/* pdp10_tim.c: PDP-10 tim subsystem simulator | |
Copyright (c) 1993-2012, Robert M Supnik | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name of Robert M Supnik shall not be | |
used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from Robert M Supnik. | |
tim timer subsystem | |
18-Apr-12 RMS Removed absolute scheduling on reset | |
18-Jun-07 RMS Added UNIT_IDLE flag | |
03-Nov-06 RMS Rewritten to support idling | |
29-Oct-06 RMS Added clock coscheduling function | |
02-Feb-04 RMS Exported variables needed by Ethernet simulator | |
29-Jan-02 RMS New data structures | |
06-Jan-02 RMS Added enable/disable support | |
02-Dec-01 RMS Fixed bug in ITS PC sampling (found by Dave Conroy) | |
31-Aug-01 RMS Changed int64 to t_int64 for Windoze | |
17-Jul-01 RMS Moved function prototype | |
04-Jul-01 RMS Added DZ11 support | |
*/ | |
#include "pdp10_defs.h" | |
#include <time.h> | |
/* Invariants */ | |
#define TIM_HW_FREQ 4100000 /* 4.1Mhz */ | |
#define TIM_HWRE_MASK 07777 | |
#define UNIT_V_Y2K (UNIT_V_UF + 0) /* Y2K compliant OS */ | |
#define UNIT_Y2K (1u << UNIT_V_Y2K) | |
/* Clock mode TOPS-10/ITS */ | |
#define TIM_TPS_T10 60 | |
#define TIM_WAIT_T10 8000 | |
#define TIM_MULT_T10 1 | |
#define TIM_ITS_QUANT (TIM_HW_FREQ / TIM_TPS_T10) | |
/* Clock mode TOPS-20/KLAD */ | |
#define TIM_TPS_T20 1001 | |
#define TIM_WAIT_T20 500 | |
#define TIM_MULT_T20 16 | |
/* Probability function for TOPS-20 idlelock */ | |
#define PROB(x) (((rand() * 100) / RAND_MAX) >= (x)) | |
d10 tim_base[2] = { 0, 0 }; /* 71b timebase */ | |
d10 tim_ttg = 0; /* time to go */ | |
d10 tim_period = 0; /* period */ | |
d10 quant = 0; /* ITS quantum */ | |
int32 tim_mult = TIM_MULT_T10; /* tmxr poll mult */ | |
int32 tim_t20_prob = 33; /* TOPS-20 prob */ | |
/* Exported variables */ | |
int32 clk_tps = TIM_TPS_T10; /* clock ticks/sec */ | |
int32 tmr_poll = TIM_WAIT_T10; /* clock poll */ | |
int32 tmxr_poll = TIM_WAIT_T10 * TIM_MULT_T10; /* term mux poll */ | |
extern int32 apr_flg, pi_act; | |
extern UNIT cpu_unit; | |
extern d10 pcst; | |
extern a10 pager_PC; | |
extern int32 t20_idlelock; | |
DEVICE tim_dev; | |
t_stat tcu_rd (int32 *data, int32 PA, int32 access); | |
t_stat tim_svc (UNIT *uptr); | |
t_stat tim_reset (DEVICE *dptr); | |
void tim_incr_base (d10 *base, d10 incr); | |
extern d10 Read (a10 ea, int32 prv); | |
extern d10 ReadM (a10 ea, int32 prv); | |
extern void Write (a10 ea, d10 val, int32 prv); | |
extern void WriteP (a10 ea, d10 val); | |
extern int32 pi_eval (void); | |
extern t_stat wr_nop (int32 data, int32 PA, int32 access); | |
/* TIM data structures | |
tim_dev TIM device descriptor | |
tim_unit TIM unit descriptor | |
tim_reg TIM register list | |
*/ | |
DIB tcu_dib = { IOBA_TCU, IOLN_TCU, &tcu_rd, &wr_nop, 0 }; | |
UNIT tim_unit = { UDATA (&tim_svc, UNIT_IDLE, 0), TIM_WAIT_T10 }; | |
