/* hp2100_fp.c: HP 2100 floating point instructions | |
Copyright (c) 2002, Robert M. Supnik | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name of Robert M Supnik shall not | |
be used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from Robert M Supnik. | |
21-Oct-02 RMS Recoded for compatibility with 21MX microcode algorithms | |
The HP2100 uses a unique binary floating point format: | |
15 14 0 | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
|S | fraction high | : A | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
| fraction low | exponent |XS| : A + 1 | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | |
15 8 7 1 0 | |
where S = 0 for plus fraction, 1 for minus fraction | |
fraction = s.bbbbb..., 24 binary digits | |
exponent = 2**+/-n | |
XS = 0 for plus exponent, 1 for minus exponent | |
Numbers can be normalized or unnormalized but are always normalized | |
when loaded. | |
Unpacked floating point numbers are stored in structure ufp | |
exp = exponent, 2's complement | |
h'l = fraction, 2's comp, left justified | |
This routine tries to reproduce the algorithms of the 2100/21MX | |
microcode in order to achieve 'bug-for-bug' compatibility. In | |
particular, | |
- The FIX code produces various results in B. | |
- The fraction multiply code uses 16b x 16b multiplies to produce | |
a 31b result. It always loses the low order bit of the product. | |
- The fraction divide code is an approximation that may produce | |
an error of 1 LSB. | |
- Signs are tracked implicitly as part of the fraction. Unnormalized | |
inputs may cause the packup code to produce the wrong sign. | |
- "Unclean" zeros (zero fraction, non-zero exponent) are processed | |
like normal operands. | |
*/ | |
#include "hp2100_defs.h" | |
struct ufp { /* unpacked fp */ | |
int32 exp; /* exp */ | |
uint32 fr; }; /* frac */ | |
#define FP_V_SIGN 31 /* sign */ | |
#define FP_M_SIGN 01 | |
#define FP_V_FR 8 /* fraction */ | |
#define FP_M_FR 077777777 | |
#define FP_V_EXP 1 /* exponent */ | |
#define FP_M_EXP 0177 | |
#define FP_V_EXPS 0 /* exp sign */ | |
#define FP_M_EXPS 01 | |
#define FP_SIGN (FP_M_SIGN << FP_V_SIGN) | |
#define FP_FR (FP_M_FR << FP_V_FR) | |
#define FP_EXP (FP_M_EXP << FP_V_EXP) | |
#define FP_EXPS (FP_M_EXPS << FP_V_EXPS) | |
#define FP_GETSIGN(x) (((x) >> FP_V_SIGN) & FP_M_SIGN) | |
#define FP_GETEXP(x) (((x) >> FP_V_EXP) & FP_M_EXP) | |
#define FP_GETEXPS(x) (((x) >> FP_V_EXPS) & FP_M_EXPS) | |
#define FP_NORM (1 << (FP_V_SIGN - 1)) /* normalized */ | |
#define FP_LOW (1 << FP_V_FR) | |
#define FP_RNDP (1 << (FP_V_FR - 1)) /* round for plus */ | |
#define FP_RNDM (FP_RNDP - 1) /* round for minus */ | |
#define FPAB ((((uint32) AR) << 16) | ((uint32) BR)) | |
#define DMASK32 0xFFFFFFFF | |
/* Fraction shift; 0 < shift < 32 */ | |
#define FR_ARS(v,s) (((v) >> (s)) | (((v) & FP_SIGN)? \ | |
(DMASK32 << (32 - (s))): 0)) & DMASK32 | |
#define FR_NEG(v) ((~(v) + 1) & DMASK32) | |
extern uint16 *M; | |
uint32 UnpackFP (struct ufp *fop, uint32 opnd); | |
void NegFP (struct ufp *fop); | |
void NormFP (struct ufp *fop); | |
uint32 StoreFP (struct ufp *fop); | |
/* Floating to integer conversion */ | |
uint32 f_fix (void) | |
{ | |
struct ufp fop; | |
uint32 res = 0; | |
UnpackFP (&fop, FPAB); /* unpack op */ | |
if (fop.exp < 0) { /* exp < 0? */ | |
