/* pdp10_ksio.c: PDP-10 KS10 I/O subsystem simulator | |
Copyright (c) 1993-2004, Robert M Supnik | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
Except as contained in this notice, the name of Robert M Supnik shall not | |
be used in advertising or otherwise to promote the sale, use or other dealings | |
in this Software without prior written authorization from Robert M Supnik. | |
uba Unibus adapters | |
25-Jan-04 RMS Added stub floating address routine | |
12-Mar-03 RMS Added logical name support | |
10-Oct-02 RMS Revised for dynamic table generation | |
Added SHOW IOSPACE routine | |
29-Sep-02 RMS Added variable vector, central map support | |
25-Jan-02 RMS Revised for multiple DZ11's | |
06-Jan-02 RMS Revised enable/disable support | |
23-Sep-01 RMS New IO page address constants | |
07-Sep-01 RMS Revised device disable mechanism | |
25-Aug-01 RMS Enabled DZ11 | |
21-Aug-01 RMS Updated DZ11 disable | |
01-Jun-01 RMS Updated DZ11 vectors | |
12-May-01 RMS Fixed typo | |
The KS10 uses the PDP-11 Unibus for its I/O, via adapters. While | |
nominally four adapters are supported, in practice only 1 and 3 | |
are implemented. The disks are placed on adapter 1, the rest of | |
the I/O devices on adapter 3. | |
In theory, we should maintain completely separate Unibuses, with | |
distinct PI systems. In practice, this simulator has so few devices | |
that we can get away with a single PI system, masking for which | |
devices are on adapter 1, and which on adapter 3. The Unibus | |
implementation is modeled on the Qbus in the PDP-11 simulator and | |
is described there. | |
The I/O subsystem is programmed by I/O instructions which create | |
Unibus operations (read, read pause, write, write byte). DMA is | |
the responsibility of the I/O device simulators, which also implement | |
Unibus to physical memory mapping. | |
The priority interrupt subsystem (and other privileged functions) | |
is programmed by I/O instructions with internal devices codes | |
(opcodes 700-702). These are dispatched here, although many are | |
handled in the memory management unit or elsewhere. | |
The ITS instructions are significantly different from the TOPS-10/20 | |
instructions. They do not use the extended address calculation but | |
instead provide instruction variants (Q for Unibus adapter 1, I for | |
Unibus adapter 3) which insert the Unibus adapter number into the | |
effective address. | |
*/ | |
#include "pdp10_defs.h" | |
#include <setjmp.h> | |
#define XBA_MBZ 0400000 /* ba mbz */ | |
#define eaRB (ea & ~1) | |
#define GETBYTE(ea,x) ((((ea) & 1)? (x) >> 8: (x)) & 0377) | |
#define UBNXM_FAIL(pa,op) \ | |
n = iocmap[GET_IOUBA (pa)]; \ | |
if (n >= 0) ubcs[n] = ubcs[n] | UBCS_TMO | UBCS_NXD; \ | |
pager_word = PF_HARD | PF_VIRT | PF_IO | \ | |
((op == WRITEB)? PF_BYTE: 0) | \ | |
(TSTF (F_USR)? PF_USER: 0) | (pa); \ | |
