_DBG_QUEUE /* queue activities */ | |
#define DBG_MUX TIMER_DBG_MUX /* tmxr queue activities */ | |
#define DBG_TRC 0x008 /* tracing */ | |
#define DBG_CAL 0x010 /* calibration activities */ | |
#define DBG_TIM 0x020 /* timer thread activities */ | |
#define DBG_THR 0x040 /* throttle activities */ | |
#define DBG_ACK 0x080 /* interrupt acknowledgement activities */ | |
DEBTAB sim_timer_debug[] = { | |
{"TRACE", DBG_TRC, "Trace routine calls"}, | |
{"IDLE", DBG_IDL, "Idling activities"}, | |
{"QUEUE", DBG_QUE, "Event queuing activities"}, | |
{"IACK", DBG_ACK, "interrupt acknowledgement activities"}, | |
{"CALIB", DBG_CAL, "Calibration activities"}, | |
{"TIME", DBG_TIM, "Activation and scheduling activities"}, | |
{"THROT", DBG_THR, "Throttling activities"}, | |
{"MUX", DBG_MUX, "Tmxr scheduling activities"}, | |
{0} | |
}; | |
#if defined(SIM_ASYNCH_IO) | |
uint32 sim_idle_ms_sleep (unsigned int msec) | |
{ | |
uint32 start_time = sim_os_msec(); | |
struct timespec done_time; | |
t_bool timedout = FALSE; | |
#if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) | |
msec = MS_MIN_GRANULARITY*((msec+MS_MIN_GRANULARITY-1)/MS_MIN_GRANULARITY); | |
#endif | |
clock_gettime(CLOCK_REALTIME, &done_time); | |
done_time.tv_sec += (msec/1000); | |
done_time.tv_nsec += 1000000*(msec%1000); | |
if (done_time.tv_nsec > 1000000000) { | |
done_time.tv_sec += done_time.tv_nsec/1000000000; | |
done_time.tv_nsec = done_time.tv_nsec%1000000000; | |
} | |
pthread_mutex_lock (&sim_asynch_lock); | |
sim_idle_wait = TRUE; | |
if (!pthread_cond_timedwait (&sim_asynch_wake, &sim_asynch_lock, &done_time)) | |
sim_asynch_check = 0; /* force check of asynch queue now */ | |
else | |
timedout = TRUE; | |
sim_idle_wait = FALSE; | |
pthread_mutex_unlock (&sim_asynch_lock); | |
if (!timedout) { | |
AIO_UPDATE_QUEUE; | |
} | |
return sim_os_msec() - start_time; | |
} | |
#define SIM_IDLE_MS_SLEEP sim_idle_ms_sleep | |
#else | |
#define SIM_IDLE_MS_SLEEP sim_os_ms_sleep | |
#endif | |
/* Mark the need for the sim_os_set_thread_priority routine, */ | |
/* allowing the feature and/or platform dependent code to provide it */ | |
#define NEED_THREAD_PRIORITY | |
/* If we've got pthreads support then use pthreads mechanisms */ | |
#if defined(USE_READER_THREAD) | |
#undef NEED_THREAD_PRIORITY | |
#if defined(_WIN32) | |
/* On Windows there are several potentially disjoint threading APIs */ | |
/* in use (base win32 pthreads, libSDL provided threading, and direct */ | |
/* calls to beginthreadex), so go directly to the Win32 threading APIs */ | |
/* to manage thread priority */ | |
t_stat sim_os_set_thread_priority (int below_normal_above) | |
{ | |
const static int val[3] = {THREAD_PRIORITY_BELOW_NORMAL, THREAD_PRIORITY_NORMAL, THREAD_PRIORITY_ABOVE_NORMAL}; | |
if ((below_normal_above < -1) || (below_normal_above > 1)) | |
return SCPE_ARG; | |
SetThreadPriority (GetCurrentThread(), val[1 + below_normal_above]); | |
return SCPE_OK; | |
} | |
#else | |
/* Native pthreads priority implementation */ | |
t_stat sim_os_set_thread_priority (int below_normal_above) | |
{ | |
int sched_policy, min_prio, max_prio; | |
struct sched_param sched_priority; | |
if ((below_normal_above < -1) || (below_normal_above > 1)) | |
return SCPE_ARG; | |
pthread_getschedparam (pthread_self(), &sched_policy, &sched_priority); | |
min_prio = sched_get_priority_min(sched_policy); | |
max_prio = sched_get_priority_max(sched_policy); | |
switch (below_normal_above) { | |
case PRIORITY_BELOW_NORMAL: | |
sched_priority.sched_priority = min_prio; | |
break; | |
case PRIORITY_NORMAL: | |
sched_priority.sched_priority = (max_prio + min_prio) / 2; | |
break; | |
case PRIORITY_ABOVE_NORMAL: | |
sched_priority.sched_priority = max_prio; | |
break; | |
} | |
pthread_setschedparam (pthread_self(), sched_policy, &sched_priority); | |
return SCPE_OK; | |
} | |
#endif | |
#endif /* defined(USE_READER_THREAD) */ | |
#define sleep1Samples 100 | |
static uint32 _compute_minimum_sleep (void) | |
{ | |
uint32 i, tot, tim; | |
SIM_IDLE_MS_SLEEP (1); /* Start sampling on a tick boundary */ | |
for (i = 0, tot = 0; i < sleep1Samples; i++) | |
tot += SIM_IDLE_MS_SLEEP (1); | |
tim = (tot + (sleep1Samples - 1)) / sleep1Samples; | |
sim_os_sleep_min_ms = tim; | |
SIM_IDLE_MS_SLEEP (1); /* Start sampling on a tick boundary */ | |
for (i = 0, tot = 0; i < sleep1Samples; i++) | |
tot += SIM_IDLE_MS_SLEEP (sim_os_sleep_min_ms + 1); | |
tim = (tot + (sleep1Samples - 1)) / sleep1Samples; | |
sim_os_sleep_inc_ms = tim - sim_os_sleep_min_ms; | |
return sim_os_sleep_min_ms; | |
} | |
/* OS-dependent timer and clock routines */ | |
/* VMS */ | |
#if defined (VMS) | |
#if defined (__VAX) | |
#define sys$gettim SYS$GETTIM | |
#define sys$setimr SYS$SETIMR | |
#define lib$emul LIB$EMUL | |
#define sys$waitfr SYS$WAITFR | |
#define lib$subx LIB$SUBX | |
#define lib$ediv LIB$EDIV | |
#endif | |
#include <starlet.h> | |
#include <lib$routines.h> | |
#include <unistd.h> | |
const t_bool rtc_avail = TRUE; | |
uint32 sim_os_msec (void) | |
{ | |
uint32 quo, htod, tod[2]; | |
int32 i; | |
sys$gettim (tod); /* time 0.1usec */ | |
/* To convert to msec, must divide a 64b quantity by 10000. This is actually done | |
by dividing the 96b quantity 0'time by 10000, producing 64b of quotient, the | |
high 32b of which are discarded. This can probably be done by a clever multiply... | |
*/ | |
quo = htod = 0; | |
for (i = 0; i < 64; i++) { /* 64b quo */ | |
htod = (htod << 1) | ((tod[1] >> 31) & 1); /* shift divd */ | |
tod[1] = (tod[1] << 1) | ((tod[0] >> 31) & 1); | |
tod[0] = tod[0] << 1; | |
quo = quo << 1; /* shift quo */ | |
if (htod >= 10000) { /* divd work? */ | |
htod = htod - 10000; /* subtract */ | |
quo = quo | 1; /* set quo bit */ | |
} | |
} | |
#if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) | |
quo = (quo/MS_MIN_GRANULARITY)*MS_MIN_GRANULARITY; | |
#endif | |
return quo; | |
} | |
void sim_os_sleep (unsigned int sec) | |
{ | |
sleep (sec); | |
return; | |
} | |
uint32 sim_os_ms_sleep_init (void) | |
{ | |
return _compute_minimum_sleep (); | |
} | |
uint32 sim_os_ms_sleep (unsigned int msec) | |
{ | |
uint32 stime = sim_os_msec (); | |
uint32 qtime[2]; | |
int32 nsfactor = -10000; | |
static int32 zero = 0; | |
#if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) | |
msec = MS_MIN_GRANULARITY*((msec+MS_MIN_GRANULARITY-1)/MS_MIN_GRANULARITY); | |
#endif | |
lib$emul (&msec, &nsfactor, &zero, qtime); | |
sys$setimr (2, qtime, 0, 0); | |
sys$waitfr (2); | |
return sim_os_msec () - stime; | |
} | |
#ifdef NEED_CLOCK_GETTIME | |
int clock_gettime(int clk_id, struct timespec *tp) | |
{ | |
uint32 secs, ns, tod[2], unixbase[2] = {0xd53e8000, 0x019db1de}; | |
if (clk_id != CLOCK_REALTIME) | |
return -1; | |
sys$gettim (tod); /* time 0.1usec */ | |
lib$subx(tod, unixbase, tod); /* convert to unix base */ | |
lib$ediv(&10000000, tod, &secs, &ns); /* isolate seconds & 100ns parts */ | |
tp->tv_sec = secs; | |
tp->tv_nsec = ns*100; | |
return 0; | |
} | |
#endif /* CLOCK_REALTIME */ | |
#elif defined (_WIN32) | |
/* Win32 routines */ | |
const t_bool rtc_avail = TRUE; | |
uint32 sim_os_msec (void) | |
{ | |
uint32 t = (sim_idle_rate_ms ? timeGetTime () : GetTickCount ()); | |
#if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) | |
t = (t/MS_MIN_GRANULARITY)*MS_MIN_GRANULARITY; | |
#endif | |
return t; | |
} | |
void sim_os_sleep (unsigned int sec) | |
{ | |
Sleep (sec * 1000); | |
return; | |
} | |
void sim_timer_exit (void) | |
{ | |
timeEndPeriod (sim_idle_rate_ms); | |
return; | |
} | |
uint32 sim_os_ms_sleep_init (void) | |
{ | |
TIMECAPS timers; | |
if (timeGetDevCaps (&timers, sizeof (timers)) != TIMERR_NOERROR) | |
return 0; | |
if (timers.wPeriodMin == 0) | |
return 0; | |
if (timeBeginPeriod (timers.wPeriodMin) != TIMERR_NOERROR) | |
return 0; | |
atexit (sim_timer_exit); | |
/* return measured actual minimum sleep time */ | |
return _compute_minimum_sleep (); | |
} | |
uint32 sim_os_ms_sleep (unsigned int msec) | |
{ | |
uint32 stime = sim_os_msec(); | |
#if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) | |
msec = MS_MIN_GRANULARITY*((msec+MS_MIN_GRANULARITY-1)/MS_MIN_GRANULARITY); | |
#endif | |
Sleep (msec); | |
return sim_os_msec () - stime; | |
} | |
#if defined(NEED_CLOCK_GETTIME) | |
int clock_gettime(int clk_id, struct timespec *tp) | |
{ | |
t_uint64 now, unixbase; | |
if (clk_id != CLOCK_REALTIME) | |
return -1; | |
unixbase = 116444736; | |
unixbase *= 1000000000; | |
GetSystemTimeAsFileTime((FILETIME*)&now); | |
now -= unixbase; | |
tp->tv_sec = (long)(now/10000000); | |
tp->tv_nsec = (now%10000000)*100; | |
return 0; | |
} | |
#endif | |
#elif defined (__OS2__) | |
/* OS/2 routines, from Bruce Ray */ | |
const t_bool rtc_avail = FALSE; | |
uint32 sim_os_msec (void) | |
{ | |
return 0; | |
} | |
void sim_os_sleep (unsigned int sec) | |
{ | |
return; | |
} | |
uint32 sim_os_ms_sleep_init (void) | |
{ | |
return 0; | |
} | |
uint32 sim_os_ms_sleep (unsigned int msec) | |
{ | |
return 0; | |
} | |
/* Metrowerks CodeWarrior Macintosh routines, from Ben Supnik */ | |
#elif defined (__MWERKS__) && defined (macintosh) | |
#include <Timer.h> | |
#include <Mactypes.h> | |
#include <sioux.h> | |
#include <unistd.h> | |
#include <siouxglobals.h> | |
#define NANOS_PER_MILLI 1000000 | |
#define MILLIS_PER_SEC 1000 | |
const t_bool rtc_avail = TRUE; | |
uint32 sim_os_msec (void) | |
{ | |
unsigned long long micros; | |
UnsignedWide macMicros; | |
unsigned long millis; | |
Microseconds (&macMicros); | |
micros = *((unsigned long long *) &macMicros); | |
millis = micros / 1000LL; | |
#if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) | |
millis = (millis/MS_MIN_GRANULARITY)*MS_MIN_GRANULARITY; | |
#endif | |
return (uint32) millis; | |
} | |
void sim_os_sleep (unsigned int sec) | |
{ | |
sleep (sec); | |
return; | |
} | |
uint32 sim_os_ms_sleep_init (void) | |
{ | |
return _compute_minimum_sleep (); | |
} | |
uint32 sim_os_ms_sleep (unsigned int milliseconds) | |
{ | |
