blob: f29d21ea0df3c65674d996b7a4b751749c3104fd [file] [log] [blame] [raw]
/* nova_cpu.c: NOVA CPU simulator
Copyright (c) 1993-2013, Robert M. Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
cpu Nova central processor
17-Mar-13 RMS Added clarifying brances to IND_STEP macro (Dave Bryan)
04-Jul-07 BKR DEV_SET/CLR macros now used,
support for non-existant devices added
CPU bootstrap code warning: high-speed devices may not boot properly,
execution history facility added,
documented Nova 3 secret LDB/STB/SAVN behavior,
added support for secret Nova 3 LDB/STB/SAVN substitute actions,
'ind_max' changed from 16 to 65536 for better unmapped system compatibility,
INT_TRAP added for Nova 3, 4 trap instruction handling,
28-Apr-07 RMS Removed clock initialization
06-Feb-06 RMS Fixed bug in DIVS (Mark Hittinger)
22-Sep-05 RMS Fixed declarations (Sterling Garwood)
25-Aug-05 RMS Fixed DIVS case 2^31 / - 1
14-Jan-04 RMS Fixed device enable/disable support (Bruce Ray)
19-Jan-03 RMS Changed CMASK to CDMASK for Apple Dev Kit conflict
03-Oct-02 RMS Added DIB infrastructure
30-Dec-01 RMS Added old PC queue
07-Dec-01 RMS Revised to use breakpoint package
30-Nov-01 RMS Added extended SET/SHOW support
10-Aug-01 RMS Removed register in declarations
17-Jul-01 RMS Moved function prototype
26-Apr-01 RMS Added device enable/disable support
05-Mar-01 RMS Added clock calibration
22-Dec-00 RMS Added Bruce Ray's second terminal
15-Dec-00 RMS Added Charles Owen's CPU bootstrap
08-Dec-00 RMS Changes from Bruce Ray
-- fixed trap test to include Nova 3
-- fixed DIV and DIVS divide by 0
-- fixed RETN to set SP from FP
-- fixed IORST to preserve carry
-- added "secret" Nova 4 PSHN/SAVEN instructions
-- added plotter support
15-Oct-00 RMS Fixed bug in MDV test, added stack, byte, trap instructions
14-Apr-98 RMS Changed t_addr to unsigned
15-Sep-97 RMS Added read and write breakpoints
The register state for the NOVA CPU is:
AC[0:3]<0:15> general registers
C carry flag
PC<0:14> program counter
The NOVA has three instruction formats: memory reference, I/O transfer,
and operate. The memory reference format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0| op | AC |in| mode| displacement | memory reference
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
<0:4> mnemonic action
00000 JMP PC = MA
00001 JMS AC3 = PC, PC = MA
00010 ISZ M[MA] = M[MA] + 1, skip if M[MA] == 0
00011 DSZ M[MA] = M[MA] - 1, skip if M[MA] == 0
001'n LDA ACn = M[MA]
010'n STA M[MA] = ACn
<5:7> mode action
000 page zero direct MA = zext (IR<8:15>)
001 PC relative direct MA = PC + sext (IR<8:15>)
010 AC2 relative direct MA = AC2 + sext (IR<8:15>)
011 AC3 relative direct MA = AC3 + sext (IR<8:15>)
100 page zero indirect MA = M[zext (IR<8:15>)]
101 PC relative indirect MA = M[PC + sext (IR<8:15>)]
110 AC2 relative indirect MA = M[AC2 + sext (IR<8:15>)]
111 AC3 relative indirect MA = M[AC3 + sext (IR<8:15>)]
Memory reference instructions can access an address space of 32K words.
An instruction can directly reference the first 256 words of memory
(called page zero), as well as 256 words relative to the PC, AC2, or
AC3; it can indirectly access all 32K words. If an indirect address
is in locations 00020-00027, the indirect address is incremented and
rewritten to memory before use; if in 00030-00037, decremented and
rewritten.
The I/O transfer format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0 1 1| AC | opcode |pulse| device | I/O transfer
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The IOT instruction sends the opcode, pulse, and specified AC to the
specified I/O device. The device may accept data, provide data,
initiate or cancel operations, or skip on status.
The operate format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1|srcAC|dstAC| opcode |shift|carry|nl| skip | operate
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
\______/ \___/ \___/ | | | |
| | | | | | +--- reverse skip sense
| | | | | +--- skip if C == 0
| | | | +--- skip if result == 0
| | | +--- don't load result
| | +--- carry in (load as is,
| | set to Zero,
| | set to One,
| | load Complement)
| +--- shift (none,
| left one,
| right one,
| byte swap)
+--- operation (complement,
negate,
move,
increment,
add complement,
subtract,
add,
and)
The operate instruction can be microprogrammed to perform operations
on the source and destination AC's and the Carry flag.
Some notes from Bruce Ray:
1. DG uses the value of the autoindex location -before- the
modification to determine if additional indirect address
levels are to be performed. Most DG emulators conform to
this standard, but some vendor machines (i.e. Point 4 Mark 8)
do not.
2. Infinite indirect references may occur on unmapped systems
and can "hang" the hardware. Some DG diagnostics perform
10,000s of references during a single instruction.
3. Nova 3 adds the following instructions to the standard Nova
instruction set:
trap instructions
stack push/pop instructions
save/return instructions
stack register manipulation instructions
unsigned MUL/DIV
4. Nova 4 adds the following instructions to the Nova 3 instruction
set:
signed MUL/DIV
load/store byte
secret (undocumented) stack instructions [PSHN, SAVN]
5. Nova, Nova 3 and Nova 4 unsigned mul/div instructions are the
same instruction code values on all machines.
6. Undocumented Nova 3 behaviour for LDB, STB and SAVN has been
added to appropriate code.
7. Most 3rd party vendors had a user-controlled method to increase the
logical address space from 32 KW to 64 KW. This capability came at
the expense of disabling multi-level indirect addressing when the 64KW
mode is in effect, and keeping DG multi-level indirect compatibility
when 64KW mode is inactive. The most common implementation was to use
an "NIOP <ac>,CPU" instruction to control whether 32 KW or 64 KW
addressing mode was wanted, and <ac> bit 15 (the least-significant bit
of an accumulator) determined which mode was set:
0 = 32 KW (DG compatible), 1 = 64 KW.