REG tim_reg[] = { | |
{ BRDATA (TIMEBASE, tim_base, 8, 36, 2) }, | |
{ ORDATA (TTG, tim_ttg, 36) }, | |
{ ORDATA (PERIOD, tim_period, 36) }, | |
{ ORDATA (QUANT, quant, 36) }, | |
{ DRDATA (TIME, tim_unit.wait, 24), REG_NZ + PV_LEFT }, | |
{ DRDATA (PROB, tim_t20_prob, 6), REG_NZ + PV_LEFT + REG_HIDDEN }, | |
{ DRDATA (POLL, tmr_poll, 32), REG_HRO + PV_LEFT }, | |
{ DRDATA (MUXPOLL, tmxr_poll, 32), REG_HRO + PV_LEFT }, | |
{ DRDATA (MULT, tim_mult, 6), REG_HRO + PV_LEFT }, | |
{ DRDATA (TPS, clk_tps, 12), REG_HRO + PV_LEFT }, | |
{ NULL } | |
}; | |
MTAB tim_mod[] = { | |
{ UNIT_Y2K, 0, "non Y2K OS", "NOY2K", NULL }, | |
{ UNIT_Y2K, UNIT_Y2K, "Y2K OS", "Y2K", NULL }, | |
{ MTAB_XTD|MTAB_VDV, 000, "ADDRESS", NULL, | |
NULL, &show_addr, NULL }, | |
{ 0 } | |
}; | |
DEVICE tim_dev = { | |
"TIM", &tim_unit, tim_reg, tim_mod, | |
1, 0, 0, 0, 0, 0, | |
NULL, NULL, &tim_reset, | |
NULL, NULL, NULL, | |
&tcu_dib, DEV_UBUS | |
}; | |
/* Timer instructions */ | |
/* Timer - if the timer is running at less than hardware frequency, | |
need to interpolate the value by calculating how much of the current | |
clock tick has elapsed, and what that equates to in msec. */ | |
t_bool rdtim (a10 ea, int32 prv) | |
{ | |
d10 tempbase[2]; | |
ReadM (INCA (ea), prv); /* check 2nd word */ | |
tempbase[0] = tim_base[0]; /* copy time base */ | |
tempbase[1] = tim_base[1]; | |
if (tim_mult != TIM_MULT_T20) { /* interpolate? */ | |
int32 used; | |
d10 incr; | |
used = tmr_poll - (sim_is_active (&tim_unit) - 1); | |
incr = (d10) (((double) used * TIM_HW_FREQ) / | |
((double) tmr_poll * (double) clk_tps)); | |
tim_incr_base (tempbase, incr); | |
} | |
tempbase[0] = tempbase[0] & ~((d10) TIM_HWRE_MASK); /* clear low 12b */ | |
Write (ea, tempbase[0], prv); | |
Write (INCA(ea), tempbase[1], prv); | |
return FALSE; | |
} | |
t_bool wrtim (a10 ea, int32 prv) | |
{ | |
tim_base[0] = Read (ea, prv); | |
tim_base[1] = CLRS (Read (INCA (ea), prv)); | |
return FALSE; | |
} | |
t_bool rdint (a10 ea, int32 prv) | |
{ | |
Write (ea, tim_period, prv); | |
return FALSE; | |
} | |
t_bool wrint (a10 ea, int32 prv) | |
{ | |
tim_period = Read (ea, prv); | |
tim_ttg = tim_period; | |
return FALSE; | |
} | |
/* Timer service - the timer is only serviced when the 'ttg' register | |
has reached 0 based on the expected frequency of clock interrupts. */ | |
t_stat tim_svc (UNIT *uptr) | |
{ | |
if (cpu_unit.flags & UNIT_KLAD) /* diags? */ | |
tmr_poll = uptr->wait; /* fixed clock */ | |
else tmr_poll = sim_rtc_calb (clk_tps); /* else calibrate */ | |
sim_activate (uptr, tmr_poll); /* reactivate unit */ | |
tmxr_poll = tmr_poll * tim_mult; /* set mux poll */ | |
tim_incr_base (tim_base, tim_period); /* incr time base */ | |
tim_ttg = tim_period; /* reload */ | |