uint32 stime = sim_os_msec (); | |
struct timespec treq; | |
#if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) | |
milliseconds = MS_MIN_GRANULARITY*((milliseconds+MS_MIN_GRANULARITY-1)/MS_MIN_GRANULARITY); | |
#endif | |
treq.tv_sec = milliseconds / MILLIS_PER_SEC; | |
treq.tv_nsec = (milliseconds % MILLIS_PER_SEC) * NANOS_PER_MILLI; | |
(void) nanosleep (&treq, NULL); | |
return sim_os_msec () - stime; | |
} | |
#if defined(NEED_CLOCK_GETTIME) | |
int clock_gettime(int clk_id, struct timespec *tp) | |
{ | |
struct timeval cur; | |
if (clk_id != CLOCK_REALTIME) | |
return -1; | |
gettimeofday (&cur, NULL); | |
tp->tv_sec = cur.tv_sec; | |
tp->tv_nsec = cur.tv_usec*1000; | |
return 0; | |
} | |
#endif | |
#else | |
/* UNIX routines */ | |
#include <time.h> | |
#include <sys/time.h> | |
#include <unistd.h> | |
#define NANOS_PER_MILLI 1000000 | |
#define MILLIS_PER_SEC 1000 | |
const t_bool rtc_avail = TRUE; | |
uint32 sim_os_msec (void) | |
{ | |
struct timeval cur; | |
struct timezone foo; | |
uint32 msec; | |
gettimeofday (&cur, &foo); | |
msec = (((uint32) cur.tv_sec) * 1000) + (((uint32) cur.tv_usec) / 1000); | |
#if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) | |
msec = (msec/MS_MIN_GRANULARITY)*MS_MIN_GRANULARITY; | |
#endif | |
return msec; | |
} | |
void sim_os_sleep (unsigned int sec) | |
{ | |
sleep (sec); | |
return; | |
} | |
uint32 sim_os_ms_sleep_init (void) | |
{ | |
return _compute_minimum_sleep (); | |
} | |
#if !defined(_POSIX_SOURCE) | |
#ifdef NEED_CLOCK_GETTIME | |
typedef int clockid_t; | |
int clock_gettime(clockid_t clk_id, struct timespec *tp) | |
{ | |
struct timeval cur; | |
struct timezone foo; | |
if (clk_id != CLOCK_REALTIME) | |
return -1; | |
gettimeofday (&cur, &foo); | |
tp->tv_sec = cur.tv_sec; | |
tp->tv_nsec = cur.tv_usec*1000; | |
return 0; | |
} | |
#endif /* CLOCK_REALTIME */ | |
#endif /* !defined(_POSIX_SOURCE) && defined(SIM_ASYNCH_IO) */ | |
uint32 sim_os_ms_sleep (unsigned int milliseconds) | |
{ | |
uint32 stime = sim_os_msec (); | |
struct timespec treq; | |
#if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) | |
milliseconds = MS_MIN_GRANULARITY*((milliseconds+MS_MIN_GRANULARITY-1)/MS_MIN_GRANULARITY); | |
#endif | |
treq.tv_sec = milliseconds / MILLIS_PER_SEC; | |
treq.tv_nsec = (milliseconds % MILLIS_PER_SEC) * NANOS_PER_MILLI; | |
(void) nanosleep (&treq, NULL); | |
return sim_os_msec () - stime; | |
} | |
#if defined(NEED_THREAD_PRIORITY) | |
#undef NEED_THREAD_PRIORITY | |
#include <sys/time.h> | |
#include <sys/resource.h> | |
t_stat sim_os_set_thread_priority (int below_normal_above) | |
{ | |
if ((below_normal_above < -1) || (below_normal_above > 1)) | |
return SCPE_ARG; | |
errno = 0; | |
switch (below_normal_above) { | |
case PRIORITY_BELOW_NORMAL: | |
if ((getpriority (PRIO_PROCESS, 0) <= 0) && /* at or above normal pri? */ | |
(errno == 0)) | |
setpriority (PRIO_PROCESS, 0, 10); | |
break; | |
case PRIORITY_NORMAL: | |
if (getpriority (PRIO_PROCESS, 0) != 0) /* at or above normal pri? */ | |
setpriority (PRIO_PROCESS, 0, 0); | |
break; | |
case PRIORITY_ABOVE_NORMAL: | |
if ((getpriority (PRIO_PROCESS, 0) <= 0) && /* at or above normal pri? */ | |
(errno == 0)) | |
setpriority (PRIO_PROCESS, 0, -10); | |
break; | |
} | |
return SCPE_OK; | |
} | |
#endif /* defined(NEED_THREAD_PRIORITY) */ | |
#endif | |
/* If one hasn't been provided yet, then just stub it */ | |
#if defined(NEED_THREAD_PRIORITY) | |
t_stat sim_os_set_thread_priority (int below_normal_above) | |
{ | |
return SCPE_OK; | |
} | |
#endif | |
/* diff = min - sub */ | |
void | |
sim_timespec_diff (struct timespec *diff, struct timespec *min, struct timespec *sub) | |
{ | |
/* move the minuend value to the difference and operate there. */ | |
*diff = *min; | |
/* Borrow as needed for the nsec value */ | |
while (sub->tv_nsec > diff->tv_nsec) { | |
--diff->tv_sec; | |
diff->tv_nsec += 1000000000; | |
} | |
diff->tv_nsec -= sub->tv_nsec; | |
diff->tv_sec -= sub->tv_sec; | |
/* Normalize the result */ | |
while (diff->tv_nsec > 1000000000) { | |
++diff->tv_sec; | |
diff->tv_nsec -= 1000000000; | |
} | |
} | |
/* Forward declarations */ | |
static double _timespec_to_double (struct timespec *time); | |
static void _double_to_timespec (struct timespec *time, double dtime); | |
static t_bool _rtcn_tick_catchup_check (int32 tmr, int32 time); | |
static void _rtcn_configure_calibrated_clock (int32 newtmr); | |
static void _sim_coschedule_cancel(UNIT *uptr); | |
static void _sim_wallclock_cancel (UNIT *uptr); | |
static t_bool _sim_wallclock_is_active (UNIT *uptr); | |
#if defined(SIM_ASYNCH_CLOCKS) | |
static int sim_timespec_compare (struct timespec *a, struct timespec *b) | |
{ | |
while (a->tv_nsec > 1000000000) { | |
a->tv_nsec -= 1000000000; | |
++a->tv_sec; | |
} | |
while (b->tv_nsec > 1000000000) { | |
b->tv_nsec -= 1000000000; | |
++b->tv_sec; | |
} | |
if (a->tv_sec < b->tv_sec) | |
return -1; | |
if (a->tv_sec > b->tv_sec) | |
return 1; | |
if (a->tv_nsec < b->tv_nsec) | |
return -1; | |
if (a->tv_nsec > b->tv_nsec) | |
return 1; | |
else | |
return 0; | |
} | |
#endif /* defined(SIM_ASYNCH_CLOCKS) */ | |
/* OS independent clock calibration package */ | |
static int32 rtc_ticks[SIM_NTIMERS+1] = { 0 }; /* ticks */ | |
static uint32 rtc_hz[SIM_NTIMERS+1] = { 0 }; /* tick rate */ | |
static uint32 rtc_rtime[SIM_NTIMERS+1] = { 0 }; /* real time */ | |
static uint32 rtc_vtime[SIM_NTIMERS+1] = { 0 }; /* virtual time */ | |
static double rtc_gtime[SIM_NTIMERS+1] = { 0 }; /* instruction time */ | |
static uint32 rtc_nxintv[SIM_NTIMERS+1] = { 0 }; /* next interval */ | |
static int32 rtc_based[SIM_NTIMERS+1] = { 0 }; /* base delay */ | |
static int32 rtc_currd[SIM_NTIMERS+1] = { 0 }; /* current delay */ | |
static int32 rtc_initd[SIM_NTIMERS+1] = { 0 }; /* initial delay */ | |
static uint32 rtc_elapsed[SIM_NTIMERS+1] = { 0 }; /* sec since init */ | |
static uint32 rtc_calibrations[SIM_NTIMERS+1] = { 0 }; /* calibration count */ | |
static double rtc_clock_skew_max[SIM_NTIMERS+1] = { 0 }; /* asynchronous max skew */ | |
static double rtc_clock_start_gtime[SIM_NTIMERS+1] = { 0 };/* reference instruction time for clock */ | |
static double rtc_clock_tick_size[SIM_NTIMERS+1] = { 0 }; /* 1/hz */ | |
static uint32 rtc_calib_initializations[SIM_NTIMERS+1] = { 0 };/* Initialization Count */ | |
static double rtc_calib_tick_time[SIM_NTIMERS+1] = { 0 }; /* ticks time */ | |
static double rtc_calib_tick_time_tot[SIM_NTIMERS+1] = { 0 };/* ticks time - total*/ | |
static uint32 rtc_calib_ticks_acked[SIM_NTIMERS+1] = { 0 };/* ticks Acked */ | |
static uint32 rtc_calib_ticks_acked_tot[SIM_NTIMERS+1] = { 0 };/* ticks Acked - total */ | |
static uint32 rtc_clock_ticks[SIM_NTIMERS+1] = { 0 };/* ticks delivered since catchup base */ | |
static uint32 rtc_clock_ticks_tot[SIM_NTIMERS+1] = { 0 };/* ticks delivered since catchup base - total */ | |
static double rtc_clock_catchup_base_time[SIM_NTIMERS+1] = { 0 };/* reference time for catchup ticks */ | |
static uint32 rtc_clock_catchup_ticks[SIM_NTIMERS+1] = { 0 };/* Record of catchups */ | |
static uint32 rtc_clock_catchup_ticks_tot[SIM_NTIMERS+1] = { 0 };/* Record of catchups - total */ | |
static t_bool rtc_clock_catchup_pending[SIM_NTIMERS+1] = { 0 };/* clock tick catchup pending */ | |
static t_bool rtc_clock_catchup_eligible[SIM_NTIMERS+1] = { 0 };/* clock tick catchup eligible */ | |
static uint32 rtc_clock_time_idled[SIM_NTIMERS+1] = { 0 };/* total time idled */ | |
static uint32 rtc_clock_time_idled_last[SIM_NTIMERS+1] = { 0 };/* total time idled */ | |
UNIT sim_timer_units[SIM_NTIMERS+1]; /* one for each timer and one for an */ | |
/* internal clock if no clocks are registered */ | |
UNIT sim_throttle_unit; /* one for throttle */ | |
/* Forward device declarations */ | |
extern DEVICE sim_timer_dev; | |
extern DEVICE sim_throttle_dev; | |
void sim_rtcn_init_all (void) | |
{ | |
int32 tmr; | |
for (tmr = 0; tmr <= SIM_NTIMERS; tmr++) | |
if (rtc_initd[tmr] != 0) | |
sim_rtcn_init (rtc_initd[tmr], tmr); | |
return; | |
} | |
int32 sim_rtcn_init (int32 time, int32 tmr) | |
{ | |
return sim_rtcn_init_unit (NULL, time, tmr); | |
} | |
int32 sim_rtcn_init_unit (UNIT *uptr, int32 time, int32 tmr) | |
{ | |
if (time == 0) | |
time = 1; | |
if (tmr == SIM_INTERNAL_CLK) | |
tmr = SIM_NTIMERS; | |
else { | |
if ((tmr < 0) || (tmr >= SIM_NTIMERS)) | |
return time; | |
} | |
/* | |
* If we'd previously succeeded in calibrating a tick value, then use that | |
* delay as a better default to setup when we're re-initialized. | |
* Re-initializing happens on any boot or after any breakpoint/continue. | |
*/ | |
if (rtc_currd[tmr]) | |
time = rtc_currd[tmr]; | |
if (!uptr) | |
uptr = sim_clock_unit[tmr]; | |
sim_debug (DBG_CAL, &sim_timer_dev, "_sim_rtcn_init_unit(unit=%s, time=%d, tmr=%d)\n", sim_uname(uptr), time, tmr); | |
if (uptr) { | |
if (!sim_clock_unit[tmr]) { | |
sim_clock_unit[tmr] = uptr; | |
sim_clock_cosched_queue[tmr] = QUEUE_LIST_END; | |
} | |
} | |
rtc_clock_start_gtime[tmr] = sim_gtime(); | |
rtc_rtime[tmr] = sim_os_msec (); | |
rtc_vtime[tmr] = rtc_rtime[tmr]; | |
rtc_nxintv[tmr] = 1000; | |
rtc_ticks[tmr] = 0; | |
rtc_hz[tmr] = 0; | |
rtc_based[tmr] = time; | |
rtc_currd[tmr] = time; | |
rtc_initd[tmr] = time; | |
rtc_elapsed[tmr] = 0; | |
rtc_calibrations[tmr] = 0; | |
rtc_clock_ticks_tot[tmr] += rtc_clock_ticks[tmr]; | |
rtc_clock_ticks[tmr] = 0; | |
rtc_calib_tick_time_tot[tmr] += rtc_calib_tick_time[tmr]; | |
rtc_calib_tick_time[tmr] = 0; | |
rtc_clock_catchup_pending[tmr] = FALSE; | |
rtc_clock_catchup_eligible[tmr] = FALSE; | |
rtc_clock_catchup_ticks_tot[tmr] += rtc_clock_catchup_ticks[tmr]; | |
rtc_clock_catchup_ticks[tmr] = 0; | |
rtc_calib_ticks_acked_tot[tmr] += rtc_calib_ticks_acked[tmr]; | |
rtc_calib_ticks_acked[tmr] = 0; | |
++rtc_calib_initializations[tmr]; | |
_rtcn_configure_calibrated_clock (tmr); | |
return time; | |
} | |
int32 sim_rtcn_calb (int32 ticksper, int32 tmr) | |
{ | |
uint32 new_rtime, delta_rtime, last_idle_pct; | |