This feature has been implemented in our Nova emulation for all to enjoy.
This routine is the instruction decode routine for the NOVA.
It is called from the simulator control program to execute
instructions in simulated memory, starting at the simulated PC.
It runs until 'reason' is set non-zero.
General notes:
1. Reasons to stop. The simulator can be stopped by:
HALT instruction
breakpoint encountered
infinite indirection loop
unknown I/O device and STOP_DEV flag set
I/O error in I/O simulator
2. Interrupts. Interrupts are maintained by four parallel variables:
dev_done device done flags
dev_disable device interrupt disable flags
dev_busy device busy flags
int_req interrupt requests
In addition, int_req contains the interrupt enable and ION pending
flags. If ION and ION pending are set, and at least one interrupt
request is pending, then an interrupt occurs. Note that the 16b PIO
mask must be mapped to the simulator's device bit mapping.
3. Non-existent memory. On the NOVA, reads to non-existent memory
return zero, and writes are ignored. In the simulator, the
largest possible memory is instantiated and initialized to zero.
Thus, only writes need be checked against actual memory size.
4. Adding I/O devices. These modules must be modified:
nova_defs.h add interrupt request definition
nova_sys.c add sim_devices entry
*/
#include "nova_defs.h"
#define PCQ_SIZE 64 /* must be 2**n */
#define PCQ_MASK (PCQ_SIZE - 1)
#define PCQ_ENTRY pcq[pcq_p = (pcq_p - 1) & PCQ_MASK] = PC
#define INCA(x) (((x) + 1) & AMASK)
#define DECA(x) (((x) - 1) & AMASK)
#define SEXT(x) (((x) & SIGN)? ((x) | ~DMASK): (x))
#define STK_CHECK(x,y) if (((x) & 0377) < (y)) \
int_req = int_req | INT_STK
#define IND_STEP(x) M[x] & A_IND; /* return next level indicator */ \
if ( ((x) <= AUTO_TOP) && ((x) >= AUTO_INC) ) { \
if ( (x) < AUTO_DEC ) \
M[x] = (M[x] + 1) & DMASK; \
else \
M[x] = (M[x] - 1) & DMASK; \
} \
x = M[x] & AMASK
#define INCREMENT_PC PC = (PC + 1) & AMASK /* increment PC */
#define UNIT_V_MDV (UNIT_V_UF + 0) /* MDV present */
#define UNIT_V_STK (UNIT_V_UF + 1) /* stack instr */
#define UNIT_V_BYT (UNIT_V_UF + 2) /* byte instr */
#define UNIT_V_64KW (UNIT_V_UF + 3) /* 64KW mem support */
#define UNIT_V_MSIZE (UNIT_V_UF + 4) /* dummy mask */
#define UNIT_MDV (1 << UNIT_V_MDV)
#define UNIT_STK (1 << UNIT_V_STK)
#define UNIT_BYT (1 << UNIT_V_BYT)
#define UNIT_64KW (1 << UNIT_V_64KW)
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
#define UNIT_IOPT (UNIT_MDV | UNIT_STK | UNIT_BYT | UNIT_64KW)
#define UNIT_NOVA3 (UNIT_MDV | UNIT_STK)
#define UNIT_NOVA4 (UNIT_MDV | UNIT_STK | UNIT_BYT)
#define UNIT_KERONIX (UNIT_MDV | UNIT_64KW)
#define MODE_64K (cpu_unit.flags & UNIT_64KW)
#define MODE_64K_ACTIVE ((cpu_unit.flags & UNIT_64KW) && (0xFFFF == AMASK))
typedef struct
{
int32 pc;
int16 ir;
int16 ac0 ;
int16 ac1 ;
int16 ac2 ;
int16 ac3 ;
int16 carry ;
int16 sp ;
int16 fp ;
int32 devDone ;
int32 devBusy ;
int32 devDisable ;
int32 devIntr ;
} Hist_entry ;
uint16 M[MAXMEMSIZE] = { 0 }; /* memory */
int32 AC[4] = { 0 }; /* accumulators */
int32 C = 0; /* carry flag */
int32 saved_PC = 0; /* program counter */
int32 SP = 0; /* stack pointer */
int32 FP = 0; /* frame pointer */
int32 SR = 0; /* switch register */
int32 dev_done = 0; /* device done flags */
int32 dev_busy = 0; /* device busy flags */
int32 dev_disable = 0; /* int disable flags */
int32 int_req = 0; /* interrupt requests */
int32 pimask = 0; /* priority int mask */
int32 pwr_low = 0; /* power fail flag */
int32 ind_max = 65536; /* iadr nest limit */
int32 stop_dev = 0; /* stop on ill dev */
uint16 pcq[PCQ_SIZE] = { 0 }; /* PC queue */
int32 pcq_p = 0; /* PC queue ptr */
REG *pcq_r = NULL; /* PC queue reg ptr */
struct ndev dev_table[64]; /* dispatch table */
int32 AMASK = 077777 ; /* current memory address mask */
/* (default to 32KW) */
static int32 hist_p = 0 ; /* history pointer */
static int32 hist_cnt = 0 ; /* history count */
static Hist_entry * hist = NULL ; /* instruction history */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
t_stat cpu_boot (int32 unitno, DEVICE *dptr);
t_stat build_devtab (void);
t_stat hist_set( UNIT * uptr, int32 val, CONST char * cptr, void * desc ) ;
t_stat hist_show( FILE * st, UNIT * uptr, int32 val, CONST void * desc ) ;
static int hist_save( int32 pc, int32 our_ir ) ;
char * devBitNames( int32 flags, char * ptr, char * sepStr ) ;
void mask_out (int32 mask);
/* CPU data structures
cpu_dev CPU device descriptor