ABORT (PAGE_FAIL) | |
/* Unibus adapter data */ | |
int32 ubcs[UBANUM] = { 0 }; /* status registers */ | |
int32 ubmap[UBANUM][UMAP_MEMSIZE] = { 0 }; /* Unibus maps */ | |
int32 int_req = 0; /* interrupt requests */ | |
/* Map IO controller numbers to Unibus adapters: -1 = non-existent */ | |
static int iocmap[IO_N_UBA] = { /* map I/O ext to UBA # */ | |
-1, 0, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; | |
static const int32 ubabr76[UBANUM] = { | |
INT_UB1 & (INT_IPL7 | INT_IPL6), INT_UB3 & (INT_IPL7 | INT_IPL6) }; | |
static const int32 ubabr54[UBANUM] = { | |
INT_UB1 & (INT_IPL5 | INT_IPL4), INT_UB3 & (INT_IPL5 | INT_IPL4) }; | |
static const int32 ubashf[4] = { 18, 26, 0, 8 }; | |
extern d10 *M; /* main memory */ | |
extern d10 *ac_cur; | |
extern d10 pager_word; | |
extern int32 flags, pi_l2bit[8]; | |
extern UNIT cpu_unit; | |
extern FILE *sim_log; | |
extern jmp_buf save_env; | |
extern DEVICE *sim_devices[]; | |
extern d10 Read (a10 ea); | |
extern void pi_eval (); | |
extern int32 rp_inta (void); | |
extern int32 tu_inta (void); | |
extern int32 lp20_inta (void); | |
extern int32 dz_rxinta (void); | |
extern int32 dz_txinta (void); | |
t_stat ubmap_rd (int32 *data, int32 addr, int32 access); | |
t_stat ubmap_wr (int32 data, int32 addr, int32 access); | |
t_stat ubs_rd (int32 *data, int32 addr, int32 access); | |
t_stat ubs_wr (int32 data, int32 addr, int32 access); | |
t_stat rd_zro (int32 *data, int32 addr, int32 access); | |
t_stat wr_nop (int32 data, int32 addr, int32 access); | |
t_stat uba_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw); | |
t_stat uba_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw); | |
t_stat uba_reset (DEVICE *dptr); | |
d10 ReadIO (a10 ea); | |
void WriteIO (a10 ea, d10 val, int32 mode); | |
/* Unibus adapter data structures | |
uba_dev UBA device descriptor | |
uba_unit UBA units | |
uba_reg UBA register list | |
*/ | |
DIB ubmp1_dib = { IOBA_UBMAP1, IOLN_UBMAP1, &ubmap_rd, &ubmap_wr, 0 }; | |
DIB ubmp3_dib = { IOBA_UBMAP3, IOLN_UBMAP3, &ubmap_rd, &ubmap_wr, 0 }; | |
DIB ubcs1_dib = { IOBA_UBCS1, IOLN_UBCS1, &ubs_rd, &ubs_wr, 0 }; | |
DIB ubcs3_dib = { IOBA_UBCS3, IOLN_UBCS3, &ubs_rd, &ubs_wr, 0 }; | |
DIB ubmn1_dib = { IOBA_UBMNT1, IOLN_UBMNT1, &rd_zro, &wr_nop, 0 }; | |
DIB ubmn3_dib = { IOBA_UBMNT3, IOLN_UBMNT3, &rd_zro, &wr_nop, 0 }; | |
DIB msys_dib = { 00100000, 1, &rd_zro, &wr_nop, 0 }; | |
UNIT uba_unit[] = { | |
{ UDATA (NULL, UNIT_FIX, UMAP_MEMSIZE) }, | |
{ UDATA (NULL, UNIT_FIX, UMAP_MEMSIZE) } }; | |
REG uba_reg[] = { | |
{ ORDATA (INTREQ, int_req, 32), REG_RO }, | |
{ ORDATA (UB1CS, ubcs[0], 18) }, | |
{ ORDATA (UB3CS, ubcs[1], 18) }, | |
{ NULL } }; | |
DEVICE uba_dev = { | |
"UBA", uba_unit, uba_reg, NULL, | |
UBANUM, 8, UMAP_ASIZE, 1, 8, 32, | |
&uba_ex, &uba_dep, &uba_reset, | |
NULL, NULL, NULL, | |