int32 delta_vtime; | |
double new_gtime; | |
int32 new_currd; | |
if (tmr == SIM_INTERNAL_CLK) | |
tmr = SIM_NTIMERS; | |
else { | |
if ((tmr < 0) || (tmr >= SIM_NTIMERS)) | |
return 10000; | |
} | |
if (rtc_hz[tmr] != ticksper) { /* changing tick rate? */ | |
rtc_hz[tmr] = ticksper; | |
rtc_clock_tick_size[tmr] = 1.0/ticksper; | |
_rtcn_configure_calibrated_clock (tmr); | |
rtc_currd[tmr] = (int32)(sim_timer_inst_per_sec()/ticksper); | |
} | |
if (sim_clock_unit[tmr] == NULL) { /* Not using TIMER units? */ | |
rtc_clock_ticks[tmr] += 1; | |
rtc_calib_tick_time[tmr] += rtc_clock_tick_size[tmr]; | |
} | |
if (rtc_clock_catchup_pending[tmr]) { /* catchup tick? */ | |
++rtc_clock_catchup_ticks[tmr]; /* accumulating which were catchups */ | |
rtc_clock_catchup_pending[tmr] = FALSE; | |
if (!sim_asynch_timer) /* non asynch timers? */ | |
return rtc_currd[tmr]; /* return now avoiding counting catchup tick in calibration */ | |
} | |
rtc_ticks[tmr] = rtc_ticks[tmr] + 1; /* count ticks */ | |
if (rtc_ticks[tmr] < ticksper) { /* 1 sec yet? */ | |
return rtc_currd[tmr]; | |
} | |
rtc_ticks[tmr] = 0; /* reset ticks */ | |
rtc_elapsed[tmr] = rtc_elapsed[tmr] + 1; /* count sec */ | |
if (sim_throt_type != SIM_THROT_NONE) { | |
rtc_gtime[tmr] = sim_gtime(); /* save instruction time */ | |
rtc_currd[tmr] = (int32)(sim_throt_cps / ticksper); /* use throttle calibration */ | |
++rtc_calibrations[tmr]; /* count calibrations */ | |
sim_debug (DBG_CAL, &sim_timer_dev, "using throttle calibrated value - result: %d\n", rtc_currd[tmr]); | |
return rtc_currd[tmr]; | |
} | |
if (!rtc_avail) { /* no timer? */ | |
return rtc_currd[tmr]; | |
} | |
if (sim_calb_tmr != tmr) { | |
rtc_currd[tmr] = (int32)(sim_timer_inst_per_sec()/ticksper); | |
sim_debug (DBG_CAL, &sim_timer_dev, "calibrated calibrated tmr=%d against system tmr=%d, tickper=%d (result: %d)\n", tmr, sim_calb_tmr, ticksper, rtc_currd[tmr]); | |
return rtc_currd[tmr]; | |
} | |
new_rtime = sim_os_msec (); /* wall time */ | |
sim_debug (DBG_TRC, &sim_timer_dev, "sim_rtcn_calb(ticksper=%d, tmr=%d)\n", ticksper, tmr); | |
last_idle_pct = MIN(100,(uint32)(((double)(rtc_clock_time_idled[tmr] - rtc_clock_time_idled_last[tmr])) / 10.0)); | |
rtc_clock_time_idled_last[tmr] = rtc_clock_time_idled[tmr]; | |
if (last_idle_pct > (100 - sim_idle_calib_pct)) { | |
rtc_rtime[tmr] = new_rtime; /* save wall time */ | |
rtc_vtime[tmr] = rtc_vtime[tmr] + 1000; /* adv sim time */ | |
rtc_gtime[tmr] = sim_gtime(); /* save instruction time */ | |
sim_debug (DBG_CAL, &sim_timer_dev, "skipping calibration due to idling - result: %d\n", rtc_currd[tmr]); | |
return rtc_currd[tmr]; /* avoid calibrating idle checks */ | |
} | |
if (new_rtime < rtc_rtime[tmr]) { /* time running backwards? */ | |
rtc_rtime[tmr] = new_rtime; /* reset wall time */ | |
sim_debug (DBG_CAL, &sim_timer_dev, "time running backwards - result: %d\n", rtc_currd[tmr]); | |
return rtc_currd[tmr]; /* can't calibrate */ | |
} | |
++rtc_calibrations[tmr]; /* count calibrations */ | |
delta_rtime = new_rtime - rtc_rtime[tmr]; /* elapsed wtime */ | |
rtc_rtime[tmr] = new_rtime; /* adv wall time */ | |
rtc_vtime[tmr] = rtc_vtime[tmr] + 1000; /* adv sim time */ | |
if (delta_rtime > 30000) { /* gap too big? */ | |
/* This simulator process has somehow been suspended for a significant */ | |
/* amount of time. This will certainly happen if the host system has */ | |
/* slept or hibernated. It also might happen when a simulator */ | |
/* developer stops the simulator at a breakpoint (a process, not simh */ | |
/* breakpoint). To accomodate this, we set the calibration state to */ | |
/* ignore what happened and proceed from here. */ | |
rtc_vtime[tmr] = rtc_rtime[tmr]; /* sync virtual and real time */ | |
rtc_nxintv[tmr] = 1000; /* reset next interval */ | |
rtc_gtime[tmr] = sim_gtime(); /* save instruction time */ | |
sim_debug (DBG_CAL, &sim_timer_dev, "gap too big: delta = %d - result: %d\n", delta_rtime, rtc_currd[tmr]); | |
return rtc_currd[tmr]; /* can't calibr */ | |
} | |
new_gtime = sim_gtime(); | |
if (sim_asynch_timer) { | |
/* An asynchronous clock, merely needs to divide the number of */ | |
/* instructions actually executed by the clock rate. */ | |
new_currd = (int32)((new_gtime - rtc_gtime[tmr])/ticksper); | |
/* avoid excessive swings in the calibrated result */ | |
if (new_currd > 10*rtc_currd[tmr]) /* don't swing big too fast */ | |
new_currd = 10*rtc_currd[tmr]; | |
else | |
if (new_currd < rtc_currd[tmr]/10) /* don't swing small too fast */ | |
new_currd = rtc_currd[tmr]/10; | |
rtc_currd[tmr] = new_currd; | |
rtc_gtime[tmr] = new_gtime; /* save instruction time */ | |
sim_debug (DBG_CAL, &sim_timer_dev, "asynch calibration result: %d\n", rtc_currd[tmr]); | |
return rtc_currd[tmr]; /* calibrated result */ | |
} | |
rtc_gtime[tmr] = new_gtime; /* save instruction time */ | |
/* This self regulating algorithm depends directly on the assumption */ | |
/* that this routine is called back after processing the number of */ | |
/* instructions which was returned the last time it was called. */ | |
if (delta_rtime == 0) /* gap too small? */ | |
rtc_based[tmr] = rtc_based[tmr] * ticksper; /* slew wide */ | |
else rtc_based[tmr] = (int32) (((double) rtc_based[tmr] * (double) rtc_nxintv[tmr]) / | |
((double) delta_rtime)); /* new base rate */ | |
delta_vtime = rtc_vtime[tmr] - rtc_rtime[tmr]; /* gap */ | |
if (delta_vtime > SIM_TMAX) /* limit gap */ | |
delta_vtime = SIM_TMAX; | |
else if (delta_vtime < -SIM_TMAX) | |
delta_vtime = -SIM_TMAX; | |
rtc_nxintv[tmr] = 1000 + delta_vtime; /* next wtime */ | |
rtc_currd[tmr] = (int32) (((double) rtc_based[tmr] * (double) rtc_nxintv[tmr]) / | |
1000.0); /* next delay */ | |
if (rtc_based[tmr] <= 0) /* never negative or zero! */ | |
rtc_based[tmr] = 1; | |
if (rtc_currd[tmr] <= 0) /* never negative or zero! */ | |
rtc_currd[tmr] = 1; | |
sim_debug (DBG_CAL, &sim_timer_dev, "calibrated tmr=%d, tickper=%d (base=%d, nxintv=%u, result: %d)\n", tmr, ticksper, rtc_based[tmr], rtc_nxintv[tmr], rtc_currd[tmr]); | |
AIO_SET_INTERRUPT_LATENCY(rtc_currd[tmr]*ticksper); /* set interrrupt latency */ | |
return rtc_currd[tmr]; | |
} | |
/* Prior interfaces - default to timer 0 */ | |
int32 sim_rtc_init (int32 time) | |
{ | |
return sim_rtcn_init (time, 0); | |
} | |
int32 sim_rtc_calb (int32 ticksper) | |
{ | |
return sim_rtcn_calb (ticksper, 0); | |
} | |
/* sim_timer_init - get minimum sleep time available on this host */ | |
t_bool sim_timer_init (void) | |
{ | |
int tmr; | |
uint32 clock_start, clock_last, clock_now; | |
sim_debug (DBG_TRC, &sim_timer_dev, "sim_timer_init()\n"); | |
for (tmr=0; tmr<SIM_NTIMERS; tmr++) { | |
sim_timer_units[tmr].action = &sim_timer_tick_svc; | |
sim_timer_units[tmr].flags = UNIT_DIS | UNIT_IDLE; | |
} | |
SIM_INTERNAL_UNIT.flags = UNIT_IDLE; | |
sim_register_internal_device (&sim_timer_dev); | |
sim_throttle_unit.action = &sim_throt_svc; | |
sim_throttle_unit.flags = UNIT_DIS; | |
sim_register_internal_device (&sim_throttle_dev); | |
sim_idle_enab = FALSE; /* init idle off */ | |
sim_idle_rate_ms = sim_os_ms_sleep_init (); /* get OS timer rate */ | |
clock_last = clock_start = sim_os_msec (); | |
sim_os_clock_resoluton_ms = 1000; | |
do { | |
uint32 clock_diff; | |
clock_now = sim_os_msec (); | |
clock_diff = clock_now - clock_last; | |
if ((clock_diff > 0) && (clock_diff < sim_os_clock_resoluton_ms)) | |
sim_os_clock_resoluton_ms = clock_diff; | |
clock_last = clock_now; | |
} while (clock_now < clock_start + 100); | |
sim_os_tick_hz = 1000/(sim_os_clock_resoluton_ms * (sim_idle_rate_ms/sim_os_clock_resoluton_ms)); | |
return (sim_idle_rate_ms != 0); | |
} | |
/* sim_timer_idle_capable - tell if the host is Idle capable and what the host OS tick size is */ | |
t_bool sim_timer_idle_capable (uint32 *host_ms_sleep_1, uint32 *host_tick_ms) | |
{ | |
if (host_tick_ms) | |
*host_tick_ms = sim_os_clock_resoluton_ms; | |
if (host_ms_sleep_1) | |
*host_ms_sleep_1 = sim_os_sleep_min_ms; | |
return (sim_idle_rate_ms != 0); | |
} | |
/* sim_show_timers - show running timer information */ | |
t_stat sim_show_timers (FILE* st, DEVICE *dptr, UNIT* uptr, int32 val, CONST char* desc) | |
{ | |
int tmr, clocks; | |
struct timespec now; | |
fprintf (st, "Minimum Host Sleep Time: %d ms (%dHz)\n", sim_os_sleep_min_ms, sim_os_tick_hz); | |
if (sim_os_sleep_min_ms != sim_os_sleep_inc_ms) | |
fprintf (st, "Minimum Host Sleep Incr Time: %d ms\n", sim_os_sleep_inc_ms); | |
fprintf (st, "Host Clock Resolution: %d ms\n", sim_os_clock_resoluton_ms); | |
if (sim_idle_enab) | |
fprintf (st, "Time before Idling starts: %d seconds\n", sim_idle_stable); | |
fprintf (st, "Execution Rate: %.0f instructios/sec\n", sim_timer_inst_per_sec ()); | |
fprintf (st, "Calibrated Timer: %s\n", (sim_calb_tmr == -1) ? "Undetermined" : | |
((sim_calb_tmr == SIM_NTIMERS) ? "Internal Timer" : | |
(sim_clock_unit[sim_calb_tmr] ? sim_uname(sim_clock_unit[sim_calb_tmr]) : ""))); | |
fprintf (st, "\n"); | |
for (tmr=clocks=0; tmr<=SIM_NTIMERS; ++tmr) { | |
if (0 == rtc_initd[tmr]) | |
continue; | |
if (sim_clock_unit[tmr]) { | |
++clocks; | |
fprintf (st, "%s clock device is %s\n", sim_name, sim_uname(sim_clock_unit[tmr])); | |
} | |
else { | |
if (tmr == SIM_NTIMERS) | |
fprintf (st, "Internal Calibrated Timer\n"); | |
} | |
fprintf (st, "%s%sTimer %d:\n", sim_asynch_timer ? "Asynchronous " : "", rtc_hz[tmr] ? "Calibrated " : "Uncalibrated ", tmr); | |
if (rtc_hz[tmr]) { | |
fprintf (st, " Running at: %d Hz\n", rtc_hz[tmr]); | |
fprintf (st, " Tick Size: %s\n", sim_fmt_secs (rtc_clock_tick_size[tmr])); | |
fprintf (st, " Ticks in current second: %d\n", rtc_ticks[tmr]); | |
} | |
fprintf (st, " Seconds Running: %u (%s)\n", rtc_elapsed[tmr], sim_fmt_secs ((double)rtc_elapsed[tmr])); | |
fprintf (st, " Calibrations: %u\n", rtc_calibrations[tmr]); | |
if (rtc_gtime[tmr]) | |
fprintf (st, " Instruction Time: %.0f\n", rtc_gtime[tmr]); | |
if ((!sim_asynch_timer) && (sim_throt_type == SIM_THROT_NONE)) { | |