cpu_unit CPU unit descriptor
cpu_reg CPU register list
cpu_mod CPU modifiers list
*/
UNIT cpu_unit = {
UDATA (NULL, UNIT_FIX+UNIT_BINK+UNIT_MDV, DFTMEMSIZE /* MAXMEMSIZE */ )
};
REG cpu_reg[] = {
{ ORDATA (PC, saved_PC, 15) },
{ ORDATA (AC0, AC[0], 16) },
{ ORDATA (AC1, AC[1], 16) },
{ ORDATA (AC2, AC[2], 16) },
{ ORDATA (AC3, AC[3], 16) },
{ FLDATA (C, C, 16) },
{ ORDATA (SP, SP, 16) },
{ ORDATA (FP, FP, 16) },
{ ORDATA (SR, SR, 16) },
{ ORDATA (PI, pimask, 16) },
{ FLDATA (ION, int_req, INT_V_ION) },
{ FLDATA (ION_DELAY, int_req, INT_V_NO_ION_PENDING) },
{ FLDATA (STKOVF, int_req, INT_V_STK) },
{ FLDATA (PWR, pwr_low, 0) },
{ ORDATA (INT, int_req, INT_V_ION+1), REG_RO },
{ ORDATA (BUSY, dev_busy, INT_V_ION+1), REG_RO },
{ ORDATA (DONE, dev_done, INT_V_ION+1), REG_RO },
{ ORDATA (DISABLE, dev_disable, INT_V_ION+1), REG_RO },
{ FLDATA (STOP_DEV, stop_dev, 0) },
{ DRDATA (INDMAX, ind_max, 32), REG_NZ + PV_LEFT },
{ ORDATA (AMASK, AMASK, 16) },
{ DRDATA (MEMSIZE, cpu_unit.capac, 32), REG_NZ + PV_LEFT },
{ BRDATA (PCQ, pcq, 8, 16, PCQ_SIZE), REG_RO+REG_CIRC },
{ ORDATA (PCQP, pcq_p, 6), REG_HRO },
{ ORDATA (WRU, sim_int_char, 8) },
{ NULL }
};
MTAB cpu_mod[] = {
{ UNIT_IOPT, UNIT_NOVA3, "NOVA3", "NOVA3", NULL },
{ UNIT_IOPT, UNIT_NOVA4, "NOVA4", "NOVA4", NULL },
{ UNIT_IOPT, UNIT_KERONIX, "KERONIX", "KERONIX", NULL },
{ UNIT_IOPT, UNIT_MDV, "MDV", "MDV", NULL },
{ UNIT_IOPT, UNIT_64KW, "EXT64KW", "EXT64KW", NULL },
{ UNIT_IOPT, 0, "none", "NONE", NULL },
{ UNIT_MSIZE, ( 4 * 1024), NULL, "4K", &cpu_set_size },
{ UNIT_MSIZE, ( 8 * 1024), NULL, "8K", &cpu_set_size },
{ UNIT_MSIZE, (12 * 1024), NULL, "12K", &cpu_set_size },
{ UNIT_MSIZE, (16 * 1024), NULL, "16K", &cpu_set_size },
{ UNIT_MSIZE, (20 * 1024), NULL, "20K", &cpu_set_size },
{ UNIT_MSIZE, (24 * 1024), NULL, "24K", &cpu_set_size },
{ UNIT_MSIZE, (28 * 1024), NULL, "28K", &cpu_set_size },
{ UNIT_MSIZE, (32 * 1024), NULL, "32K", &cpu_set_size },
{ UNIT_MSIZE, (36 * 1024), NULL, "36K", &cpu_set_size },
{ UNIT_MSIZE, (40 * 1024), NULL, "40K", &cpu_set_size },
{ UNIT_MSIZE, (44 * 1024), NULL, "44K", &cpu_set_size },
{ UNIT_MSIZE, (48 * 1024), NULL, "48K", &cpu_set_size },
{ UNIT_MSIZE, (52 * 1024), NULL, "52K", &cpu_set_size },
{ UNIT_MSIZE, (56 * 1024), NULL, "56K", &cpu_set_size },
{ UNIT_MSIZE, (60 * 1024), NULL, "60K", &cpu_set_size },
{ UNIT_MSIZE, (64 * 1024), NULL, "64K", &cpu_set_size },
{ MTAB_XTD|MTAB_VDV|MTAB_NMO|MTAB_SHP, 0, "HISTORY", "HISTORY",
&hist_set, &hist_show },
{ 0 }
};
DEVICE cpu_dev = {
"CPU", &cpu_unit, cpu_reg, cpu_mod,
1, 8, 16 /* = 64 KW, 15 = 32KW */, 1, 8, 16,
&cpu_ex, &cpu_dep, &cpu_reset,
NULL, NULL, NULL
};
t_stat sim_instr (void)
{
int32 PC, IR, i;
t_stat reason;
/* Restore register state */
if (build_devtab () != SCPE_OK) /* build dispatch */
return SCPE_IERR;
PC = saved_PC & AMASK; /* load local PC */
C = C & CBIT;
mask_out (pimask); /* reset int system */
reason = 0;
/* Main instruction fetch/decode loop */
while (reason == 0) { /* loop until halted */
if (sim_interval <= 0) { /* check clock queue */
if ( (reason = sim_process_event ()) )
break;
}
if (int_req > INT_PENDING) { /* interrupt or exception? */
int32 MA, indf;
if (int_req & INT_TRAP) { /* trap instruction? */
int_req = int_req & ~INT_TRAP ; /* clear */
PCQ_ENTRY; /* save old PC */
M[TRP_SAV] = (PC - 1) & AMASK;
MA = TRP_JMP; /* jmp @47 */
}
else {
int_req = int_req & ~INT_ION; /* intr off */
PCQ_ENTRY; /* save old PC */
M[INT_SAV] = PC;
if (int_req & INT_STK) { /* stack overflow? */
int_req = int_req & ~INT_STK; /* clear */
MA = STK_JMP; /* jmp @3 */
}
else
MA = INT_JMP; /* intr: jmp @1 */
}
if ( MODE_64K_ACTIVE ) {
indf = IND_STEP (MA);
}
else
{
for (i = 0, indf = 1; indf && (i < ind_max); i++) {
indf = IND_STEP (MA); /* indirect loop */
}
if (i >= ind_max) {
reason = STOP_IND_INT;
break;
}
}
PC = MA;
} /* end interrupt */
if (sim_brk_summ && sim_brk_test (PC, SWMASK ('E'))) { /* breakpoint? */
reason = STOP_IBKPT; /* stop simulation */
break;
}
IR = M[PC]; /* fetch instr */
if ( hist_cnt )
{
hist_save( PC, IR ) ; /* PC, int_req unchanged */
}
INCREMENT_PC ;
int_req = int_req | INT_NO_ION_PENDING; /* clear ION delay */
sim_interval = sim_interval - 1;
/* Operate instruction */
if (IR & I_OPR) { /* operate? */
int32 src, srcAC, dstAC;
srcAC = I_GETSRC (IR); /* get reg decodes */
dstAC = I_GETDST (IR);
switch (I_GETCRY (IR)) { /* decode carry */
case 0: /* load */
src = AC[srcAC] | C;
break;
case 1: /* clear */
src = AC[srcAC];