apr_flg = apr_flg | APRF_TIM; /* request interrupt */ | |
if (Q_ITS) { /* ITS? */ | |
if (pi_act == 0) | |
quant = (quant + TIM_ITS_QUANT) & DMASK; | |
if (TSTS (pcst)) { /* PC sampling? */ | |
WriteP ((a10) pcst & AMASK, pager_PC); /* store sample */ | |
pcst = AOB (pcst); /* add 1,,1 */ | |
} | |
} /* end ITS */ | |
else if (t20_idlelock && PROB (100 - tim_t20_prob)) | |
t20_idlelock = 0; | |
return SCPE_OK; | |
} | |
/* Clock coscheduling routine */ | |
int32 clk_cosched (int32 wait) | |
{ | |
int32 t; | |
if (tim_mult == TIM_MULT_T20) | |
return wait; | |
t = sim_is_active (&tim_unit); | |
return (t? t - 1: wait); | |
} | |
void tim_incr_base (d10 *base, d10 incr) | |
{ | |
base[1] = base[1] + incr; /* add on incr */ | |
base[0] = base[0] + (base[1] >> 35); /* carry to high */ | |
base[0] = base[0] & DMASK; /* mask high */ | |
base[1] = base[1] & MMASK; /* mask low */ | |
return; | |
} | |
/* Timer reset */ | |
t_stat tim_reset (DEVICE *dptr) | |
{ | |
tim_period = 0; /* clear timer */ | |
tim_ttg = 0; | |
apr_flg = apr_flg & ~APRF_TIM; /* clear interrupt */ | |
tmr_poll = sim_rtc_init (tim_unit.wait); /* init timer */ | |
sim_activate (&tim_unit, tmr_poll); /* activate unit */ | |
tmxr_poll = tmr_poll * tim_mult; /* set mux poll */ | |
return SCPE_OK; | |
} | |
/* Set timer parameters from CPU model */ | |
t_stat tim_set_mod (UNIT *uptr, int32 val, char *cptr, void *desc) | |
{ | |
if (val & (UNIT_T20|UNIT_KLAD)) { | |
clk_tps = TIM_TPS_T20; | |
uptr->wait = TIM_WAIT_T20; | |
tmr_poll = TIM_WAIT_T20; | |
tim_mult = TIM_MULT_T20; | |
uptr->flags = uptr->flags | UNIT_Y2K; | |
} | |
else { | |
clk_tps = TIM_TPS_T10; | |
uptr->wait = TIM_WAIT_T10; | |
tmr_poll = TIM_WAIT_T10; | |
tim_mult = TIM_MULT_T10; | |
if (Q_ITS) | |
uptr->flags = uptr->flags | UNIT_Y2K; | |
else uptr->flags = uptr->flags & ~UNIT_Y2K; | |
} | |
tmxr_poll = tmr_poll * tim_mult; | |
return SCPE_OK; | |
} | |
/* Time of year clock */ | |
t_stat tcu_rd (int32 *data, int32 PA, int32 access) | |
{ | |
time_t curtim; | |
struct tm *tptr; | |
curtim = time (NULL); /* get time */ | |
tptr = localtime (&curtim); /* decompose */ | |
if (tptr == NULL) | |
return SCPE_NXM; | |
if ((tptr->tm_year > 99) && !(tim_unit.flags & UNIT_Y2K)) | |
tptr->tm_year = 99; /* Y2K prob? */ | |
switch ((PA >> 1) & 03) { /* decode PA<3:1> */ | |
case 0: /* year/month/day */ | |
*data = (((tptr->tm_year) & 0177) << 9) | | |
(((tptr->tm_mon + 1) & 017) << 5) | | |
((tptr->tm_mday) & 037); | |
return SCPE_OK; | |
case 1: /* hour/minute */ | |
*data = (((tptr->tm_hour) & 037) << 8) | | |
((tptr->tm_min) & 077); | |
return SCPE_OK; | |
case 2: /* second */ | |
*data = (tptr->tm_sec) & 077; | |
return SCPE_OK; | |
case 3: /* status */ | |
*data = CSR_DONE; | |
return SCPE_OK; | |
} | |
return SCPE_NXM; /* can't get here */ | |
} |