fprintf (st, " Real Time: %u\n", rtc_rtime[tmr]); | |
fprintf (st, " Virtual Time: %u\n", rtc_vtime[tmr]); | |
fprintf (st, " Next Interval: %u\n", rtc_nxintv[tmr]); | |
fprintf (st, " Base Tick Delay: %d\n", rtc_based[tmr]); | |
fprintf (st, " Initial Insts Per Tick: %d\n", rtc_initd[tmr]); | |
} | |
fprintf (st, " Current Insts Per Tick: %d\n", rtc_currd[tmr]); | |
fprintf (st, " Initializations: %d\n", rtc_calib_initializations[tmr]); | |
fprintf (st, " Total Ticks: %u\n", rtc_clock_ticks_tot[tmr]+rtc_clock_ticks[tmr]); | |
if (rtc_clock_skew_max[tmr] != 0.0) | |
fprintf (st, " Peak Clock Skew: %s%s\n", sim_fmt_secs (fabs(rtc_clock_skew_max[tmr])), (rtc_clock_skew_max[tmr] < 0) ? " fast" : " slow"); | |
if (rtc_calib_ticks_acked[tmr]) | |
fprintf (st, " Ticks Acked: %u\n", rtc_calib_ticks_acked[tmr]); | |
if (rtc_calib_ticks_acked_tot[tmr]+rtc_calib_ticks_acked[tmr] != rtc_calib_ticks_acked[tmr]) | |
fprintf (st, " Total Ticks Acked: %u\n", rtc_calib_ticks_acked_tot[tmr]+rtc_calib_ticks_acked[tmr]); | |
if (rtc_calib_tick_time[tmr]) | |
fprintf (st, " Tick Time: %s\n", sim_fmt_secs (rtc_calib_tick_time[tmr])); | |
if (rtc_calib_tick_time_tot[tmr]+rtc_calib_tick_time[tmr] != rtc_calib_tick_time[tmr]) | |
fprintf (st, " Total Tick Time: %s\n", sim_fmt_secs (rtc_calib_tick_time_tot[tmr]+rtc_calib_tick_time[tmr])); | |
if (rtc_clock_catchup_ticks[tmr]) | |
fprintf (st, " Catchup Ticks Sched: %u\n", rtc_clock_catchup_ticks[tmr]); | |
if (rtc_clock_catchup_ticks_tot[tmr]+rtc_clock_catchup_ticks[tmr] != rtc_clock_catchup_ticks[tmr]) | |
fprintf (st, " Total Catchup Ticks Sched:%u\n", rtc_clock_catchup_ticks_tot[tmr]+rtc_clock_catchup_ticks[tmr]); | |
clock_gettime (CLOCK_REALTIME, &now); | |
fprintf (st, " Wall Clock Time Now: %8.8s.%03d\n", 11+ctime(&now.tv_sec), (int)(now.tv_nsec/1000000)); | |
if (rtc_clock_catchup_eligible[tmr]) { | |
_double_to_timespec (&now, rtc_clock_catchup_base_time[tmr]+rtc_calib_tick_time[tmr]); | |
fprintf (st, " Catchup Tick Time: %8.8s.%03d\n", 11+ctime(&now.tv_sec), (int)(now.tv_nsec/1000000)); | |
_double_to_timespec (&now, rtc_clock_catchup_base_time[tmr]); | |
fprintf (st, " Catchup Base Time: %8.8s.%03d\n", 11+ctime(&now.tv_sec), (int)(now.tv_nsec/1000000)); | |
} | |
if (rtc_clock_time_idled[tmr]) | |
fprintf (st, " Total Time Idled: %s\n", sim_fmt_secs (rtc_clock_time_idled[tmr]/1000.0)); | |
} | |
if (clocks == 0) | |
fprintf (st, "%s clock device is not specified, co-scheduling is unavailable\n", sim_name); | |
return SCPE_OK; | |
} | |
t_stat sim_show_clock_queues (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) | |
{ | |
int tmr; | |
#if defined (SIM_ASYNCH_CLOCKS) | |
pthread_mutex_lock (&sim_timer_lock); | |
if (sim_asynch_timer) { | |
const char *tim; | |
if (sim_wallclock_queue == QUEUE_LIST_END) | |
fprintf (st, "%s wall clock event queue empty\n", sim_name); | |
else { | |
fprintf (st, "%s wall clock event queue status\n", sim_name); | |
for (uptr = sim_wallclock_queue; uptr != QUEUE_LIST_END; uptr = uptr->a_next) { | |
if ((dptr = find_dev_from_unit (uptr)) != NULL) { | |
fprintf (st, " %s", sim_dname (dptr)); | |
if (dptr->numunits > 1) | |
fprintf (st, " unit %d", (int32) (uptr - dptr->units)); | |
} | |
else | |
fprintf (st, " Unknown"); | |
tim = sim_fmt_secs(uptr->a_usec_delay/1000000.0); | |
fprintf (st, " after %s\n", tim); | |
} | |
} | |
} | |
#endif /* SIM_ASYNCH_CLOCKS */ | |
for (tmr=0; tmr<=SIM_NTIMERS; ++tmr) { | |
if (sim_clock_unit[tmr] == NULL) | |
continue; | |
if (sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) { | |
int32 accum; | |
fprintf (st, "%s clock (%s) co-schedule event queue status\n", | |
sim_name, sim_uname(sim_clock_unit[tmr])); | |
accum = 0; | |
for (uptr = sim_clock_cosched_queue[tmr]; uptr != QUEUE_LIST_END; uptr = uptr->next) { | |
if ((dptr = find_dev_from_unit (uptr)) != NULL) { | |
fprintf (st, " %s", sim_dname (dptr)); | |
if (dptr->numunits > 1) | |
fprintf (st, " unit %d", (int32) (uptr - dptr->units)); | |
} | |
else | |
fprintf (st, " Unknown"); | |
if (accum > 0) | |
fprintf (st, " after %d ticks", accum); | |
fprintf (st, "\n"); | |
accum = accum + uptr->time; | |
} | |
} | |
} | |
#if defined (SIM_ASYNCH_IO) | |
pthread_mutex_unlock (&sim_timer_lock); | |
#endif /* SIM_ASYNCH_IO */ | |
return SCPE_OK; | |
} | |
REG sim_timer_reg[] = { | |
{ DRDATAD (TICKS_PER_SEC, rtc_hz[0], 32, "Ticks Per Second"), PV_RSPC|REG_RO}, | |
{ DRDATAD (INSTS_PER_TICK, rtc_currd[0], 32, "Instructions Per Tick"), PV_RSPC|REG_RO}, | |
{ FLDATAD (IDLE_ENAB, sim_idle_enab, 0, "Idle Enabled"), REG_RO}, | |
{ DRDATAD (IDLE_RATE_MS, sim_idle_rate_ms, 32, "Idle Rate Milliseconds"), PV_RSPC|REG_RO}, | |
{ DRDATAD (OS_SLEEP_MIN_MS, sim_os_sleep_min_ms, 32, "Minimum Sleep Resolution"), PV_RSPC|REG_RO}, | |
{ DRDATAD (OS_SLEEP_INC_MS, sim_os_sleep_inc_ms, 32, "Minimum Sleep Increment Resolution"), PV_RSPC|REG_RO}, | |
{ DRDATAD (IDLE_STABLE, sim_idle_stable, 32, "Idle Stable"), PV_RSPC|REG_RO}, | |
{ DRDATAD (IDLE_CALIB_PCT, sim_idle_calib_pct, 32, "Minimum Idled percentage allowing calibration"), PV_RSPC|REG_RO}, | |
{ DRDATAD (TMR, sim_calb_tmr, 32, "Calibrated Timer"), PV_RSPC|REG_RO}, | |
{ NULL } | |
}; | |
REG sim_throttle_reg[] = { | |
{ DRDATAD (THROT_MS_START, sim_throt_ms_start, 32, ""), PV_RSPC|REG_RO}, | |
{ DRDATAD (THROT_MS_STOP, sim_throt_ms_stop, 32, ""), PV_RSPC|REG_RO}, | |
{ DRDATAD (THROT_TYPE, sim_throt_type, 32, ""), PV_RSPC|REG_RO}, | |
{ DRDATAD (THROT_VAL, sim_throt_val, 32, ""), PV_RSPC|REG_RO}, | |
{ DRDATAD (THROT_STATE, sim_throt_state, 32, ""), PV_RSPC|REG_RO}, | |
{ DRDATAD (THROT_SLEEP_TIME, sim_throt_sleep_time, 32, ""), PV_RSPC|REG_RO}, | |
{ DRDATAD (THROT_WAIT, sim_throt_wait, 32, ""), PV_RSPC|REG_RO}, | |
{ NULL } | |
}; | |
/* Clear, Set and show catchup */ | |
/* Clear catchup */ | |
t_stat sim_timer_clr_catchup (UNIT *uptr, int32 val, CONST char *cptr, void *desc) | |
{ | |
if (sim_catchup_ticks) | |
sim_catchup_ticks = FALSE; | |
return SCPE_OK; | |
} | |
t_stat sim_timer_set_catchup (UNIT *uptr, int32 val, CONST char *cptr, void *desc) | |
{ | |
if (!sim_catchup_ticks) | |
sim_catchup_ticks = TRUE; | |
return SCPE_OK; | |
} | |
t_stat sim_timer_show_catchup (FILE *st, UNIT *uptr, int32 val, CONST void *desc) | |
{ | |
fprintf (st, "Calibrated Ticks%s", sim_catchup_ticks ? " with Catchup Ticks" : ""); | |
return SCPE_OK; | |
} | |
/* Set and show idle calibration threshold */ | |
t_stat sim_timer_set_idle_pct (UNIT *uptr, int32 val, CONST char *cptr, void *desc) | |
{ | |
t_stat r; | |
int32 newpct; | |
if (cptr == NULL) | |
return SCPE_ARG; | |
newpct = (int32) get_uint (cptr, 10, 100, &r); | |
if ((r != SCPE_OK) || (newpct == (int32)(sim_idle_calib_pct))) | |
return r; | |
if (newpct == 0) | |
return SCPE_ARG; | |
sim_idle_calib_pct = (uint32)newpct; | |
return SCPE_OK; | |
} | |
t_stat sim_timer_show_idle_pct (FILE *st, UNIT *uptr, int32 val, CONST void *desc) | |
{ | |
if (sim_idle_calib_pct == 0) | |
fprintf (st, "Calibration Always"); | |
else | |
fprintf (st, "Calibration Skipped when Idle exceeds %d%%", sim_idle_calib_pct); | |
return SCPE_OK; | |
} | |
/* Clear, Set and show asynch */ | |
/* Clear asynch */ | |
t_stat sim_timer_clr_async (UNIT *uptr, int32 val, CONST char *cptr, void *desc) | |
{ | |
if (sim_asynch_timer) { | |
sim_asynch_timer = FALSE; | |
sim_timer_change_asynch (); | |
} | |
return SCPE_OK; | |
} | |
t_stat sim_timer_set_async (UNIT *uptr, int32 val, CONST char *cptr, void *desc) | |
{ | |
if (sim_asynch_enabled && (!sim_asynch_timer)) { | |
sim_asynch_timer = TRUE; | |
sim_timer_change_asynch (); | |
} | |
return SCPE_OK; | |
} | |
t_stat sim_timer_show_async (FILE *st, UNIT *uptr, int32 val, CONST void *desc) | |
{ | |
fprintf (st, "%s", sim_asynch_timer ? "Asynchronous" : "Synchronous"); | |
return SCPE_OK; | |
} | |
MTAB sim_timer_mod[] = { | |
#if defined (SIM_ASYNCH_CLOCKS) | |
{ MTAB_VDV, MTAB_VDV, "ASYNCH", "ASYNCH", &sim_timer_set_async, &sim_timer_show_async, NULL, "Enables/Displays Asynchronous Timer mode" }, | |
{ MTAB_VDV, 0, NULL, "NOASYNCH", &sim_timer_clr_async, NULL, NULL, "Disables Asynchronous Timer operation" }, | |
#endif | |
{ MTAB_VDV, MTAB_VDV, "CATCHUP", "CATCHUP", &sim_timer_set_catchup, &sim_timer_show_catchup, NULL, "Enables/Displays Clock Tick catchup mode" }, | |
{ MTAB_VDV, 0, NULL, "NOCATCHUP", &sim_timer_clr_catchup, NULL, NULL, "Disables Clock Tick catchup mode" }, | |
{ MTAB_XTD|MTAB_VDV|MTAB_VALR, 0, "CALIB", "CALIB=nn", &sim_timer_set_idle_pct, &sim_timer_show_idle_pct, NULL, "Configure/Display Calibration Idle Suppression %" }, | |
{ 0 }, | |
}; | |
static t_stat sim_timer_clock_reset (DEVICE *dptr); | |
DEVICE sim_timer_dev = { | |
"TIMER", sim_timer_units, sim_timer_reg, sim_timer_mod, | |
SIM_NTIMERS+1, 0, 0, 0, 0, 0, | |
NULL, NULL, &sim_timer_clock_reset, NULL, NULL, NULL, | |
NULL, DEV_DEBUG | DEV_NOSAVE, 0, sim_timer_debug}; | |
DEVICE sim_throttle_dev = { | |
"THROTTLE", &sim_throttle_unit, sim_throttle_reg, NULL, 1}; | |
/* sim_idle - idle simulator until next event or for specified interval | |
Inputs: | |
tmr = calibrated timer to use | |
Must solve the linear equation | |
ms_to_wait = w * ms_per_wait | |
Or | |
w = ms_to_wait / ms_per_wait | |
*/ | |
t_bool sim_idle (uint32 tmr, t_bool sin_cyc) | |
{ | |
static uint32 cyc_ms = 0; | |
uint32 w_ms, w_idle, act_ms; | |
int32 act_cyc; | |
if (rtc_clock_catchup_pending[tmr]) { /* Catchup clock tick pending? */ | |
sim_debug (DBG_CAL, &sim_timer_dev, "sim_idle(tmr=%d, sin_cyc=%d) - accelerating pending catch-up tick before idling %s\n", tmr, sin_cyc, sim_uname (sim_clock_unit[tmr])); | |
sim_activate_abs (&sim_timer_units[tmr], 0); | |
if (sin_cyc) | |
sim_interval = sim_interval - 1; | |
return FALSE; | |
} | |
if ((!sim_idle_enab) || /* idling disabled */ | |
((sim_clock_queue == QUEUE_LIST_END) && /* or clock queue empty? */ | |
(!sim_asynch_timer))|| /* and not asynch? */ | |
((sim_clock_queue != QUEUE_LIST_END) && /* or clock queue not empty */ | |