break;
case 2: /* set */
src = AC[srcAC] | CBIT;
break;
case 3: /* complement */
src = AC[srcAC] | (C ^ CBIT);
break;
} /* end switch carry */
switch (I_GETALU (IR)) { /* decode ALU */
case 0: /* COM */
src = src ^ DMASK;
break;
case 1: /* NEG */
src = ((src ^ DMASK) + 1) & CDMASK;
break;
case 2: /* MOV */
break;
case 3: /* INC */
src = (src + 1) & CDMASK;
break;
case 4: /* ADC */
src = ((src ^ DMASK) + AC[dstAC]) & CDMASK;
break;
case 5: /* SUB */
src = ((src ^ DMASK) + AC[dstAC] + 1) & CDMASK;
break;
case 6: /* ADD */
src = (src + AC[dstAC]) & CDMASK;
break;
case 7: /* AND */
src = src & (AC[dstAC] | CBIT);
break;
} /* end switch oper */
switch (I_GETSHF (IR)) { /* decode shift */
case 0: /* nop */
break;
case 1: /* L */
src = ((src << 1) | (src >> 16)) & CDMASK;
break;
case 2: /* R */
src = ((src >> 1) | (src << 16)) & CDMASK;
break;
case 3: /* S */
src = ((src & 0377) << 8) | ((src >> 8) & 0377) |
(src & CBIT);
break;
} /* end switch shift */
switch (I_GETSKP (IR)) { /* decode skip */
case 0: /* nop */
if ((IR & I_NLD) && (cpu_unit.flags & UNIT_STK)) {
int_req = int_req | INT_TRAP ; /* Nova 3 or 4 trap */
continue ;
}
break;
case 1: /* SKP */
INCREMENT_PC ;
break;
case 2: /* SZC */
if (src < CBIT)
INCREMENT_PC ;
break;
case 3: /* SNC */
if (src >= CBIT)
INCREMENT_PC ;
break;
case 4: /* SZR */
if ((src & DMASK) == 0)
INCREMENT_PC ;
break;
case 5: /* SNR */
if ((src & DMASK) != 0)
INCREMENT_PC ;
break;
case 6: /* SEZ */
if (src <= CBIT)
INCREMENT_PC ;
break;
case 7: /* SBN */
if (src > CBIT)
INCREMENT_PC ;
break;
} /* end switch skip */
if ((IR & I_NLD) == 0) { /* load? */
AC[dstAC] = src & DMASK;
C = src & CBIT;
} /* end if load */
} /* end if operate */
/* Memory reference instructions */
else if (IR < 060000) { /* mem ref? */
int32 src, MA, indf;
MA = I_GETDISP (IR); /* get disp */
switch (I_GETMODE (IR)) { /* decode mode */
case 0: /* page zero */
break;
case 1: /* PC relative */
if (MA & DISPSIGN)
MA = 0177400 | MA;
MA = (MA + PC - 1) & AMASK;
break;
case 2: /* AC2 relative */
if (MA & DISPSIGN)
MA = 0177400 | MA;
MA = (MA + AC[2]) & AMASK;
break;
case 3: /* AC3 relative */
if (MA & DISPSIGN)
MA = 0177400 | MA;
MA = (MA + AC[3]) & AMASK;
break;
} /* end switch mode */
if ( (indf = IR & I_IND) ) { /* indirect? */
if ( MODE_64K_ACTIVE ) { /* 64k mode? */
indf = IND_STEP (MA);
}
else /* compat mode */
{
for (i = 0; indf && (i < ind_max); i++) { /* count */
indf = IND_STEP (MA); /* resolve indirect */
}
if (i >= ind_max) { /* too many? */
reason = STOP_IND;
break;
}
}
}
switch (I_GETOPAC (IR)) { /* decode op + AC */
case 001: /* JSR */
AC[3] = PC;
case 000: /* JMP */
PCQ_ENTRY;
PC = MA;
break;
case 002: /* ISZ */
src = (M[MA] + 1) & DMASK;
if (MEM_ADDR_OK(MA))
M[MA] = src;
if (src == 0)
INCREMENT_PC ;
break;
case 003: /* DSZ */
src = (M[MA] - 1) & DMASK;
if (MEM_ADDR_OK(MA))
M[MA] = src;
if (src == 0)
INCREMENT_PC ;
break;
case 004: /* LDA 0 */
AC[0] = M[MA];
break;
case 005: /* LDA 1 */
AC[1] = M[MA];
break;
case 006: /* LDA 2 */
AC[2] = M[MA];
break;
case 007: /* LDA 3 */
AC[3] = M[MA];
break;
case 010: /* STA 0 */
if (MEM_ADDR_OK(MA))
M[MA] = AC[0];
break;
case 011: /* STA 1 */
if (MEM_ADDR_OK(MA))
M[MA] = AC[1];
break;
case 012: /* STA 2 */
if (MEM_ADDR_OK(MA))
M[MA] = AC[2];
break;
case 013: /* STA 3 */
if (MEM_ADDR_OK(MA))
M[MA] = AC[3];
break;
} /* end switch */
} /* end mem ref */
/* IOT instruction */
else { /* IOT */
int32 dstAC, pulse, code, device, iodata;
dstAC = I_GETDST (IR); /* decode fields */
code = I_GETIOT (IR);
pulse = I_GETPULSE (IR);
device = I_GETDEV (IR);
if (code == ioSKP) { /* IO skip? */
switch (pulse) { /* decode IR<8:9> */
case 0: /* skip if busy */
if ((device == DEV_CPU)? (int_req & INT_ION) != 0:
(dev_busy & dev_table[device].mask) != 0)
INCREMENT_PC ;
break;
case 1: /* skip if not busy */
if ((device == DEV_CPU)? (int_req & INT_ION) == 0:
(dev_busy & dev_table[device].mask) == 0)
INCREMENT_PC ;
break;
case 2: /* skip if done */
if ((device == DEV_CPU)? pwr_low != 0:
(dev_done & dev_table[device].mask) != 0)
INCREMENT_PC ;
break;
case 3: /* skip if not done */
if ((device == DEV_CPU)? pwr_low == 0:
(dev_done & dev_table[device].mask) == 0)
INCREMENT_PC ;
break;
} /* end switch */
} /* end IO skip */
/* Hmm, this means a Nova 3 _must_ have DEV_MDV enabled - not true in DG land */
else if (device == DEV_MDV) {
switch (code) { /* case on opcode */
case ioNIO: /* frame ptr */
if (cpu_unit.flags & UNIT_STK) {
if (pulse == iopN)
FP = AC[dstAC] & AMASK ;