NULL, 0 }; | |
/* PDP-11 I/O structures */ | |
DIB *dib_tab[DIB_MAX]; /* run-time DIBs */ | |
int32 (*int_ack[32])(void); /* int ack routines */ | |
int32 int_vec[32]; /* int vectors */ | |
DIB *std_dib[] = { /* standard DIBs */ | |
&ubmp1_dib, | |
&ubmp3_dib, | |
&ubcs1_dib, | |
&ubcs3_dib, | |
&ubmn1_dib, | |
&ubmn3_dib, | |
&msys_dib, | |
NULL }; | |
/* IO 710 (DEC) TIOE - test I/O word, skip if zero | |
(ITS) IORDI - read word from Unibus 3 | |
returns TRUE if skip, FALSE otherwise | |
*/ | |
t_bool io710 (int32 ac, a10 ea) | |
{ | |
d10 val; | |
if (ITS) AC(ac) = ReadIO (IO_UBA3 | ea); /* IORDI */ | |
else { /* TIOE */ | |
val = ReadIO (ea); /* read word */ | |
if ((AC(ac) & val) == 0) return TRUE; } | |
return FALSE; | |
} | |
/* IO 711 (DEC) TION - test I/O word, skip if non-zero | |
(ITS) IORDQ - read word from Unibus 1 | |
returns TRUE if skip, FALSE otherwise | |
*/ | |
t_bool io711 (int32 ac, a10 ea) | |
{ | |
d10 val; | |
if (ITS) AC(ac) = ReadIO (IO_UBA1 | ea); /* IORDQ */ | |
else { /* TION */ | |
val = ReadIO (ea); /* read word */ | |
if ((AC(ac) & val) != 0) return TRUE; } | |
return FALSE; | |
} | |
/* IO 712 (DEC) RDIO - read I/O word, addr in ea | |
(ITS) IORD - read I/O word, addr in M[ea] | |
*/ | |
d10 io712 (a10 ea) | |
{ | |
return ReadIO (ea); /* RDIO, IORD */ | |
} | |
/* IO 713 (DEC) WRIO - write I/O word, addr in ea | |
(ITS) IOWR - write I/O word, addr in M[ea] | |
*/ | |
void io713 (d10 val, a10 ea) | |
{ | |
WriteIO (ea, val & 0177777, WRITE); /* WRIO, IOWR */ | |
return; | |
} | |
/* IO 714 (DEC) BSIO - set bit in I/O address | |
(ITS) IOWRI - write word to Unibus 3 | |
*/ | |
void io714 (d10 val, a10 ea) | |
{ | |
d10 temp; | |
val = val & 0177777; | |
if (ITS) WriteIO (IO_UBA3 | ea, val, WRITE); /* IOWRI */ | |
else { | |
temp = ReadIO (ea); /* BSIO */ | |
temp = temp | val; | |
WriteIO (ea, temp, WRITE); } | |
return; | |
} | |
/* IO 715 (DEC) BCIO - clear bit in I/O address | |
(ITS) IOWRQ - write word to Unibus 1 | |
*/ | |
void io715 (d10 val, a10 ea) | |
{ | |
d10 temp; | |
val = val & 0177777; | |
if (ITS) WriteIO (IO_UBA1 | ea, val, WRITE); /* IOWRQ */ | |
else { | |
temp = ReadIO (ea); /* BCIO */ | |
temp = temp & ~val; | |
WriteIO (ea, temp, WRITE); } | |
return; | |
} | |
/* IO 720 (DEC) TIOEB - test I/O byte, skip if zero | |
(ITS) IORDBI - read byte from Unibus 3 | |
returns TRUE if skip, FALSE otherwise | |
*/ | |
t_bool io720 (int32 ac, a10 ea) | |
{ | |
d10 val; | |
if (ITS) { /* IORDBI */ | |
val = ReadIO (IO_UBA3 | eaRB); | |
AC(ac) = GETBYTE (ea, val); } | |
else { /* TIOEB */ | |
val = ReadIO (eaRB); | |
val = GETBYTE (ea, val); | |
if ((AC(ac) & val) == 0) return TRUE; } | |
return FALSE; | |
} | |
/* IO 721 (DEC) TIONB - test I/O word, skip if non-zero | |
(ITS) IORDBQ - read word from Unibus 1 | |
returns TRUE if skip, FALSE otherwise | |