((sim_clock_queue->flags & UNIT_IDLE) == 0))|| /* and event not idle-able? */ | |
(rtc_elapsed[tmr] < sim_idle_stable)) { /* or timer not stable? */ | |
sim_debug (DBG_IDL, &sim_timer_dev, "Can't idle: %s - elapsed: %d.%03d\n", !sim_idle_enab ? "idle disabled" : | |
((rtc_elapsed[tmr] < sim_idle_stable) ? "not stable" : | |
((sim_clock_queue != QUEUE_LIST_END) ? sim_uname (sim_clock_queue) : | |
"")), rtc_elapsed[tmr], rtc_ticks[tmr]); | |
if (sin_cyc) | |
sim_interval = sim_interval - 1; | |
return FALSE; | |
} | |
if (_rtcn_tick_catchup_check(tmr, 0)) { | |
sim_debug (DBG_CAL, &sim_timer_dev, "sim_idle(tmr=%d, sin_cyc=%d) - rescheduling catchup tick for %s\n", tmr, sin_cyc, sim_uname (sim_clock_unit[tmr])); | |
if (sin_cyc) | |
sim_interval = sim_interval - 1; | |
return FALSE; | |
} | |
/* | |
When a simulator is in an instruction path (or under other conditions | |
which would indicate idling), the countdown of sim_interval will not | |
be happening at a pace which is consistent with the rate it happens | |
when not in the 'idle capable' state. The consequence of this is that | |
the clock calibration may produce calibrated results which vary much | |
more than they do when not in the idle able state. Sim_idle also uses | |
the calibrated tick size to approximate an adjustment to sim_interval | |
to reflect the number of instructions which would have executed during | |
the actual idle time, so consistent calibrated numbers produce better | |
adjustments. | |
To negate this effect, we accumulate the time actually idled here. | |
sim_rtcn_calb compares the accumulated idle time during the most recent | |
second and if it exceeds the percentage defined by and sim_idle_calib_pct | |
calibration is suppressed. Thus recalibration only happens if things | |
didn't idle too much. | |
we also check check sim_idle_enab above so that all simulators can avoid | |
directly checking sim_idle_enab before calling sim_idle so that all of | |
the bookkeeping on sim_idle_idled is done here in sim_timer where it | |
means something, while not idling when it isn't enabled. | |
*/ | |
//sim_idle_idled = TRUE; /* record idle attempt */ | |
sim_debug (DBG_TRC, &sim_timer_dev, "sim_idle(tmr=%d, sin_cyc=%d)\n", tmr, sin_cyc); | |
cyc_ms = (rtc_currd[tmr] * rtc_hz[tmr]) / 1000; /* cycles per msec */ | |
if ((sim_idle_rate_ms == 0) || (cyc_ms == 0)) { /* not possible? */ | |
if (sin_cyc) | |
sim_interval = sim_interval - 1; | |
sim_debug (DBG_IDL, &sim_timer_dev, "not possible %d - %d\n", sim_idle_rate_ms, cyc_ms); | |
return FALSE; | |
} | |
w_ms = (uint32) sim_interval / cyc_ms; /* ms to wait */ | |
if (sim_os_tick_hz < rtc_hz[tmr]) | |
w_idle = (w_ms * 1000); /* intervals to wait * 1000 */ | |
else | |
w_idle = (w_ms * 1000) / sim_idle_rate_ms; /* intervals to wait * 1000 */ | |
if (w_idle < 500) { /* shorter than 1/2 a minimum sleep? */ | |
if (sin_cyc) | |
sim_interval = sim_interval - 1; | |
sim_debug (DBG_IDL, &sim_timer_dev, "no wait\n"); | |
return FALSE; | |
} | |
if (sim_clock_queue == QUEUE_LIST_END) | |
sim_debug (DBG_IDL, &sim_timer_dev, "sleeping for %d ms - pending event in %d instructions\n", w_ms, sim_interval); | |
else | |
sim_debug (DBG_IDL, &sim_timer_dev, "sleeping for %d ms - pending event on %s in %d instructions\n", w_ms, sim_uname(sim_clock_queue), sim_interval); | |
act_ms = SIM_IDLE_MS_SLEEP (w_ms); /* wait */ | |
rtc_clock_time_idled[tmr] += act_ms; | |
act_cyc = act_ms * cyc_ms; | |
if (act_ms < w_ms) /* awakened early? */ | |
act_cyc += (cyc_ms * sim_idle_rate_ms) / 2; /* account for half an interval's worth of cycles */ | |
if (sim_interval > act_cyc) | |
sim_interval = sim_interval - act_cyc; /* count down sim_interval */ | |
else | |
sim_interval = 0; /* or fire immediately */ | |
if (sim_clock_queue == QUEUE_LIST_END) | |
sim_debug (DBG_IDL, &sim_timer_dev, "slept for %d ms - pending event in %d instructions\n", act_ms, sim_interval); | |
else | |
sim_debug (DBG_IDL, &sim_timer_dev, "slept for %d ms - pending event on %s in %d instructions\n", act_ms, sim_uname(sim_clock_queue), sim_interval); | |
return TRUE; | |
} | |
/* Set idling - implicitly disables throttling */ | |
t_stat sim_set_idle (UNIT *uptr, int32 val, CONST char *cptr, void *desc) | |
{ | |
t_stat r; | |
uint32 v; | |
if (cptr && *cptr) { | |
v = (uint32) get_uint (cptr, 10, SIM_IDLE_STMAX, &r); | |
if ((r != SCPE_OK) || (v < SIM_IDLE_STMIN)) | |
return sim_messagef (SCPE_ARG, "Invalid Stability value: %s. Valid values range from %d to %d.\n", cptr, SIM_IDLE_STMIN, SIM_IDLE_STMAX); | |
sim_idle_stable = v; | |
} | |
sim_idle_enab = TRUE; | |
if (sim_throt_type != SIM_THROT_NONE) { | |
sim_set_throt (0, NULL); | |
sim_printf ("Throttling disabled\n"); | |
} | |
return SCPE_OK; | |
} | |
/* Clear idling */ | |
t_stat sim_clr_idle (UNIT *uptr, int32 val, CONST char *cptr, void *desc) | |
{ | |
sim_idle_enab = FALSE; | |
return SCPE_OK; | |
} | |
/* Show idling */ | |
t_stat sim_show_idle (FILE *st, UNIT *uptr, int32 val, CONST void *desc) | |
{ | |
if (sim_idle_enab) | |
fprintf (st, "idle enabled"); | |
else | |
fprintf (st, "idle disabled"); | |
if (sim_switches & SWMASK ('D')) | |
fprintf (st, ", stability wait = %ds, minimum sleep resolution = %dms", sim_idle_stable, sim_os_sleep_min_ms); | |
return SCPE_OK; | |
} | |
/* Throttling package */ | |
t_stat sim_set_throt (int32 arg, CONST char *cptr) | |
{ | |
CONST char *tptr; | |
char c; | |
t_value val, val2 = 0; | |
if (arg == 0) { | |
if ((cptr != NULL) && (*cptr != 0)) | |
return sim_messagef (SCPE_ARG, "Unexpected NOTHROTTLE argument: %s\n", cptr); | |
sim_throt_type = SIM_THROT_NONE; | |
sim_throt_cancel (); | |
} | |
else if (sim_idle_rate_ms == 0) { | |
return sim_messagef (SCPE_NOFNC, "Throttling is not available, Minimum OS sleep time is %dms\n", sim_os_sleep_min_ms); | |
} | |
else { | |
if (*cptr == '\0') | |
return sim_messagef (SCPE_ARG, "Missing throttle mode specification\n"); | |
val = strtotv (cptr, &tptr, 10); | |
if (cptr == tptr) | |
return sim_messagef (SCPE_ARG, "Invalid throttle specification: %s\n", cptr); | |
sim_throt_sleep_time = sim_idle_rate_ms; | |
c = (char)toupper (*tptr++); | |
if (c == '/') { | |
val2 = strtotv (tptr, &tptr, 10); | |
if ((*tptr != '\0') || (val == 0)) | |
return sim_messagef (SCPE_ARG, "Invalid throttle delay specifier: %s\n", cptr); | |
} | |
if (c == 'M') | |
sim_throt_type = SIM_THROT_MCYC; | |
else if (c == 'K') | |
sim_throt_type = SIM_THROT_KCYC; | |
else if ((c == '%') && (val > 0) && (val < 100)) | |
sim_throt_type = SIM_THROT_PCT; | |
else if ((c == '/') && (val2 != 0)) | |
sim_throt_type = SIM_THROT_SPC; | |
else return sim_messagef (SCPE_ARG, "Invalid throttle specification: %s\n", cptr); | |
if (sim_idle_enab) { | |
sim_printf ("Idling disabled\n"); | |
sim_clr_idle (NULL, 0, NULL, NULL); | |
} | |
sim_throt_val = (uint32) val; | |
if (sim_throt_type == SIM_THROT_SPC) { | |
if (val2 >= sim_idle_rate_ms) | |
sim_throt_sleep_time = (uint32) val2; | |
else { | |
if ((sim_idle_rate_ms % val2) == 0) { | |
sim_throt_sleep_time = sim_idle_rate_ms; | |
sim_throt_val = (uint32) (val * (sim_idle_rate_ms / val2)); | |
} | |
else { | |
sim_throt_sleep_time = sim_idle_rate_ms; | |
sim_throt_val = (uint32) (val * (1 + (sim_idle_rate_ms / val2))); | |
} | |
} | |
} | |
} | |
return SCPE_OK; | |
} | |
t_stat sim_show_throt (FILE *st, DEVICE *dnotused, UNIT *unotused, int32 flag, CONST char *cptr) | |
{ | |
if (sim_idle_rate_ms == 0) | |
fprintf (st, "Throttling not available\n"); | |
else { | |
switch (sim_throt_type) { | |
case SIM_THROT_MCYC: | |
fprintf (st, "Throttle = %d megacycles\n", sim_throt_val); | |
if (sim_throt_wait) | |
fprintf (st, "Throttling achieved by sleeping for %d ms every %d cycles\n", sim_throt_sleep_time, sim_throt_wait); | |
break; | |
case SIM_THROT_KCYC: | |
fprintf (st, "Throttle = %d kilocycles\n", sim_throt_val); | |
if (sim_throt_wait) | |
fprintf (st, "Throttling achieved by sleeping for %d ms every %d cycles\n", sim_throt_sleep_time, sim_throt_wait); | |
break; | |
case SIM_THROT_PCT: | |
fprintf (st, "Throttle = %d%%\n", sim_throt_val); | |
if (sim_throt_wait) | |
fprintf (st, "Throttling achieved by sleeping for %d ms every %d cycles\n", sim_throt_sleep_time, sim_throt_wait); | |
break; | |
case SIM_THROT_SPC: | |
fprintf (st, "Throttle = %d ms every %d cycles\n", sim_throt_sleep_time, sim_throt_val); | |
break; | |
default: | |
fprintf (st, "Throttling disabled\n"); | |
break; | |
} | |
} | |
return SCPE_OK; | |
} | |
void sim_throt_sched (void) | |
{ | |
sim_throt_state = 0; | |
if (sim_throt_type) | |
sim_activate (&sim_throttle_unit, SIM_THROT_WINIT); | |
} | |
void sim_throt_cancel (void) | |
{ | |
sim_cancel (&sim_throttle_unit); | |
} | |
/* Throttle service | |
Throttle service has three distinct states used while dynamically | |
determining a throttling interval: | |
0 take initial measurement | |
1 take final measurement, calculate wait values | |
2 periodic waits to slow down the CPU | |
*/ | |
t_stat sim_throt_svc (UNIT *uptr) | |
{ | |
uint32 delta_ms; | |
double a_cps, d_cps; | |
if (sim_throt_type == SIM_THROT_SPC) { /* Non dynamic? */ | |
sim_throt_state = 2; /* force state */ | |
sim_throt_wait = sim_throt_val; | |
} | |
switch (sim_throt_state) { | |
case 0: /* take initial reading */ | |
sim_throt_ms_start = sim_os_msec (); | |
sim_throt_inst_start = sim_gtime(); | |
sim_throt_wait = SIM_THROT_WST; | |
sim_throt_state = 1; /* next state */ | |
break; /* reschedule */ | |
case 1: /* take final reading */ | |
sim_throt_ms_stop = sim_os_msec (); | |
delta_ms = sim_throt_ms_stop - sim_throt_ms_start; | |
if (delta_ms < SIM_THROT_MSMIN) { /* not enough time? */ | |
if (sim_throt_wait >= 100000000) { /* too many inst? */ | |
sim_throt_state = 0; /* fails in 32b! */ | |
return SCPE_OK; | |
} | |
sim_throt_wait = sim_throt_wait * SIM_THROT_WMUL; | |
sim_throt_ms_start = sim_throt_ms_stop; | |
sim_throt_inst_start = sim_gtime(); | |
} | |
else { /* long enough */ | |