if (pulse == iopC)
AC[dstAC] = FP & AMASK ;
}
break;
case ioDIA: /* load byte */
if (cpu_unit.flags & UNIT_BYT)
{
AC[dstAC] = (M[AC[pulse] >> 1] >> ((AC[pulse] & 1)? 0: 8)) & 0377 ;
}
else if (cpu_unit.flags & UNIT_STK) /* if Nova 3 this is really a SAV... 2007-Jun-01, BKR */
{
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[0];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[1];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[2];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = FP;
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = (C >> 1) | (AC[3] & AMASK);
AC[3] = FP = SP & AMASK;
STK_CHECK (SP, 5);
}
else
{
AC[dstAC] = 0;
}
break;
case ioDOA: /* stack ptr */
if (cpu_unit.flags & UNIT_STK) {
if (pulse == iopN)
SP = AC[dstAC] & AMASK;
if (pulse == iopC)
AC[dstAC] = SP & AMASK;
}
break;
case ioDIB: /* push, pop */
if (cpu_unit.flags & UNIT_STK) {
if (pulse == iopN) { /* push (PSHA) */
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[dstAC];
STK_CHECK (SP, 1);
}
if ((pulse == iopS) && /* Nova 4 pshn (PSHN) */
(cpu_unit.flags & UNIT_BYT)) {
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[dstAC];
if ( (SP & 0xFFFF) > (M[042] & 0xFFFF) )
{
int_req = int_req | INT_STK ;
}
}
if (pulse == iopC) { /* pop (POPA) */
AC[dstAC] = M[SP];
SP = DECA (SP);
}
}
break;
case ioDOB: /* store byte */
if (cpu_unit.flags & UNIT_BYT)
{
int32 MA, val;
MA = AC[pulse] >> 1;
val = AC[dstAC] & 0377;
if (MEM_ADDR_OK (MA)) M[MA] = (AC[pulse] & 1)?
((M[MA] & ~0377) | val)
: ((M[MA] & 0377) | (val << 8));
}
else if (cpu_unit.flags & UNIT_STK) /* if Nova 3 this is really a SAV... 2007-Jun-01, BKR */
{
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[0];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[1];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[2];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = FP;
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = (C >> 1) | (AC[3] & AMASK);
AC[3] = FP = SP & AMASK;
STK_CHECK (SP, 5);
}
break;
case ioDIC: /* save, return */
if (cpu_unit.flags & UNIT_STK) {
if (pulse == iopN) { /* save */
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[0];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[1];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[2];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = FP;
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = (C >> 1) | (AC[3] & AMASK);
AC[3] = FP = SP & AMASK;
STK_CHECK (SP, 5);
}
else if (pulse == iopC) { /* retn */
PCQ_ENTRY;
SP = FP & AMASK;
C = (M[SP] << 1) & CBIT;
PC = M[SP] & AMASK;
SP = DECA (SP);
AC[3] = M[SP];
SP = DECA (SP);
AC[2] = M[SP];
SP = DECA (SP);
AC[1] = M[SP];
SP = DECA (SP);
AC[0] = M[SP];
SP = DECA (SP);
FP = AC[3] & AMASK;
}
else if ((pulse == iopS) && /* Nova 4 SAVN */
(cpu_unit.flags & UNIT_BYT)) {
int32 frameSz = M[PC] ;
PC = INCA (PC) ;
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[0];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[1];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[2];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = FP;
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = (C >> 1) | (AC[3] & AMASK);
AC[3] = FP = SP & AMASK ;
SP = (SP + frameSz) & AMASK ;
if (SP > M[042])
{
int_req = int_req | INT_STK;
}
}
}
break;
case ioDOC:
if ((dstAC == 2) && (cpu_unit.flags & UNIT_MDV))
{ /* Nova, Nova3 or Nova 4 */
uint32 mddata, uAC0, uAC1, uAC2;
uAC0 = (uint32) AC[0];
uAC1 = (uint32) AC[1];
uAC2 = (uint32) AC[2];
if (pulse == iopP)
{ /* mul */
mddata = (uAC1 * uAC2) + uAC0;
AC[0] = (mddata >> 16) & DMASK;
AC[1] = mddata & DMASK;
}
if (pulse == iopS)
{ /* div */
if ((uAC0 >= uAC2) || (uAC2 == 0))
{
C = CBIT;
}
else
{
C = 0;
mddata = (uAC0 << 16) | uAC1;
AC[1] = mddata / uAC2;
AC[0] = mddata % uAC2;
}
}
}
else if ((dstAC == 3) && (cpu_unit.flags & UNIT_BYT) /* assuming UNIT_BYT = Nova 4 */)
{
int32 mddata;
if (pulse == iopC)
{ /* muls */
mddata = (SEXT (AC[1]) * SEXT (AC[2])) + SEXT (AC[0]);
AC[0] = (mddata >> 16) & DMASK;
AC[1] = mddata & DMASK;
}
else if (pulse == iopN)
{ /* divs */
if ((AC[2] == 0) || /* overflow? */
((AC[0] == 0100000) && (AC[1] == 0) && (AC[2] == 0177777)))
{
C = CBIT;
}
else
{
mddata = (SEXT (AC[0]) << 16) | AC[1];
AC[1] = mddata / SEXT (AC[2]);
AC[0] = mddata % SEXT (AC[2]);
if ((AC[1] > 077777) || (AC[1] < -0100000))
{
C = CBIT;
}
else
{
C = 0;
}
AC[0] = AC[0] & DMASK;
}
}
}
else if ((dstAC == 3) && (cpu_unit.flags & UNIT_STK)) /* if Nova 3 this is really a PSHA... 2007-Jun-01, BKR */