*/ | |
t_bool io721 (int32 ac, a10 ea) | |
{ | |
d10 val; | |
if (ITS) { /* IORDBQ */ | |
val = ReadIO (IO_UBA1 | eaRB); | |
AC(ac) = GETBYTE (ea, val); } | |
else { /* TIONB */ | |
val = ReadIO (eaRB); | |
val = GETBYTE (ea, val); | |
if ((AC(ac) & val) != 0) return TRUE; } | |
return FALSE; | |
} | |
/* IO 722 (DEC) RDIOB - read I/O byte, addr in ea | |
(ITS) IORDB - read I/O byte, addr in M[ea] | |
*/ | |
d10 io722 (a10 ea) | |
{ | |
d10 val; | |
val = ReadIO (eaRB); /* RDIOB, IORDB */ | |
return GETBYTE (ea, val); | |
} | |
/* IO 723 (DEC) WRIOB - write I/O byte, addr in ea | |
(ITS) IOWRB - write I/O byte, addr in M[ea] | |
*/ | |
void io723 (d10 val, a10 ea) | |
{ | |
WriteIO (ea, val & 0377, WRITEB); /* WRIOB, IOWRB */ | |
return; | |
} | |
/* IO 724 (DEC) BSIOB - set bit in I/O byte address | |
(ITS) IOWRBI - write byte to Unibus 3 | |
*/ | |
void io724 (d10 val, a10 ea) | |
{ | |
d10 temp; | |
val = val & 0377; | |
if (ITS) WriteIO (IO_UBA3 | ea, val, WRITEB); /* IOWRBI */ | |
else { | |
temp = ReadIO (eaRB); /* BSIOB */ | |
temp = GETBYTE (ea, temp); | |
temp = temp | val; | |
WriteIO (ea, temp, WRITEB); } | |
return; | |
} | |
/* IO 725 (DEC) BCIOB - clear bit in I/O byte address | |
(ITS) IOWRBQ - write byte to Unibus 1 | |
*/ | |
void io725 (d10 val, a10 ea) | |
{ | |
d10 temp; | |
val = val & 0377; | |
if (ITS) WriteIO (IO_UBA1 | ea, val, WRITEB); /* IOWRBQ */ | |
else { | |
temp = ReadIO (eaRB); /* BCIOB */ | |
temp = GETBYTE (ea, temp); | |
temp = temp & ~val; | |
WriteIO (ea, temp, WRITEB); } | |
return; | |
} | |
/* Read and write I/O devices. | |
These routines are the linkage between the 64b world of the main | |
simulator and the 32b world of the device simulators. | |
*/ | |
d10 ReadIO (a10 ea) | |
{ | |
uint32 pa = (uint32) ea; | |
int32 i, n, val; | |
DIB *dibp; | |
for (i = 0; dibp = dib_tab[i]; i++ ) { | |
if ((pa >= dibp->ba) && | |
(pa < (dibp->ba + dibp->lnt))) { | |
dibp->rd (&val, pa, READ); | |
pi_eval (); | |
return ((d10) val); } } | |
UBNXM_FAIL (pa, READ); | |
} | |
void WriteIO (a10 ea, d10 val, int32 mode) | |
{ | |
uint32 pa = (uint32) ea; | |
int32 i, n; | |
DIB *dibp; | |
for (i = 0; dibp = dib_tab[i]; i++ ) { | |
if ((pa >= dibp->ba) && | |
(pa < (dibp->ba + dibp->lnt))) { | |
dibp->wr ((int32) val, pa, mode); | |
pi_eval (); | |
return; } } | |
UBNXM_FAIL (pa, mode); | |
} | |
/* Mapped read and write routines - used by word-oriented Unibus devices */ | |
a10 Map_Addr10 (a10 ba, int32 ub) | |
{ | |
a10 pa10; | |
int32 vpn = PAG_GETVPN (ba >> 2); /* get PDP-10 page number */ | |
if ((vpn >= UMAP_MEMSIZE) || (ba & XBA_MBZ) || | |
((ubmap[ub][vpn] & UMAP_VLD) == 0)) return -1; /* invalid map? */ | |
pa10 = (ubmap[ub][vpn] + PAG_GETOFF (ba >> 2)) & PAMASK; | |
return pa10; | |
} | |
int32 Map_ReadB (uint32 ba, int32 bc, uint8 *buf, t_bool ub) | |