AR = 0; /* result = 0 */ | |
return 0; } /* B unchanged */ | |
if (fop.exp > 15) { /* exp > 15? */ | |
BR = AR; /* B has high bits */ | |
AR = 077777; /* result = 77777 */ | |
return 1; } /* overflow */ | |
if (fop.exp < 15) { /* if not aligned */ | |
res = FR_ARS (fop.fr, 15 - fop.exp); /* shift right */ | |
AR = (res >> 16) & DMASK; } /* AR gets result */ | |
BR = AR; | |
if ((AR & SIGN) && ((fop.fr | res) & DMASK)) /* any low bits lost? */ | |
AR = (AR + 1) & DMASK; /* round up */ | |
return 0; | |
} | |
/* Integer to floating conversion */ | |
uint32 f_flt (void) | |
{ | |
struct ufp res = { 15, 0 }; /* +, 2**15 */ | |
res.fr = ((uint32) AR) << 16; /* left justify */ | |
StoreFP (&res); /* store result */ | |
return 0; /* clr overflow */ | |
} | |
/* Floating point add/subtract */ | |
uint32 f_as (uint32 opnd, t_bool sub) | |
{ | |
struct ufp fop1, fop2, t; | |
int32 ediff; | |
UnpackFP (&fop1, FPAB); /* unpack A-B */ | |
UnpackFP (&fop2, opnd); /* get op */ | |
if (sub) { /* subtract? */ | |
fop2.fr = FR_NEG (fop2.fr); /* negate frac */ | |
if (fop2.fr == FP_SIGN) { /* -1/2? */ | |
fop2.fr = fop2.fr >> 1; /* special case */ | |
fop2.exp = fop2.exp + 1; } } | |
if (fop1.fr == 0) fop1 = fop2; /* op1 = 0? res = op2 */ | |
else if (fop2.fr != 0) { /* op2 = 0? no add */ | |
if (fop1.exp < fop2.exp) { /* |op1| < |op2|? */ | |
t = fop2; /* swap operands */ | |
fop2 = fop1; | |
fop1 = t; } | |
ediff = fop1.exp - fop2.exp; /* get exp diff */ | |
if (ediff <= 24) { | |
if (ediff) fop2.fr = FR_ARS (fop2.fr, ediff); /* denorm, signed */ | |
if ((fop1.fr ^ fop2.fr) & FP_SIGN) /* unlike signs? */ | |
fop1.fr = fop1.fr + fop2.fr; /* eff subtract */ | |
else { /* like signs */ | |
fop1.fr = fop1.fr + fop2.fr; /* eff add */ | |
if (fop2.fr & FP_SIGN) { /* both -? */ | |
if ((fop1.fr & FP_SIGN) == 0) { /* overflow? */ | |
fop1.fr = FP_SIGN | (fop1.fr >> 1); /* renormalize */ | |
fop1.exp = fop1.exp + 1; } } /* incr exp */ | |
else if (fop1.fr & FP_SIGN) { /* both +, cry out? */ | |
fop1.fr = fop1.fr >> 1; /* renormalize */ | |
fop1.exp = fop1.exp + 1; } /* incr exp */ | |
} /* end else like */ | |
} /* end if ediff */ | |
} /* end if fop2 */ | |
return StoreFP (&fop1); /* store result */ | |
} | |
/* Floating point multiply - passes diagnostic */ | |
uint32 f_mul (uint32 opnd) | |
{ | |
struct ufp fop1, fop2; | |
struct ufp res = { 0, 0 }; | |
int32 shi1, shi2, t1, t2, t3, t4, t5; | |
UnpackFP (&fop1, FPAB); /* unpack A-B */ | |
UnpackFP (&fop2, opnd); /* unpack op */ | |
if (fop1.fr && fop2.fr) { /* if both != 0 */ | |
res.exp = fop1.exp + fop2.exp + 1; /* exp = sum */ | |
shi1 = SEXT (fop1.fr >> 16); /* mpy hi */ | |
shi2 = SEXT (fop2.fr >> 16); /* mpc hi */ | |
t1 = shi2 * ((int32) ((fop1.fr >> 1) & 077600));/* mpc hi * (mpy lo/2) */ | |
t2 = shi1 * ((int32) ((fop2.fr >> 1) & 077600));/* mpc lo * (mpy hi/2) */ | |
t3 = t1 + t2; /* cross product */ | |
t4 = (shi1 * shi2) & ~1; /* mpy hi * mpc hi */ | |
t5 = (SEXT (t3 >> 16)) << 1; /* add in cross */ | |
res.fr = (t4 + t5) & DMASK32; } /* bit<0> is lost */ | |
return StoreFP (&res); /* store */ | |
} | |
/* Floating point divide - reverse engineered from diagnostic */ | |
uint32 divx (uint32 ba, uint32 dvr, uint32 *rem) | |
{ | |
int32 sdvd = 0, sdvr = 0; | |
uint32 q, r; | |
if (ba & FP_SIGN) sdvd = 1; /* 32b/16b signed dvd */ | |