{
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[dstAC];
STK_CHECK (SP, 1);
}
break;
} /* end case code */
} /* end if mul/div */
else if (device == DEV_CPU) { /* CPU control */
switch (code) { /* decode IR<5:7> */
case ioNIO: /* NIOP <x> CPU ? */
if ( pulse == iopP )
if ( MODE_64K )
{
/* Keronix/Point4/SCI/INI/IDP (and others) */
/* 64 KW memory extension: */
/* NIOP - set memory mode (32/64 KW) per AC: */
/* B15: 0 = 32 KW, 1 = 64 KW mode */
AMASK = (AC[dstAC] & 0x0001) ? 0177777 : 077777 ;
}
break ;
case ioDIA: /* read switches */
AC[dstAC] = SR;
break;
case ioDIB: /* int ack */
AC[dstAC] = 0;
DEV_UPDATE_INTR ;
iodata = int_req & (-int_req);
for (i = DEV_LOW; i <= DEV_HIGH; i++) {
if (iodata & dev_table[i].mask) {
AC[dstAC] = i;
break;
}
}
break;
case ioDOB: /* mask out */
mask_out (pimask = AC[dstAC]);
break;
case ioDIC: /* io reset */
reset_all (0); /* reset devices */
mask_out( 0 ) ; /* clear all device masks */
AMASK = 077777 ; /* reset memory mode */
break;
case ioDOC: /* halt */
reason = STOP_HALT;
break;
} /* end switch code */
switch (pulse) { /* decode IR<8:9> */
case iopS: /* ion */
int_req = (int_req | INT_ION) & ~INT_NO_ION_PENDING;
break;
case iopC: /* iof */
int_req = int_req & ~INT_ION;
break;
} /* end switch pulse */
} /* end CPU control */
else if (dev_table[device].routine) { /* normal device */
iodata = dev_table[device].routine (pulse, code, AC[dstAC]);
reason = iodata >> IOT_V_REASON;
if (code & 1)
AC[dstAC] = iodata & 0177777;
}
/* bkr, 2007-May-30
* if device does not exist certain I/O instructions will still
* return data: DIA/B/C will return idle data bus value and
* SKPBZ/SKPDZ will sense zero value (and will therefore skip).
*
* Perform these non-supported device functions only if 'stop_dev'
* is zero (i.e. I/O access trap is not in effect).
*/
else if ( stop_dev == 0 )
{
switch (code) /* decode IR<5:7> */
{
case ioDIA:
case ioDIB:
case ioDIC:
AC[dstAC] = 0 ; /* idle I/O bus data */
break;
case ioSKP:
/* (This should have been caught in previous CPU skip code) */
if ( (pulse == 1 /* SKPBZ */) || (pulse == 3 /* SKPDZ */) )
{
INCREMENT_PC ;
}
} /* end of 'switch' */
} /* end of handling non-existant device */
else reason = stop_dev;
} /* end if IOT */
} /* end while */
/* Simulation halted */
saved_PC = PC;
pcq_r->qptr = pcq_p; /* update pc q ptr */
return ( reason ) ;
}
/* New priority mask out */
void mask_out (int32 newmask)
{
int32 i;
dev_disable = 0;
for (i = DEV_LOW; i <= DEV_HIGH; i++) {
if (newmask & dev_table[i].pi)
dev_disable = dev_disable | dev_table[i].mask;
}
DEV_UPDATE_INTR ;
return;
}
/* Reset routine */
t_stat cpu_reset (DEVICE *dptr)
{
int_req = int_req & ~(INT_ION | INT_STK | INT_TRAP);
pimask = 0;
dev_disable = 0;
pwr_low = 0;
AMASK = 077777 ; /* 32KW mode */
pcq_r = find_reg ("PCQ", NULL, dptr);
if (pcq_r)
pcq_r->qptr = 0;
else return SCPE_IERR;
sim_brk_types = sim_brk_dflt = SWMASK ('E');
return SCPE_OK;
}
/* Memory examine */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE)
return SCPE_NXM;
if (vptr != NULL)
*vptr = M[addr] & DMASK;
return SCPE_OK;
}
/* Memory deposit */
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE)
return SCPE_NXM;
M[addr] = val & DMASK;
return SCPE_OK;
}
/* Alter memory size */
t_stat cpu_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
int32 mc = 0;
t_addr i;
if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 07777) != 0))
return SCPE_ARG;
for (i = val; i < MEMSIZE; i++)
mc = mc | M[i];
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
return SCPE_OK;
MEMSIZE = val;
for (i = MEMSIZE; i < MAXMEMSIZE; i++)
M[i] = 0;
return SCPE_OK;
}
/* Build dispatch table */
t_stat build_devtab (void)
{
DEVICE *dptr;
DIB *dibp;
int32 i, dn;
for (i = 0; i < 64; i++) { /* clr dev_table */
dev_table[i].mask = 0;
dev_table[i].pi = 0;
dev_table[i].routine = NULL;
}
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */
if (!(dptr->flags & DEV_DIS) && /* enabled and */
( (dibp = (DIB *) dptr->ctxt)) ) { /* defined DIB? */
dn = dibp->dnum; /* get dev num */
dev_table[dn].mask = dibp->mask; /* copy entries */
dev_table[dn].pi = dibp->pi;
dev_table[dn].routine = dibp->routine;
}
}
return SCPE_OK;
}
/* BKR notes:
*
* Data General APL (Automatic Program Load) boot code
*
* - This bootstrap code is called the "APL option" in DG documentation (Automatic
* Program Load), and cost ~$400 USD (in 1970 - wow!) to load 32(10) words from
* a PROM to main (core) memory location 0 - 32.