{ | |
uint32 lim; | |
a10 pa10; | |
lim = ba + bc; | |
for ( ; ba < lim; ba++) { /* by bytes */ | |
pa10 = Map_Addr10 (ba, ub); /* map addr */ | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */ | |
ubcs[ub] = ubcs[ub] | UBCS_TMO; /* UBA times out */ | |
return (lim - ba); } /* return bc */ | |
*buf++ = (uint8) ((M[pa10] >> ubashf[ba & 3]) & 0377); | |
} | |
return 0; | |
} | |
int32 Map_ReadW (uint32 ba, int32 bc, uint16 *buf, t_bool ub) | |
{ | |
uint32 lim; | |
a10 pa10; | |
ba = ba & ~01; /* align start */ | |
lim = ba + (bc & ~01); | |
for ( ; ba < lim; ba = ba + 2) { /* by words */ | |
pa10 = Map_Addr10 (ba, ub); /* map addr */ | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */ | |
ubcs[ub] = ubcs[ub] | UBCS_TMO; /* UBA times out */ | |
return (lim - ba); } /* return bc */ | |
*buf++ = (uint16) ((M[pa10] >> ((ba & 2)? 0: 18)) & 0177777); | |
} | |
return 0; | |
} | |
int32 Map_WriteB (uint32 ba, int32 bc, uint8 *buf, t_bool ub) | |
{ | |
uint32 lim; | |
a10 pa10; | |
static d10 mask = 0377; | |
lim = ba + bc; | |
for ( ; ba < lim; ba++) { /* by bytes */ | |
pa10 = Map_Addr10 (ba, ub); /* map addr */ | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */ | |
ubcs[ub] = ubcs[ub] | UBCS_TMO; /* UBA times out */ | |
return (lim - ba); } /* return bc */ | |
M[pa10] = (M[pa10] & ~(mask << ubashf[ba & 3])) | | |
(((d10) *buf++) << ubashf[ba & 3]); } | |
return 0; | |
} | |
int32 Map_WriteW (uint32 ba, int32 bc, uint16 *buf, t_bool ub) | |
{ | |
uint32 lim; | |
a10 pa10; | |
d10 val; | |
ba = ba & ~01; /* align start */ | |
lim = ba + (bc & ~01); | |
for ( ; ba < lim; ba++) { /* by bytes */ | |
pa10 = Map_Addr10 (ba, ub); /* map addr */ | |
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */ | |
ubcs[ub] = ubcs[ub] | UBCS_TMO; /* UBA times out */ | |
return (lim - ba); } /* return bc */ | |
val = *buf++; /* get data */ | |
if (ba & 2) M[pa10] = (M[pa10] & 0777777600000) | val; | |
else M[pa10] = (M[pa10] & 0600000777777) | (val << 18); | |
} | |
return 0; | |
} | |
/* Evaluate Unibus priority interrupts */ | |
int32 pi_ub_eval () | |
{ | |
int32 i, lvl; | |
for (i = lvl = 0; i < UBANUM; i++) { | |
if (int_req & ubabr76[i]) | |
lvl = lvl | pi_l2bit[UBCS_GET_HI (ubcs[i])]; | |
if (int_req & ubabr54[i]) | |
lvl = lvl | pi_l2bit[UBCS_GET_LO (ubcs[i])]; } | |
return lvl; | |
} | |
/* Return Unibus device vector | |
Takes as input the request level calculated by pi_eval | |
If there is an interrupting Unibus device at that level, return its vector, | |
otherwise, returns 0 | |
*/ | |
int32 pi_ub_vec (int32 rlvl, int32 *uba) | |
{ | |
int32 i, masked_irq; | |
for (i = masked_irq = 0; i < UBANUM; i++) { | |
if ((rlvl == UBCS_GET_HI (ubcs[i])) && /* req on hi level? */ | |
(masked_irq = int_req & ubabr76[i])) break; | |
if ((rlvl == UBCS_GET_LO (ubcs[i])) && /* req on lo level? */ | |