a_cps = ((double) sim_throt_wait) * 1000.0 / (double) delta_ms; | |
if (sim_throt_type == SIM_THROT_MCYC) /* calc desired cps */ | |
d_cps = (double) sim_throt_val * 1000000.0; | |
else if (sim_throt_type == SIM_THROT_KCYC) | |
d_cps = (double) sim_throt_val * 1000.0; | |
else d_cps = (a_cps * ((double) sim_throt_val)) / 100.0; | |
if (d_cps >= a_cps) { | |
sim_throt_sched (); /* start over */ | |
return SCPE_OK; | |
} | |
sim_throt_wait = (int32) /* time between waits */ | |
((a_cps * d_cps * ((double) sim_idle_rate_ms)) / | |
(1000.0 * (a_cps - d_cps))); | |
if (sim_throt_wait < SIM_THROT_WMIN) { /* not long enough? */ | |
sim_throt_sched (); /* start over */ | |
return SCPE_OK; | |
} | |
sim_throt_ms_start = sim_throt_ms_stop; | |
sim_throt_inst_start = sim_gtime(); | |
sim_throt_state = 2; | |
sim_debug (DBG_THR, &sim_timer_dev, "sim_throt_svc() Throttle values a_cps = %f, d_cps = %f, wait = %d\n", | |
a_cps, d_cps, sim_throt_wait); | |
sim_throt_cps = (int32)d_cps; /* save the desired rate */ | |
} | |
break; | |
case 2: /* throttling */ | |
SIM_IDLE_MS_SLEEP (sim_throt_sleep_time); | |
delta_ms = sim_os_msec () - sim_throt_ms_start; | |
if (sim_throt_type != SIM_THROT_SPC) { /* when not dynamic throttling */ | |
if (delta_ms >= 10000) { /* recompute every 10 sec */ | |
double delta_insts = sim_gtime() - sim_throt_inst_start; | |
a_cps = (delta_insts * 1000.0) / (double) delta_ms; | |
if (sim_throt_type == SIM_THROT_MCYC) /* calc desired cps */ | |
d_cps = (double) sim_throt_val * 1000000.0; | |
else if (sim_throt_type == SIM_THROT_KCYC) | |
d_cps = (double) sim_throt_val * 1000.0; | |
else d_cps = (a_cps * ((double) sim_throt_val)) / 100.0; | |
if (fabs(100.0 * (d_cps - a_cps) / a_cps) > (double)SIM_THROT_DRIFT_PCT) { | |
sim_throt_wait = sim_throt_val; | |
sim_throt_state = 1; /* next state to recalibrate */ | |
sim_debug (DBG_THR, &sim_timer_dev, "sim_throt_svc() Recalibrating throttle based on values a_cps = %f, d_cps = %f\n", | |
a_cps, d_cps); | |
} | |
sim_throt_ms_start = sim_os_msec (); | |
sim_throt_inst_start = sim_gtime(); | |
} | |
} | |
else /* record instruction rate */ | |
sim_throt_cps = (int32)((1000.0 * sim_throt_val) / (double)delta_ms); | |
break; | |
} | |
sim_activate (uptr, sim_throt_wait); /* reschedule */ | |
return SCPE_OK; | |
} | |
/* Clock assist activites */ | |
t_stat sim_timer_tick_svc (UNIT *uptr) | |
{ | |
int tmr = (int)(sim_timer_units-uptr); | |
t_stat stat; | |
rtc_clock_ticks[tmr] += 1; | |
rtc_calib_tick_time[tmr] += rtc_clock_tick_size[tmr]; | |
/* | |
* Some devices may depend on executing during the same instruction or | |
* immediately after the clock tick event. To satisfy this, we directly | |
* run the clock event here and if it completes successfully, schedule any | |
* currently coschedule units to run now. Ticks should never return a | |
* non-success status, while co-schedule activities might, so they are | |
* queued to run from sim_process_event | |
*/ | |
sim_debug (DBG_QUE, &sim_timer_dev, "sim_timer_tick_svc - scheduling %s\n", sim_uname (sim_clock_unit[tmr])); | |
if (sim_clock_unit[tmr]->action == NULL) | |
return SCPE_IERR; | |
stat = sim_clock_unit[tmr]->action (sim_clock_unit[tmr]); | |
--sim_cosched_interval[tmr]; /* Countdown ticks */ | |
if (stat == SCPE_OK) { | |
if (rtc_clock_catchup_eligible[tmr]) { /* calibration started? */ | |
struct timespec now; | |
double skew; | |
clock_gettime(CLOCK_REALTIME, &now); | |
skew = (_timespec_to_double(&now) - (rtc_calib_tick_time[tmr]+rtc_clock_catchup_base_time[tmr])); | |
if (fabs(skew) > fabs(rtc_clock_skew_max[tmr])) | |
rtc_clock_skew_max[tmr] = skew; | |
} | |
while ((sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) && | |
(sim_cosched_interval[tmr] < sim_clock_cosched_queue[tmr]->time)) { | |
UNIT *cptr = sim_clock_cosched_queue[tmr]; | |
sim_clock_cosched_queue[tmr] = cptr->next; | |
cptr->next = NULL; | |
cptr->cancel = NULL; | |
sim_debug (DBG_QUE, &sim_timer_dev, "sim_timer_tick_svc(tmr=%d) - coactivating %s\n", tmr, sim_uname (cptr)); | |
_sim_activate (cptr, 0); | |
} | |
if (sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) | |
sim_cosched_interval[tmr] = sim_clock_cosched_queue[tmr]->time; | |
else | |
sim_cosched_interval[tmr] = 0; | |
} | |
sim_timer_activate_after (uptr, 1000000/rtc_hz[tmr]); | |
return stat; | |
} | |
void sim_rtcn_get_time (struct timespec *now, int tmr) | |
{ | |
sim_debug (DBG_CAL, &sim_timer_dev, "sim_rtcn_get_time(tmr=%d)\n", tmr); | |
clock_gettime (CLOCK_REALTIME, now); | |
} | |
/* | |
* If the host system has a relatively large clock tick (as compared to | |
* the desired simulated hz) ticks will naturally be scheduled late and | |
* these delays will accumulate. The net result will be unreasonably | |
* slow ticks being delivered to the simulated system. | |
* Additionally, when a simulator is idling and/or throttling, it will | |
* deliberately call sim_os_ms_sleep and those sleep operations will be | |
* variable and subject to the host system's minimum sleep resolution | |
* which can exceed the desired sleep interval and add to the concept | |
* of slow tick delivery to the simulated system. | |
* We accomodate these problems and make up for lost ticks by injecting | |
* catch-up ticks to the simulator. | |
* | |
* We avoid excessive co-scheduled polling during these catch-up ticks | |
* to minimize what is likely excessive overhead, thus 'coschedule | |
* polling' only occurs on every fourth clock tick when processing | |
* catch-up ticks. | |
* | |
* When necessary, catch-up ticks are scheduled to run under one | |
* of two conditions: | |
* 1) after indicated number of instructions in a call by the simulator | |
* to sim_rtcn_tick_ack. sim_rtcn_tick_ack exists to provide a | |
* mechanism to inform the simh timer facilities when the simulated | |
* system has accepted the most recent clock tick interrupt. | |
* 2) immediately when the simulator calls sim_idle | |
*/ | |
/* _rtcn_tick_catchup_check - idle simulator until next event or for specified interval | |
Inputs: | |
tmr = calibrated timer to check/schedule | |
time = instruction delay for next tick | |
Returns TRUE if a catchup tick has been scheduled | |
*/ | |
static t_bool _rtcn_tick_catchup_check (int32 tmr, int32 time) | |
{ | |
double tnow; | |
if ((!sim_catchup_ticks) || | |
((tmr < 0) || (tmr >= SIM_NTIMERS))) | |
return FALSE; | |
tnow = sim_timenow_double(); | |
if (sim_catchup_ticks && | |
(!rtc_clock_catchup_eligible[tmr])) { | |
rtc_clock_catchup_base_time[tmr] = tnow; | |
rtc_clock_ticks_tot[tmr] += rtc_clock_ticks[tmr]; | |
rtc_clock_ticks[tmr] = 0; | |
rtc_calib_tick_time_tot[tmr] += rtc_calib_tick_time[tmr]; | |
rtc_calib_tick_time[tmr] = 0.0; | |
rtc_clock_catchup_ticks_tot[tmr] += rtc_clock_catchup_ticks[tmr]; | |
rtc_clock_catchup_ticks[tmr] = 0; | |
rtc_calib_ticks_acked_tot[tmr] += rtc_calib_ticks_acked[tmr]; | |
rtc_calib_ticks_acked[tmr] = 0; | |
rtc_clock_catchup_eligible[tmr] = TRUE; | |
sim_debug (DBG_QUE, &sim_timer_dev, "_rtcn_tick_catchup_check() - Enabling catchup ticks for %s\n", sim_uname (sim_clock_unit[tmr])); | |
return TRUE; | |
} | |
if (rtc_clock_catchup_eligible[tmr] && | |
(tnow > (rtc_clock_catchup_base_time[tmr] + (rtc_calib_tick_time[tmr] + rtc_clock_tick_size[tmr])))) { | |
sim_debug (DBG_QUE, &sim_timer_dev, "_rtcn_tick_catchup_check(%d) - scheduling catchup tick for %s which is behind %s\n", time, sim_uname (sim_clock_unit[tmr]), sim_fmt_secs (tnow > (rtc_clock_catchup_base_time[tmr] + (rtc_calib_tick_time[tmr] + rtc_clock_tick_size[tmr])))); | |
rtc_clock_catchup_pending[tmr] = TRUE; | |
sim_activate_abs (&sim_timer_units[tmr], time); | |
return TRUE; | |
} | |
return FALSE; | |
} | |
t_stat sim_rtcn_tick_ack (int32 time, int32 tmr) | |
{ | |
if ((tmr < 0) || (tmr >= SIM_NTIMERS)) | |
return SCPE_TIMER; | |
sim_debug (DBG_ACK, &sim_timer_dev, "sim_rtcn_tick_ack - for %s\n", sim_uname (sim_clock_unit[tmr])); | |
_rtcn_tick_catchup_check (tmr, time); | |
++rtc_calib_ticks_acked[tmr]; | |
return SCPE_OK; | |
} | |
static double _timespec_to_double (struct timespec *time) | |
{ | |
return ((double)time->tv_sec)+(double)(time->tv_nsec)/1000000000.0; | |
} | |
static void _double_to_timespec (struct timespec *time, double dtime) | |
{ | |
time->tv_sec = (time_t)floor(dtime); | |
time->tv_nsec = (long)((dtime-floor(dtime))*1000000000.0); | |
} | |
double sim_timenow_double (void) | |
{ | |
struct timespec now; | |
clock_gettime (CLOCK_REALTIME, &now); | |
return _timespec_to_double (&now); | |
} | |
#if defined(SIM_ASYNCH_CLOCKS) | |
extern UNIT * volatile sim_wallclock_queue; | |
extern UNIT * volatile sim_wallclock_entry; | |
pthread_t sim_timer_thread; /* Wall Clock Timing Thread Id */ | |
pthread_cond_t sim_timer_startup_cond; | |
t_bool sim_timer_thread_running = FALSE; | |
static void * | |
_timer_thread(void *arg) | |
{ | |
int sched_policy; | |
struct sched_param sched_priority; | |
/* Boost Priority for this I/O thread vs the CPU instruction execution | |
thread which, in general, won't be readily yielding the processor when | |
this thread needs to run */ | |
pthread_getschedparam (pthread_self(), &sched_policy, &sched_priority); | |
++sched_priority.sched_priority; | |
pthread_setschedparam (pthread_self(), sched_policy, &sched_priority); | |
sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - starting\n"); | |
pthread_mutex_lock (&sim_timer_lock); | |
pthread_cond_signal (&sim_timer_startup_cond); /* Signal we're ready to go */ | |
while (sim_asynch_timer && sim_is_running) { | |
struct timespec start_time, stop_time; | |
struct timespec due_time; | |
double wait_usec; | |
int32 inst_delay; | |
double inst_per_sec; | |
UNIT *uptr, *cptr, *prvptr; | |
if (sim_wallclock_entry) { /* something to insert in queue? */ | |
sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - timing %s for %s\n", | |
sim_uname(sim_wallclock_entry), sim_fmt_secs (sim_wallclock_entry->time/1000000.0)); | |
uptr = sim_wallclock_entry; | |
sim_wallclock_entry = NULL; | |