* - This code is documented in various DG Nova programming manuals and was
* quite static (i.e. no revisions or updates to code were made).
* - switch register is used to determine device code and device type.
* - lower 6-bits of switch register determines device code (0-63.).
* - most significant bit determines if device is "low speed" or "high speed".
* - "high speed" devices have effective boot program logic of:
*
* IORST
* NIOS <device>
* JMP .
*
* - "high speed" devices use data channel (DCH) to read first sector/record
* of device into memory (usually starting at location 0), which then over-writes
* the 'JMP .' instruction of boot code. This usually has a jump to some other
* device and operating system specific boot code that was loaded from the device.
* - "low speed" devices are assumed to be sequential character-oriented devices
* (i.e. Teletype (r) reader, paper tape reader).
* - "low speed" devices are assumed to start read operations with a 'S' pulse,
* read data buffer with a DIA instruction and have standard DG I/O Busy/Done logic.
* - "low speed" devices usually read in a more full-featured 'binary loader' with
* the APL boot code:
*
* DG paper tape: 091-000004-xx, Binary Loader (BLDR.AB)
*
* - The Binary Loader was in turn used to load tapes in the usual DG 'absolute binary' format.
*/
#define BOOT_START 00000
#define BOOT_LEN (sizeof(boot_rom) / sizeof(int32))
static const int32 boot_rom[] = {
0062677, /* IORST ;reset all I/O */
0060477, /* READS 0 ;read SR into AC0 */
0024026, /* LDA 1,C77 ;get dev mask */
0107400, /* AND 0,1 ;isolate dev code */
0124000, /* COM 1,1 ;- device code - 1 */
0010014, /* LOOP: ISZ OP1 ;device code to all */
0010030, /* ISZ OP2 ;I/O instructions */
0010032, /* ISZ OP3 */
0125404, /* INC 1,1,SZR ;done? */
0000005, /* JMP LOOP ;no, increment again */
0030016, /* LDA 2,C377 ;place JMP 377 into */
0050377, /* STA 2,377 ;location 377 */
0060077, /* OP1: 060077 ;start device (NIOS 0) */
0101102, /* MOVL 0,0,SZC ;test switch 0, low speed? */
0000377, /* C377: JMP 377 ;no - jmp 377 & wait */
0004030, /* LOOP2: JSR GET+1 ;get a frame */
0101065, /* MOVC 0,0,SNR ;is it non-zero? */
0000017, /* JMP LOOP2 ;no, ignore */
0004027, /* LOOP4: JSR GET ;yes, get full word */
0046026, /* STA 1,@C77 ;store starting at 100 */
/* ;2's complement of word ct */
0010100, /* ISZ 100 ;done? */
0000022, /* JMP LOOP4 ;no, get another */
0000077, /* C77: JMP 77 ;yes location ctr and */
/* ;jmp to last word */
0126420, /* GET: SUBZ 1,1 ; clr AC1, set carry */
/* OP2: */
0063577, /* LOOP3: 063577 ;done? (SKPDN 0) - 1 */
0000030, /* JMP LOOP3 ;no -- wait */
0060477, /* OP3: 060477 ;y -- read in ac0 (DIAS 0,0) */
0107363, /* ADDCS 0,1,SNC ;add 2 frames swapped - got 2nd? */
0000030, /* JMP LOOP3 ;no go back after it */
0125300, /* MOVS 1,1 ;yes swap them */
0001400, /* JMP 0,3 ;rtn with full word */
0000000 /* 0 ;padding */
};
t_stat cpu_boot (int32 unitno, DEVICE *dptr)
{
size_t i;
for (i = 0; i < BOOT_LEN; i++) M[BOOT_START + i] = boot_rom[i];
saved_PC = BOOT_START;
return SCPE_OK;
}
/* 1-to-1 map for I/O devices */
int32 MapAddr (int32 map, int32 addr)
{
return addr;
}
/* History subsystem
global routines
t_stat hist_set( UNIT * uptr, int32 val, char * cptr, void * desc, void ** HistCookie, sizeof(usrHistInfo) ) ;
t_stat hist_show( FILE * st, UNIT * uptr, int32 val, void * desc, void * HistCookie ) ;
int hist_save( int32 next_pc, int32 our_ir, void * usrHistInfo )
local user struct:
usrHistInfo
local user routines:
int uHist_save( int32 next_pc, int32 our_ir, void * usrHistInfo ) ;
int uHist_fprintf( FILE * fp, int itemNum, void * usrHistInfo ) ;
typedef struct
{
int hMax ; // total # entries in queue (0 = inactive)
int hCount ; // current entry
void * hPtr ; // pointer to save area
int hSize ; // size of each user save area (not used by global routines?)