(masked_irq = int_req & ubabr54[i])) break; } | |
*uba = (i << 1) + 1; /* store uba # */ | |
for (i = 0; (i < 32) && masked_irq; i++) { /* find hi pri req */ | |
if ((masked_irq >> i) & 1) { | |
int_req = int_req & ~(1u << i); /* clear req */ | |
if (int_ack[i]) return int_ack[i](); | |
return int_vec[i]; } } /* return vector */ | |
return 0; | |
} | |
/* Unibus adapter map routines */ | |
t_stat ubmap_rd (int32 *val, int32 pa, int32 mode) | |
{ | |
int32 n = iocmap[GET_IOUBA (pa)]; | |
if (n < 0) ABORT (STOP_ILLIOC); | |
*val = ubmap[n][pa & UMAP_AMASK]; | |
return SCPE_OK; | |
} | |
t_stat ubmap_wr (int32 val, int32 pa, int32 mode) | |
{ | |
int32 n = iocmap[GET_IOUBA (pa)]; | |
if (n < 0) ABORT (STOP_ILLIOC); | |
ubmap[n][pa & UMAP_AMASK] = UMAP_POSFL (val) | UMAP_POSPN (val); | |
return SCPE_OK; | |
} | |
/* Unibus adapter control/status routines */ | |
t_stat ubs_rd (int32 *val, int32 pa, int32 mode) | |
{ | |
int32 n = iocmap[GET_IOUBA (pa)]; | |
if (n < 0) ABORT (STOP_ILLIOC); | |
if (int_req & ubabr76[n]) ubcs[n] = ubcs[n] | UBCS_HI; | |
if (int_req & ubabr54[n]) ubcs[n] = ubcs[n] | UBCS_LO; | |
*val = ubcs[n] = ubcs[n] & ~UBCS_RDZ; | |
return SCPE_OK; | |
} | |
t_stat ubs_wr (int32 val, int32 pa, int32 mode) | |
{ | |
int32 n = iocmap[GET_IOUBA (pa)]; | |
if (n < 0) ABORT (STOP_ILLIOC); | |
if (val & UBCS_INI) { | |
reset_all (5); /* start after UBA */ | |
ubcs[n] = val & UBCS_DXF; } | |
else ubcs[n] = val & UBCS_RDW; | |
if (int_req & ubabr76[n]) ubcs[n] = ubcs[n] | UBCS_HI; | |
if (int_req & ubabr54[n]) ubcs[n] = ubcs[n] | UBCS_LO; | |
return SCPE_OK; | |
} | |
/* Unibus adapter read zero/write ignore routines */ | |
t_stat rd_zro (int32 *val, int32 pa, int32 mode) | |
{ | |
*val = 0; | |
return SCPE_OK; | |
} | |
t_stat wr_nop (int32 val, int32 pa, int32 mode) | |
{ | |
return SCPE_OK; | |
} | |
t_stat uba_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw) | |
{ | |
int32 uba = uptr - uba_unit; | |
if (addr >= UMAP_MEMSIZE) return SCPE_NXM; | |
*vptr = ubmap[uba][addr]; | |
return SCPE_OK; | |
} | |
t_stat uba_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw) | |
{ | |
int32 uba = uptr - uba_unit; | |
if (addr >= UMAP_MEMSIZE) return SCPE_NXM; | |
ubmap[uba][addr] = (int32) val & UMAP_MASK; | |
return SCPE_OK; | |
} | |
t_stat uba_reset (DEVICE *dptr) | |
{ | |
int32 i, uba; | |
int_req = 0; | |
for (uba = 0; uba < UBANUM; uba++) { | |
ubcs[uba] = 0; | |
for (i = 0; i < UMAP_MEMSIZE; i++) ubmap[uba][i] = 0; } | |
pi_eval (); | |
return SCPE_OK; | |
} | |
/* Change device address */ | |
t_stat set_addr (UNIT *uptr, int32 val, char *cptr, void *desc) | |
{ | |
DEVICE *dptr; | |
DIB *dibp; | |
uint32 newba; | |
t_stat r; | |
if (cptr == NULL) return SCPE_ARG; | |
if ((val == 0) || (uptr == NULL)) return SCPE_IERR; | |
dptr = find_dev_from_unit (uptr); | |