prvptr = NULL; | |
for (cptr = sim_wallclock_queue; cptr != QUEUE_LIST_END; cptr = cptr->a_next) { | |
if (uptr->a_due_time < cptr->a_due_time) | |
break; | |
prvptr = cptr; | |
} | |
if (prvptr == NULL) { /* insert at head */ | |
cptr = uptr->a_next = sim_wallclock_queue; | |
sim_wallclock_queue = uptr; | |
} | |
else { | |
cptr = uptr->a_next = prvptr->a_next; /* insert at prvptr */ | |
prvptr->a_next = uptr; | |
} | |
} | |
/* determine wait time */ | |
if (sim_wallclock_queue != QUEUE_LIST_END) { | |
/* due time adjusted by 1/2 a minimal sleep interval */ | |
/* the goal being to let the last fractional part of the due time */ | |
/* be done by counting instructions */ | |
_double_to_timespec (&due_time, sim_wallclock_queue->a_due_time-(((double)sim_idle_rate_ms)*0.0005)); | |
} | |
else { | |
due_time.tv_sec = 0x7FFFFFFF; /* Sometime when 32 bit time_t wraps */ | |
due_time.tv_nsec = 0; | |
} | |
clock_gettime(CLOCK_REALTIME, &start_time); | |
wait_usec = floor(1000000.0*(_timespec_to_double (&due_time) - _timespec_to_double (&start_time))); | |
if (sim_wallclock_queue == QUEUE_LIST_END) | |
sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - waiting forever\n"); | |
else | |
sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - waiting for %.0f usecs until %.6f for %s\n", wait_usec, sim_wallclock_queue->a_due_time, sim_uname(sim_wallclock_queue)); | |
if ((wait_usec <= 0.0) || | |
(0 != pthread_cond_timedwait (&sim_timer_wake, &sim_timer_lock, &due_time))) { | |
if (sim_wallclock_queue == QUEUE_LIST_END) /* queue empty? */ | |
continue; /* wait again */ | |
inst_per_sec = sim_timer_inst_per_sec (); | |
uptr = sim_wallclock_queue; | |
sim_wallclock_queue = uptr->a_next; | |
uptr->a_next = NULL; /* hygiene */ | |
clock_gettime(CLOCK_REALTIME, &stop_time); | |
if (1 != sim_timespec_compare (&due_time, &stop_time)) | |
inst_delay = 0; | |
else | |
inst_delay = (int32)(inst_per_sec*(_timespec_to_double(&due_time)-_timespec_to_double(&stop_time))); | |
sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - slept %.0fms - activating(%s,%d)\n", | |
1000.0*(_timespec_to_double (&stop_time)-_timespec_to_double (&start_time)), sim_uname(uptr), inst_delay); | |
sim_activate (uptr, inst_delay); | |
} | |
else {/* Something wants to adjust the queue since the wait condition was signaled */ | |
} | |
} | |
pthread_mutex_unlock (&sim_timer_lock); | |
sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - exiting\n"); | |
return NULL; | |
} | |
#endif /* defined(SIM_ASYNCH_CLOCKS) */ | |
/* | |
In the event that there are no active clock devices, no instruction | |
rate calibration will be performed. This is more likely on simpler | |
simulators which don't have a full spectrum of standard devices or | |
possibly when a clock device exists but its use is optional. | |
Additonally, when a host system has a natural clock tick (or minimal | |
sleep time) which is greater than the tick size that a simulator | |
wants to run a clock at, we run this clock at the rate implied by | |
the host system's minimal sleep time or 50Hz. | |
To solve this we merely run an internal clock at 10Hz. | |
*/ | |
#define CLK_TPS 10 | |
#define CLK_INIT 100000 | |
static int32 sim_int_clk_tps; | |
static t_stat sim_timer_clock_tick_svc (UNIT *uptr) | |
{ | |
sim_rtcn_calb (sim_int_clk_tps, SIM_INTERNAL_CLK); | |
sim_activate_after (uptr, 1000000/sim_int_clk_tps); /* reactivate unit */ | |
return SCPE_OK; | |
} | |
/* | |
This routine exists to assure that there is a single reliably calibrated | |
clock properly counting instruction execution relative to time. The best | |
way to assure reliable calibration is to use a clock which ticks no | |
faster than the host system's clock. This is optimal so that accurate | |
time measurements are taken. If the simulated system doesn't have a | |
clock with an appropriate tick rate, an internal clock is run that meets | |
this requirement, | |
*/ | |
static void _rtcn_configure_calibrated_clock (int32 newtmr) | |
{ | |
int32 tmr; | |
sim_int_clk_tps = MIN(CLK_TPS, sim_os_tick_hz); | |
for (tmr=0; tmr<SIM_NTIMERS; tmr++) { | |
if ((rtc_hz[tmr]) && | |
(rtc_hz[tmr] <= (uint32)sim_os_tick_hz)) | |
break; | |
} | |
if (tmr == SIM_NTIMERS) { /* None found? */ | |
if ((!sim_is_active (&SIM_INTERNAL_UNIT)) && | |
(0 == rtc_hz[tmr])) { | |
/* Start the internal timer */ | |
sim_calb_tmr = SIM_NTIMERS; | |
sim_debug (DBG_TRC, &sim_timer_dev, "_rtcn_configure_calibrated_clock() - Starting Internal Calibrated Timer at %dHz\n", sim_int_clk_tps); | |
SIM_INTERNAL_UNIT.action = &sim_timer_clock_tick_svc; | |
sim_activate_abs (&SIM_INTERNAL_UNIT, CLK_INIT); | |
sim_rtcn_init_unit (&SIM_INTERNAL_UNIT, CLK_INIT, SIM_INTERNAL_CLK); | |
} | |
return; | |
} | |
if ((tmr == newtmr) && | |
(sim_calb_tmr == newtmr)) /* already set? */ | |
return; | |
if (sim_calb_tmr == SIM_NTIMERS) { /* was old the internal timer? */ | |
sim_debug (DBG_TRC, &sim_timer_dev, "_rtcn_configure_calibrated_clock() - Stopping Internal Calibrated Timer, New Timer = %d (%dHz)\n", tmr, rtc_hz[tmr]); | |
rtc_initd[SIM_NTIMERS] = 0; | |
sim_cancel (&SIM_INTERNAL_UNIT); | |
/* Migrate any coscheduled devices to the standard queue and they will requeue themselves */ | |
while (sim_clock_cosched_queue[SIM_NTIMERS] != QUEUE_LIST_END) { | |
UNIT *uptr = sim_clock_cosched_queue[SIM_NTIMERS]; | |
_sim_coschedule_cancel (uptr); | |
_sim_activate (uptr, 1); | |
} | |
} | |
else { | |
sim_debug (DBG_TRC, &sim_timer_dev, "_rtcn_configure_calibrated_clock() - Changing Calibrated Timer from %d (%dHz) to %d (%dHz)\n", sim_calb_tmr, rtc_hz[sim_calb_tmr], tmr, rtc_hz[tmr]); | |
sim_calb_tmr = tmr; | |
} | |
sim_calb_tmr = tmr; | |
} | |
static t_stat sim_timer_clock_reset (DEVICE *dptr) | |
{ | |
sim_debug (DBG_TRC, &sim_timer_dev, "sim_timer_clock_reset()\n"); | |
_rtcn_configure_calibrated_clock (sim_calb_tmr); | |
return SCPE_OK; | |
} | |
void sim_start_timer_services (void) | |
{ | |
sim_debug (DBG_TRC, &sim_timer_dev, "sim_start_timer_services()\n"); | |
_rtcn_configure_calibrated_clock (sim_calb_tmr); | |
#if defined(SIM_ASYNCH_CLOCKS) | |
pthread_mutex_lock (&sim_timer_lock); | |
if (sim_asynch_timer) { | |
pthread_attr_t attr; | |
sim_debug (DBG_TRC, &sim_timer_dev, "sim_start_timer_services() - starting\n"); | |
pthread_cond_init (&sim_timer_startup_cond, NULL); | |
pthread_attr_init (&attr); | |
pthread_attr_setscope (&attr, PTHREAD_SCOPE_SYSTEM); | |
pthread_create (&sim_timer_thread, &attr, _timer_thread, NULL); | |
pthread_attr_destroy( &attr); | |
pthread_cond_wait (&sim_timer_startup_cond, &sim_timer_lock); /* Wait for thread to stabilize */ | |
pthread_cond_destroy (&sim_timer_startup_cond); | |
sim_timer_thread_running = TRUE; | |
} | |
pthread_mutex_unlock (&sim_timer_lock); | |
#endif | |
} | |
void sim_stop_timer_services (void) | |
{ | |
int tmr; | |
sim_debug (DBG_TRC, &sim_timer_dev, "sim_stop_timer_services()\n"); | |
for (tmr=0; tmr<=SIM_NTIMERS; tmr++) { | |
int32 accum; | |
if (sim_clock_unit[tmr]) { | |
/* Stop clock assist unit and make sure the clock unit has a tick queued */ | |
sim_cancel (&sim_timer_units[tmr]); | |
if (rtc_hz[tmr]) | |
sim_activate (sim_clock_unit[tmr], rtc_currd[tmr]); | |
/* Move coschedule'd units to the standard event queue */ | |
accum = 1; | |
while (sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) { | |
UNIT *cptr = sim_clock_cosched_queue[tmr]; | |
sim_clock_cosched_queue[tmr] = cptr->next; | |
cptr->next = NULL; | |
cptr->cancel = NULL; | |
accum += cptr->time; | |
_sim_activate (cptr, accum*rtc_currd[tmr]); | |
} | |
} | |
} | |
rtc_hz[SIM_NTIMERS] = 0; /* Make sure Internal Timer is stopped */ | |
#if defined(SIM_ASYNCH_CLOCKS) | |
pthread_mutex_lock (&sim_timer_lock); | |
if (sim_timer_thread_running) { | |
sim_debug (DBG_TRC, &sim_timer_dev, "sim_stop_timer_services() - stopping\n"); | |
pthread_cond_signal (&sim_timer_wake); | |
pthread_mutex_unlock (&sim_timer_lock); | |
pthread_join (sim_timer_thread, NULL); | |
sim_timer_thread_running = FALSE; | |
/* Any wallclock queued events are now migrated to the normal event queue */ | |
while (sim_wallclock_queue != QUEUE_LIST_END) { | |
UNIT *uptr = sim_wallclock_queue; | |
double inst_delay_d = uptr->a_due_gtime - sim_gtime (); | |
int32 inst_delay; | |
uptr->cancel (uptr); | |
if (inst_delay_d < 0.0) | |
inst_delay_d = 0.0; | |
/* Bound delay to avoid overflow. */ | |
/* Long delays are usually canceled before they expire */ | |
if (inst_delay_d > (double)0x7FFFFFFF) | |
inst_delay_d = (double)0x7FFFFFFF; | |
inst_delay = (int32)inst_delay_d; | |
if ((inst_delay == 0) && (inst_delay_d != 0.0)) | |
inst_delay = 1; /* Minimum non-zero delay is 1 instruction */ | |
_sim_activate (uptr, inst_delay); /* queue it now */ | |
} | |
} | |
else | |
pthread_mutex_unlock (&sim_timer_lock); | |
#endif | |
} | |
t_stat sim_timer_change_asynch (void) | |
{ | |
#if defined(SIM_ASYNCH_CLOCKS) | |
if (sim_asynch_enabled && sim_asynch_timer) | |
sim_start_timer_services (); | |
else | |
sim_stop_timer_services (); | |
#endif | |
return SCPE_OK; | |
} | |
/* Instruction Execution rate. */ | |
/* returns a double since it is mostly used in double expressions and | |
to avoid overflow if/when strange timing delays might produce unexpected results */ | |
double sim_timer_inst_per_sec (void) | |
{ | |
double inst_per_sec = SIM_INITIAL_IPS; | |
if (sim_calb_tmr == -1) | |
return inst_per_sec; | |
inst_per_sec = ((double)rtc_currd[sim_calb_tmr])*rtc_hz[sim_calb_tmr]; | |
if (0 == inst_per_sec) | |
inst_per_sec = SIM_INITIAL_IPS; | |
return inst_per_sec; | |
} | |
t_stat sim_timer_activate (UNIT *uptr, int32 interval) | |
{ | |
AIO_VALIDATE; | |
return sim_timer_activate_after (uptr, (uint32)((interval * 1000000.0) / sim_timer_inst_per_sec ())); | |
} | |
t_stat sim_timer_activate_after (UNIT *uptr, uint32 usec_delay) | |
{ | |
int inst_delay, tmr; | |
double inst_delay_d, inst_per_sec; | |
AIO_VALIDATE; | |
/* If this is a clock unit, we need to schedule the related timer unit instead */ | |