} Hist_info ;
*/
/* generalized CPU execution trace */
#define HIST_IR_INVALID -1
#define HIST_MIN 0 /* 0 == deactivate history feature, else size of queue */
#define HIST_MAX 1000000 /* completely arbitrary max size value */
/* save history entry (proposed local routine) */
static int hist_save( int32 pc, int32 our_ir )
{
Hist_entry * hist_ptr ;
if ( hist )
if ( hist_cnt )
{
hist_p = (hist_p + 1) ; /* next entry */
if ( hist_p >= hist_cnt )
{
hist_p = 0 ;
}
hist_ptr = &hist[ hist_p ] ;
/* (machine-specific stuff) */
hist_ptr->pc = pc ;
hist_ptr->ir = our_ir ;
hist_ptr->ac0 = AC[ 0 ] ;
hist_ptr->ac1 = AC[ 1 ] ;
hist_ptr->ac2 = AC[ 2 ] ;
hist_ptr->ac3 = AC[ 3 ] ;
hist_ptr->carry = C ;
hist_ptr->fp = FP ;
hist_ptr->sp = SP ;
hist_ptr->devBusy = dev_busy ;
hist_ptr->devDone = dev_done ;
hist_ptr->devDisable = dev_disable ;
hist_ptr->devIntr = int_req ;
/* how 'bout state and AMASK? */
return ( hist_p ) ;
}
return ( -1 ) ;
} /* end of 'hist_save' */
/* setup history save area (proposed global routine) */
t_stat hist_set( UNIT * uptr, int32 val, CONST char * cptr, void * desc )
{
int32 i, lnt ;
t_stat r ;
if ( cptr == NULL )
{
for (i = 0 ; i < hist_cnt ; ++i )
{
hist[i].pc = 0 ;
hist[i].ir = HIST_IR_INVALID ;
}
hist_p = 0 ;
return ( SCPE_OK ) ;
}
lnt = (int32) get_uint(cptr, 10, HIST_MAX, &r) ;
if ( (r != SCPE_OK) || (lnt && (lnt < HIST_MIN)) )
{
return ( SCPE_ARG ) ;
}
hist_p = 0;
if ( hist_cnt )
{
free( hist ) ;
hist_cnt = 0 ;
hist = NULL ;
}
if ( lnt )
{
hist = (Hist_entry *) calloc( lnt, sizeof(Hist_entry) ) ;
if ( hist == NULL )
{
return ( SCPE_MEM ) ;
}
hist_cnt = lnt ;
}
return ( SCPE_OK ) ;
} /* end of 'hist_set' */
int hist_fprintf( FILE * fp, int itemNum, Hist_entry * hptr )
{
t_value sim_eval ;
if ( hptr )
{
if ( itemNum == 0 )
{
fprintf( fp, "\n\n" ) ;
}
fprintf( fp, "%05o / %06o %06o %06o %06o %06o %o ",
(hptr->pc & 0x7FFF),
(hptr->ir & 0xFFFF),
(hptr->ac0 & 0xFFFF),
(hptr->ac1 & 0xFFFF),
(hptr->ac2 & 0xFFFF),
(hptr->ac3 & 0xFFFF),
((hptr->carry) ? 1 : 0)
) ;
if ( cpu_unit.flags & UNIT_STK /* Nova 3 or Nova 4 */ )
{
fprintf( fp, "%06o %06o ", SP, FP ) ;
}
sim_eval = (hptr->ir & 0xFFFF) ;
if ( (fprint_sym(fp, (hptr->pc & AMASK), &sim_eval, &cpu_unit, SWMASK ('M'))) > 0 )
{
fprintf( fp, "(undefined) %04o", (hptr->ir & 0xFFFF) ) ;
}
/*
display ION flag value, pend value?
display devBusy, devDone, devIntr info?
*/
if ( 0 ) /* display INTRP codes? */
{
char tmp[ 500 ] ;
devBitNames( hptr->devIntr, tmp, NULL ) ;
fprintf( fp, " %s", tmp ) ;
}
fprintf( fp, "\n" ) ;
}
return ( 0 ) ;
} /* end of 'hist_fprintf' */
/* show execution history (proposed global routine) */
t_stat hist_show( FILE * st, UNIT * uptr, int32 val, CONST void * desc )
{
int32 k, di, lnt ;
const char * cptr = (const char *) desc ;
t_stat r ;
Hist_entry * hptr ;
if (hist_cnt == 0)
{
return ( SCPE_NOFNC ) ; /* enabled? */
}
if ( cptr )
{ /* number of entries specified */
lnt = (int32) get_uint( cptr, 10, hist_cnt, &r ) ;
if ( (r != SCPE_OK) || (lnt == 0) )
{
return ( SCPE_ARG ) ;
}
}
else
{
lnt = hist_cnt ; /* display all entries */
}
di = hist_p - lnt; /* work forward */
if ( di < 0 )
{
di = di + hist_cnt ;
}
for ( k = 0 ; k < lnt ; ++k )
{ /* print specified */
hptr = &hist[ (++di) % hist_cnt] ; /* entry pointer */
if ( hptr->ir != HIST_IR_INVALID ) /* valid entry? */
{
hist_fprintf( st, k, hptr ) ;
} /* end else instruction */
} /* end for */
return SCPE_OK;
} /* end of 'hist_show' */
struct Dbits
{
int32 dBit ;
int32 dInvertMask ;
const char *dName ;
} devBits [] =
{
{ INT_TRAP, 0, "TRAP" }, /* (in order of approximate DG interrupt mask priority) */
{ INT_ION, 0, "ION" },
{ INT_NO_ION_PENDING, 1, "IONPND" }, /* (invert this logic to provide cleaner display) */
{ INT_STK, 0, "STK" },
{ INT_PIT, 0, "PIT" },
{ INT_DKP, 0, "DKP" },
{ INT_DSK, 0, "DSK" },
{ INT_MTA, 0, "MTA" },
{ INT_LPT, 0, "LPT" },
{ INT_PTR, 0, "PTR" },
{ INT_PTP, 0, "PTP" },
{ INT_PLT, 0, "PLT" },
{ INT_CLK, 0, "CLK" },
{ INT_ALM, 0, "ALM" },
{ INT_QTY, 0, "QTY" },
{ INT_TTO1, 0, "TTO1" },
{ INT_TTI1, 0, "TTI1" },
{ INT_TTO, 0, "TTO" },
{ INT_TTI, 0, "TTI" },
{ 0, 0, NULL }
} ;
char * devBitNames( int32 flags, char * ptr, char * sepStr )
{
int a ;
if ( ptr )
{
*ptr = 0 ;
for ( a = 0 ; (devBits[a].dBit) ; ++a )
if ( devBits[a].dBit & ((devBits[a].dInvertMask)? ~flags : flags) )
{
if ( *ptr )
{
strcat( ptr, (sepStr) ? sepStr : " " ) ;
strcat( ptr, devBits[a].dName ) ;
}
else
{
strcpy( ptr, devBits[a].dName ) ;
}
}
}
return ( ptr ) ;
} /* end of 'devBitNames' */