if (dvr & SIGN) sdvr = 1; /* use old-fashioned */ | |
if (sdvd) ba = (~ba + 1) & DMASK32; /* unsigned divides, */ | |
if (sdvr) dvr = (~dvr + 1) & DMASK; /* as results may ovflo */ | |
q = ba / dvr; | |
r = ba % dvr; | |
if (sdvd ^ sdvr) q = (~q + 1) & DMASK; | |
if (sdvd) r = (~r + 1) & DMASK; | |
if (rem) *rem = r; | |
return q; | |
} | |
uint32 f_div (uint32 opnd) | |
{ | |
struct ufp fop1, fop2; | |
struct ufp quo = { 0, 0 }; | |
uint32 ba, q0, q1, q2, dvrh; | |
UnpackFP (&fop1, FPAB); /* unpack A-B */ | |
UnpackFP (&fop2, opnd); /* unpack op */ | |
dvrh = (fop2.fr >> 16) & DMASK; /* high divisor */ | |
if (dvrh == 0) { /* div by zero? */ | |
AR = 0077777; /* return most pos */ | |
BR = 0177776; | |
return 1; } | |
if (fop1.fr) { /* dvd != 0? */ | |
quo.exp = fop1.exp - fop2.exp + 1; /* exp = diff */ | |
ba = FR_ARS (fop1.fr, 2); /* prevent ovflo */ | |
q0 = divx (ba, dvrh, &ba); /* Q0 = dvd / dvrh */ | |
ba = (ba & ~1) << 16; /* remainder */ | |
ba = FR_ARS (ba, 1); /* prevent ovflo */ | |
q1 = divx (ba, dvrh, NULL); /* Q1 = rem / dvrh */ | |
ba = (fop2.fr & 0xFF00) << 13; /* dvrl / 8 */ | |
q2 = divx (ba, dvrh, NULL); /* dvrl / dvrh */ | |
ba = -(SEXT (q2)) * (SEXT (q0)); /* -Q0 * Q2 */ | |
ba = (ba >> 16) & 0xFFFF; /* save ms half */ | |
if (q1 & SIGN) quo.fr = quo.fr - 0x00010000; /* Q1 < 0? -1 */ | |
if (ba & SIGN) quo.fr = quo.fr - 0x00010000; /* -Q0*Q2 < 0? */ | |
quo.fr = quo.fr + ((ba << 2) & 0xFFFF) + q1; /* rest prod, add Q1 */ | |
quo.fr = quo.fr << 1; /* shift result */ | |
quo.fr = quo.fr + (q0 << 16); /* add Q0 */ | |
} /* end if fop1.h */ | |
return StoreFP (&quo); /* store result */ | |
} | |
/* Utility routines */ | |
/* Unpack operand */ | |
uint32 UnpackFP (struct ufp *fop, uint32 opnd) | |
{ | |
fop->fr = opnd & FP_FR; /* get frac */ | |
fop->exp = FP_GETEXP (opnd); /* get exp */ | |
if (FP_GETEXPS (opnd)) fop->exp = fop->exp | ~FP_M_EXP; /* < 0? sext */ | |
return FP_GETSIGN (opnd); /* return sign */ | |
} | |
/* Normalize unpacked floating point number */ | |
void NormFP (struct ufp *fop) | |
{ | |
if (fop->fr) { /* any fraction? */ | |
uint32 test = (fop->fr >> 1) & FP_NORM; | |
while ((fop->fr & FP_NORM) == test) { /* until norm */ | |
fop->exp = fop->exp - 1; | |
fop->fr = (fop->fr << 1); } } | |
else fop->exp = 0; /* clean 0 */ | |
return; | |
} | |
/* Round fp number, store, generate overflow */ | |
uint32 StoreFP (struct ufp *fop) | |
{ | |
uint32 sign, svfr, hi, ov = 0; | |
NormFP (fop); /* normalize */ | |
svfr = fop->fr; /* save fraction */ | |
sign = FP_GETSIGN (fop->fr); /* save sign */ | |
fop->fr = (fop->fr + (sign? FP_RNDM: FP_RNDP)) & FP_FR; /* round */ | |
if ((fop->fr ^ svfr) & FP_SIGN) { /* sign change? */ | |
fop->fr = (fop->fr >> 1) | (sign? FP_SIGN: 0); /* renormalize */ | |
fop->exp = fop->exp + 1; } | |
if (fop->fr == 0) hi = 0; /* result 0? */ | |
else if (fop->exp < -(FP_M_EXP + 1)) { /* underflow? */ | |
hi = 0; /* store clean 0 */ | |
ov = 1; } | |
else if (fop->exp > FP_M_EXP) { /* overflow? */ | |
hi = 0x7FFFFFFE; /* all 1's */ | |
ov = 1; } | |
else hi = (fop->fr & FP_FR) | /* merge frac */ | |
((fop->exp & FP_M_EXP) << FP_V_EXP) | /* and exp */ | |
((fop->exp < 0)? (1 << FP_V_EXPS): 0); /* add exp sign */ | |
AR = (hi >> 16) & DMASK; | |
BR = hi & DMASK; | |
return ov; | |
} |