if (dptr == NULL) return SCPE_IERR; | |
dibp = (DIB *) dptr->ctxt; | |
if (dibp == NULL) return SCPE_IERR; | |
newba = (uint32) get_uint (cptr, 8, PAMASK, &r); /* get new */ | |
if ((r != SCPE_OK) || (newba == dibp->ba)) return r; | |
if (GET_IOUBA (newba) != GET_IOUBA (dibp->ba)) return SCPE_ARG; | |
if (newba % ((uint32) val)) return SCPE_ARG; /* check modulus */ | |
if (GET_IOUBA (newba) != GET_IOUBA (dibp->ba)) return SCPE_ARG; | |
dibp->ba = newba; /* store */ | |
return SCPE_OK; | |
} | |
/* Show device address */ | |
t_stat show_addr (FILE *st, UNIT *uptr, int32 val, void *desc) | |
{ | |
DEVICE *dptr; | |
DIB *dibp; | |
if (uptr == NULL) return SCPE_IERR; | |
dptr = find_dev_from_unit (uptr); | |
if (dptr == NULL) return SCPE_IERR; | |
dibp = (DIB *) dptr->ctxt; | |
if ((dibp == NULL) || (dibp->ba <= IOPAGEBASE)) return SCPE_IERR; | |
fprintf (st, "address=%07o", dibp->ba); | |
if (dibp->lnt > 1) | |
fprintf (st, "-%07o", dibp->ba + dibp->lnt - 1); | |
return SCPE_OK; | |
} | |
/* Change device vector */ | |
t_stat set_vec (UNIT *uptr, int32 arg, char *cptr, void *desc) | |
{ | |
DEVICE *dptr; | |
DIB *dibp; | |
uint32 newvec; | |
t_stat r; | |
if (cptr == NULL) return SCPE_ARG; | |
if (uptr == NULL) return SCPE_IERR; | |
dptr = find_dev_from_unit (uptr); | |
if (dptr == NULL) return SCPE_IERR; | |
dibp = (DIB *) dptr->ctxt; | |
if (dibp == NULL) return SCPE_IERR; | |
newvec = (uint32) get_uint (cptr, 8, VEC_Q + 01000, &r); | |
if ((r != SCPE_OK) || (newvec == VEC_Q) || | |
((newvec + (dibp->vnum * 4)) >= (VEC_Q + 01000)) || | |
(newvec & ((dibp->vnum > 1)? 07: 03))) return SCPE_ARG; | |
dibp->vec = newvec; | |
return SCPE_OK; | |
} | |
/* Show device vector */ | |
t_stat show_vec (FILE *st, UNIT *uptr, int32 arg, void *desc) | |
{ | |
DEVICE *dptr; | |
DIB *dibp; | |
uint32 vec, numvec; | |
if (uptr == NULL) return SCPE_IERR; | |
dptr = find_dev_from_unit (uptr); | |
if (dptr == NULL) return SCPE_IERR; | |
dibp = (DIB *) dptr->ctxt; | |
if (dibp == NULL) return SCPE_IERR; | |
vec = dibp->vec; | |
if (arg) numvec = arg; | |
else numvec = dibp->vnum; | |
if (vec == 0) fprintf (st, "no vector"); | |
else { fprintf (st, "vector=%o", vec); | |
if (numvec > 1) fprintf (st, "-%o", vec + (4 * (numvec - 1))); } | |
return SCPE_OK; | |
} | |
/* Test for conflict in device addresses */ | |
t_bool dev_conflict (DIB *curr) | |
{ | |
uint32 i, end; | |
DEVICE *dptr; | |
DIB *dibp; | |
end = curr->ba + curr->lnt - 1; /* get end */ | |
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */ | |
dibp = (DIB *) dptr->ctxt; /* get DIB */ | |
if ((dibp == NULL) || (dibp == curr) || | |
(dptr->flags & DEV_DIS)) continue; | |
if (((curr->ba >= dibp->ba) && /* overlap start? */ | |
(curr->ba < (dibp->ba + dibp->lnt))) || | |
((end >= dibp->ba) && /* overlap end? */ | |
(end < (dibp->ba + dibp->lnt)))) { | |