for (tmr=0; tmr<SIM_NTIMERS; tmr++) | |
if (sim_clock_unit[tmr] == uptr) { | |
uptr = &sim_timer_units[tmr]; | |
break; | |
} | |
if (sim_is_active (uptr)) /* already active? */ | |
return SCPE_OK; | |
inst_per_sec = sim_timer_inst_per_sec (); | |
inst_delay_d = ((inst_per_sec*usec_delay)/1000000.0); | |
/* Bound delay to avoid overflow. */ | |
/* Long delays are usually canceled before they expire */ | |
if (inst_delay_d > (double)0x7fffffff) | |
inst_delay_d = (double)0x7fffffff; | |
inst_delay = (int32)inst_delay_d; | |
if ((inst_delay == 0) && (usec_delay != 0)) | |
inst_delay = 1; /* Minimum non-zero delay is 1 instruction */ | |
#if defined(SIM_ASYNCH_CLOCKS) | |
if ((sim_calb_tmr == -1) || /* if No timer initialized */ | |
(inst_delay < rtc_currd[sim_calb_tmr]) || /* or sooner than next clock tick? */ | |
(rtc_calibrations[sim_calb_tmr] == 0) || /* or haven't calibrated yet */ | |
(!sim_asynch_timer)) { /* or asynch disabled */ | |
sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - activating %s after %d instructions\n", | |
sim_uname(uptr), inst_delay); | |
return _sim_activate (uptr, inst_delay); /* queue it now */ | |
} | |
if (1) { | |
double d_now = sim_timenow_double (); | |
uptr->a_usec_delay = usec_delay; | |
uptr->a_due_time = d_now + (double)(usec_delay)/1000000.0; | |
uptr->a_due_gtime = sim_gtime () + (sim_timer_inst_per_sec () * (double)(usec_delay)/1000000.0); | |
uptr->time = usec_delay; | |
uptr->cancel = &_sim_wallclock_cancel; /* bind cleanup method */ | |
uptr->a_is_active = &_sim_wallclock_is_active; | |
if (tmr < SIM_NTIMERS) { /* Timer Unit? */ | |
sim_clock_unit[tmr]->cancel = &_sim_wallclock_cancel; | |
sim_clock_unit[tmr]->a_is_active = &_sim_wallclock_is_active; | |
} | |
sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - queue wallclock addition %s at %.6f\n", | |
sim_uname(uptr), uptr->a_due_time); | |
} | |
pthread_mutex_lock (&sim_timer_lock); | |
uptr->a_next = QUEUE_LIST_END; /* Temporarily mark as active */ | |
while (sim_wallclock_entry) { /* wait for any prior entry has been digested */ | |
sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - queue insert entry %s busy waiting for 1ms\n", | |
sim_uname(sim_wallclock_entry)); | |
pthread_mutex_unlock (&sim_timer_lock); | |
sim_os_ms_sleep (1); | |
pthread_mutex_lock (&sim_timer_lock); | |
} | |
sim_wallclock_entry = uptr; | |
pthread_mutex_unlock (&sim_timer_lock); | |
pthread_cond_signal (&sim_timer_wake); /* wake the timer thread to deal with it */ | |
return SCPE_OK; | |
#else | |
sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - queue addition %s at %d (%d usecs)\n", | |
sim_uname(uptr), inst_delay, usec_delay); | |
return _sim_activate (uptr, inst_delay); /* queue it now */ | |
#endif | |
} | |
/* Clock coscheduling routines */ | |
t_stat sim_register_clock_unit_tmr (UNIT *uptr, int32 tmr) | |
{ | |
if (NULL == uptr) { /* deregistering? */ | |
while (sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) { | |
UNIT *uptr = sim_clock_cosched_queue[tmr]; | |
_sim_coschedule_cancel (uptr); | |
_sim_activate (uptr, 1); | |
} | |
sim_clock_unit[tmr] = NULL; | |
return SCPE_OK; | |
} | |
if (NULL == sim_clock_unit[tmr]) | |
sim_clock_cosched_queue[tmr] = QUEUE_LIST_END; | |
sim_clock_unit[tmr] = uptr; | |
uptr->dynflags |= UNIT_TMR_UNIT; | |
sim_timer_units[tmr].flags = UNIT_DIS | (sim_clock_unit[tmr] ? UNIT_IDLE : 0); | |
return SCPE_OK; | |
} | |
static int32 _tick_size () | |
{ | |
return (sim_calb_tmr != -1) ? rtc_currd[sim_calb_tmr] : 10000; | |
} | |
int32 sim_rtcn_tick_size (int32 tmr) | |
{ | |
return (rtc_currd[tmr]) ? rtc_currd[tmr] : 10000; | |
} | |
t_stat sim_register_clock_unit (UNIT *uptr) | |
{ | |
return sim_register_clock_unit_tmr (uptr, 0); | |
} | |
t_stat sim_clock_coschedule (UNIT *uptr, int32 interval) | |
{ | |
int32 ticks = (interval + (_tick_size ()/2))/_tick_size ();/* Convert to ticks */ | |
sim_debug (DBG_QUE, &sim_timer_dev, "sim_clock_coschedule(interval=%d, ticks=%d)\n", interval, ticks); | |
return sim_clock_coschedule_tmr (uptr, sim_calb_tmr, ticks); | |
} | |
t_stat sim_clock_coschedule_abs (UNIT *uptr, int32 interval) | |
{ | |
int32 ticks = (interval + (_tick_size ()/2))/_tick_size ();/* Convert to ticks */ | |
sim_debug (DBG_QUE, &sim_timer_dev, "sim_clock_coschedule_abs(interval=%d, ticks=%d)\n", interval, ticks); | |
sim_cancel (uptr); | |
return sim_clock_coschedule_tmr (uptr, sim_calb_tmr, ticks); | |
} | |
t_stat sim_clock_coschedule_tmr (UNIT *uptr, int32 tmr, int32 ticks) | |
{ | |
if (ticks < 0) | |
return SCPE_ARG; | |
if (sim_is_active (uptr)) { | |
sim_debug (DBG_TIM, &sim_timer_dev, "sim_clock_coschedule_tmr(tmr=%d) - %s is already active\n", tmr, sim_uname (uptr)); | |
return SCPE_OK; | |
} | |
if (tmr == SIM_INTERNAL_CLK) | |
tmr = SIM_NTIMERS; | |
else { | |
if ((tmr < 0) || (tmr >= SIM_NTIMERS)) | |
return sim_activate (uptr, MAX(1, ticks) * 10000); | |
} | |
if (NULL == sim_clock_unit[tmr]) | |
return sim_activate (uptr, ticks * (rtc_currd[tmr] ? rtc_currd[tmr] : _tick_size ())); | |
else { | |
UNIT *cptr, *prvptr; | |
int32 accum; | |
sim_debug (DBG_QUE, &sim_timer_dev, "sim_clock_coschedule_tmr(tmr=%d) - queueing %s for clock co-schedule (ticks=%d)\n", tmr, sim_uname (uptr), ticks); | |
prvptr = NULL; | |
accum = 0; | |
for (cptr = sim_clock_cosched_queue[tmr]; cptr != QUEUE_LIST_END; cptr = cptr->next) { | |
if (ticks < (accum + cptr->time)) | |
break; | |
accum = accum + cptr->time; | |
prvptr = cptr; | |
} | |
if (prvptr == NULL) { | |
cptr = uptr->next = sim_clock_cosched_queue[tmr]; | |
sim_clock_cosched_queue[tmr] = uptr; | |
} | |
else { | |
cptr = uptr->next = prvptr->next; | |
prvptr->next = uptr; | |
} | |
uptr->time = ticks - accum; | |
if (cptr != QUEUE_LIST_END) | |
cptr->time = cptr->time - uptr->time; | |
uptr->cancel = &_sim_coschedule_cancel; /* bind cleanup method */ | |
sim_cosched_interval[tmr] = sim_clock_cosched_queue[tmr]->time; | |
} | |
return SCPE_OK; | |
} | |
t_stat sim_clock_coschedule_tmr_abs (UNIT *uptr, int32 tmr, int32 ticks) | |
{ | |
sim_cancel (uptr); | |
return sim_clock_coschedule_tmr (uptr, tmr, ticks); | |
} | |
/* Cancel a unit on the coschedule queue */ | |
static void _sim_coschedule_cancel (UNIT *uptr) | |
{ | |
AIO_UPDATE_QUEUE; | |
if (uptr->next) { /* On a queue? */ | |
int tmr; | |
for (tmr=0; tmr<SIM_NTIMERS; tmr++) { | |
if (uptr == sim_clock_cosched_queue[tmr]) { | |
sim_clock_cosched_queue[tmr] = uptr->next; | |
uptr->next = NULL; | |
} | |
else { | |
UNIT *cptr; | |
for (cptr = sim_clock_cosched_queue[tmr]; | |
(cptr != QUEUE_LIST_END); | |
cptr = cptr->next) | |
if (cptr->next == (uptr)) { | |
cptr->next = (uptr)->next; | |
uptr->next = NULL; | |
break; | |
} | |
} | |
if (uptr->next == NULL) { /* found? */ | |
uptr->cancel = NULL; | |
sim_debug (SIM_DBG_EVENT, &sim_timer_dev, "Canceled Clock Coscheduled Event for %s\n", sim_uname(uptr)); | |
return; | |
} | |
} | |
} | |
} | |
#if defined(SIM_ASYNCH_CLOCKS) | |
static void _sim_wallclock_cancel (UNIT *uptr) | |
{ | |
int32 tmr; | |
AIO_UPDATE_QUEUE; | |
pthread_mutex_lock (&sim_timer_lock); | |
/* If this is a clock unit, we need to cancel both this and the related timer unit */ | |
for (tmr=0; tmr<SIM_NTIMERS; tmr++) | |
if (sim_clock_unit[tmr] == uptr) { | |
uptr = &sim_timer_units[tmr]; | |
break; | |
} | |
if (uptr->a_next) { | |
UNIT *cptr; | |
if (uptr == sim_wallclock_entry) { /* Pending on the queue? */ | |
sim_wallclock_entry = NULL; | |
uptr->a_next = NULL; | |
} | |
else { | |
if (uptr == sim_wallclock_queue) { | |
sim_wallclock_queue = uptr->a_next; | |
uptr->a_next = NULL; | |
sim_debug (SIM_DBG_EVENT, &sim_timer_dev, "Canceling Timer Event for %s\n", sim_uname(uptr)); | |
pthread_cond_signal (&sim_timer_wake); | |
} | |
else { | |
for (cptr = sim_wallclock_queue; | |
(cptr != QUEUE_LIST_END); | |
cptr = cptr->a_next) { | |
if (cptr->a_next == (uptr)) { | |
cptr->a_next = (uptr)->a_next; | |
uptr->a_next = NULL; | |
sim_debug (SIM_DBG_EVENT, &sim_timer_dev, "Canceled Timer Event for %s\n", sim_uname(uptr)); | |
break; | |
} | |
} | |
} | |
} | |
if (uptr->a_next == NULL) { | |
uptr->a_due_time = uptr->a_due_gtime = uptr->a_usec_delay = 0; | |
uptr->cancel = NULL; | |
uptr->a_is_active = NULL; | |
if (tmr < SIM_NTIMERS) { /* Timer Unit? */ | |
sim_clock_unit[tmr]->cancel = NULL; | |
sim_clock_unit[tmr]->a_is_active = NULL; | |
} | |
} | |
} | |
pthread_mutex_unlock (&sim_timer_lock); | |
} | |
int32 sim_timer_activate_time (UNIT *uptr) | |
{ | |
UNIT *cptr; | |
double d_result; | |
int32 tmr; | |
if (uptr->a_is_active == &_sim_wallclock_is_active) { | |
pthread_mutex_lock (&sim_timer_lock); | |
if (uptr == sim_wallclock_entry) { | |
d_result = uptr->a_due_gtime - sim_gtime (); | |
if (d_result < 0.0) | |
d_result = 0.0; | |
if (d_result > (double)0x7FFFFFFE) | |
d_result = (double)0x7FFFFFFE; | |
pthread_mutex_unlock (&sim_timer_lock); | |
return ((int32)d_result) + 1; | |
} | |
for (cptr = sim_wallclock_queue; | |
cptr != QUEUE_LIST_END; | |
cptr = cptr->a_next) | |
if (uptr == cptr) { | |
d_result = uptr->a_due_gtime - sim_gtime (); | |
if (d_result < 0.0) | |
d_result = 0.0; | |
if (d_result > (double)0x7FFFFFFE) | |
d_result = (double)0x7FFFFFFE; | |
pthread_mutex_unlock (&sim_timer_lock); | |
return ((int32)d_result) + 1; | |
} | |
pthread_mutex_unlock (&sim_timer_lock); | |
} | |
if (uptr->a_next) | |
return uptr->a_event_time + 1; | |
for (tmr=0; tmr<SIM_NTIMERS; tmr++) | |
if (sim_clock_unit[tmr] == uptr) | |
return sim_activate_time (&sim_timer_units[tmr]); | |
return -1; /* Not found. */ | |
} | |
static t_bool _sim_wallclock_is_active (UNIT *uptr) | |
{ | |
int32 tmr; | |
if (uptr->a_next) | |
return TRUE; | |
/* If this is a clock unit, we need to examine the related timer unit instead */ | |
for (tmr=0; tmr<SIM_NTIMERS; tmr++) | |
if (sim_clock_unit[tmr] == uptr) | |
return (sim_timer_units[tmr].a_next != NULL); | |
return FALSE; | |
} | |
#endif /* defined(SIM_ASYNCH_CLOCKS) */ |