printf ("Device %s address conflict at %08o\n", | |
sim_dname (dptr), dibp->ba); | |
if (sim_log) fprintf (sim_log, | |
"Device %s address conflict at %08o\n", | |
sim_dname (dptr), dibp->ba); | |
return TRUE; } } | |
return FALSE; | |
} | |
/* Build interrupt tables */ | |
void build_int_vec (int32 vloc, int32 ivec, int32 (*iack)(void) ) | |
{ | |
if (iack != NULL) int_ack[vloc] = iack; | |
else int_vec[vloc] = ivec; | |
return; | |
} | |
/* Build dib_tab from device list */ | |
t_bool build_dib_tab (void) | |
{ | |
int32 i, j, k; | |
DEVICE *dptr; | |
DIB *dibp; | |
for (i = 0; i < 32; i++) { /* clear intr tables */ | |
int_vec[i] = 0; | |
int_ack[i] = NULL; } | |
for (i = j = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */ | |
dibp = (DIB *) dptr->ctxt; /* get DIB */ | |
if (dibp && !(dptr->flags & DEV_DIS)) { /* defined, enabled? */ | |
if (dibp->vnum > VEC_DEVMAX) return SCPE_IERR; | |
for (k = 0; k < dibp->vnum; k++) /* loop thru vec */ | |
build_int_vec (dibp->vloc + k, /* add vector */ | |
dibp->vec + (k * 4), dibp->ack[k]); | |
if (dibp->lnt != 0) { /* I/O addresses? */ | |
dib_tab[j++] = dibp; /* add DIB to dib_tab */ | |
if (j >= DIB_MAX) return SCPE_IERR; } /* too many? */ | |
} /* end if enabled */ | |
} /* end for */ | |
for (i = 0; (dibp = std_dib[i]) != NULL; i++) { /* loop thru std */ | |
dib_tab[j++] = dibp; /* add to dib_tab */ | |
if (j >= DIB_MAX) return SCPE_IERR; } /* too many? */ | |
dib_tab[j] = NULL; /* end with NULL */ | |
for (i = 0; (dibp = dib_tab[i]) != NULL; i++) { /* test built dib_tab */ | |
if (dev_conflict (dibp)) return SCPE_STOP; } /* for conflicts */ | |
return SCPE_OK; | |
} | |
/* Show dib_tab */ | |
t_stat show_iospace (FILE *st, UNIT *uptr, int32 val, void *desc) | |
{ | |
int32 i, j, done = 0; | |
DEVICE *dptr; | |
DIB *dibt; | |
build_dib_tab (); /* build table */ | |
while (done == 0) { /* sort ascending */ | |
done = 1; /* assume done */ | |
for (i = 0; dib_tab[i + 1] != NULL; i++) { /* check table */ | |
if (dib_tab[i]->ba > dib_tab[i + 1]->ba) { /* out of order? */ | |
dibt = dib_tab[i]; /* interchange */ | |
dib_tab[i] = dib_tab[i + 1]; | |
dib_tab[i + 1] = dibt; | |
done = 0; } } /* not done */ | |
} /* end while */ | |
for (i = 0; dib_tab[i] != NULL; i++) { /* print table */ | |
for (j = 0, dptr = NULL; sim_devices[j] != NULL; j++) { | |
if (((DIB*) sim_devices[j]->ctxt) == dib_tab[i]) { | |
dptr = sim_devices[j]; | |
break; } } | |
fprintf (st, "%07o - %07o\t%s\n", dib_tab[i]->ba, | |
dib_tab[i]->ba + dib_tab[i]->lnt - 1, | |
dptr? sim_dname (dptr): "CPU"); | |
} | |
return SCPE_OK; | |
} | |
/* Stub auto-configure */ | |
t_stat auto_config (uint32 rank, uint32 num) | |
{ | |
return SCPE_OK; | |
} | |
/* Stub floating address */ | |
t_stat set_addr_flt (UNIT *uptr, int32 val, char *cptr, void *desc) | |
{ | |
return SCPE_OK; | |
} |