blob: ffaeaeef2f05d6e57b866a903c1aadb14fa4f9f0 [file] [log] [blame] [raw]
/* pdp8_rf.c: RF08 fixed head disk simulator
Copyright (c) 1993-2005, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
rf RF08 fixed head disk
04-Jan-04 RMS Changed sim_fsize calling sequence
26-Oct-03 RMS Cleaned up buffer copy code
26-Jul-03 RMS Fixed bug in set size routine
14-Mar-03 RMS Fixed variable platter interaction with save/restore
03-Mar-03 RMS Fixed autosizing
02-Feb-03 RMS Added variable platter and autosizing support
04-Oct-02 RMS Added DIB, device number support
28-Nov-01 RMS Added RL8A support
25-Apr-01 RMS Added device enable/disable support
19-Mar-01 RMS Added disk monitor bootstrap, fixed IOT decoding
15-Feb-01 RMS Fixed 3 cycle data break sequence
14-Apr-99 RMS Changed t_addr to unsigned
30-Mar-98 RMS Fixed bug in RF bootstrap
The RF08 is a head-per-track disk. It uses the three cycle data break
facility. To minimize overhead, the entire RF08 is buffered in memory.
Two timing parameters are provided:
rf_time Interword timing, must be non-zero
rf_burst Burst mode, if 0, DMA occurs cycle by cycle; otherwise,
DMA occurs in a burst
*/
#include "pdp8_defs.h"
#include <math.h>
#define UNIT_V_AUTO (UNIT_V_UF + 0) /* autosize */
#define UNIT_V_PLAT (UNIT_V_UF + 1) /* #platters - 1 */
#define UNIT_M_PLAT 03
#define UNIT_GETP(x) ((((x) >> UNIT_V_PLAT) & UNIT_M_PLAT) + 1)
#define UNIT_AUTO (1 << UNIT_V_AUTO)
#define UNIT_PLAT (UNIT_M_PLAT << UNIT_V_PLAT)
/* Constants */
#define RF_NUMWD 2048 /* words/track */
#define RF_NUMTR 128 /* tracks/disk */
#define RF_DKSIZE (RF_NUMTR * RF_NUMWD) /* words/disk */
#define RF_NUMDK 4 /* disks/controller */
#define RF_WC 07750 /* word count */
#define RF_MA 07751 /* mem address */
#define RF_WMASK (RF_NUMWD - 1) /* word mask */
/* Parameters in the unit descriptor */
#define FUNC u4 /* function */
#define RF_READ 2 /* read */
#define RF_WRITE 4 /* write */
/* Status register */
#define RFS_PCA 04000 /* photocell status */
#define RFS_DRE 02000 /* data req enable */
#define RFS_WLS 01000 /* write lock status */
#define RFS_EIE 00400 /* error int enable */
#define RFS_PIE 00200 /* photocell int enb */
#define RFS_CIE 00100 /* done int enable */
#define RFS_MEX 00070 /* memory extension */
#define RFS_DRL 00004 /* data late error */
#define RFS_NXD 00002 /* non-existent disk */
#define RFS_PER 00001 /* parity error */
#define RFS_ERR (RFS_WLS + RFS_DRL + RFS_NXD + RFS_PER)
#define RFS_V_MEX 3
#define GET_MEX(x) (((x) & RFS_MEX) << (12 - RFS_V_MEX))
#define GET_POS(x) ((int) fmod (sim_gtime() / ((double) (x)), \
((double) RF_NUMWD)))
#define UPDATE_PCELL if (GET_POS(rf_time) < 6) rf_sta = rf_sta | RFS_PCA; \
else rf_sta = rf_sta & ~RFS_PCA
#define RF_INT_UPDATE if ((rf_done && (rf_sta & RFS_CIE)) || \
((rf_sta & RFS_ERR) && (rf_sta & RFS_EIE)) || \
((rf_sta & RFS_PCA) && (rf_sta & RFS_PIE))) \
int_req = int_req | INT_RF; \
else int_req = int_req & ~INT_RF
extern uint16 M[];
extern int32 int_req, stop_inst;
extern UNIT cpu_unit;
int32 rf_sta = 0; /* status register */
int32 rf_da = 0; /* disk address */
int32 rf_done = 0; /* done flag */
int32 rf_wlk = 0; /* write lock */
int32 rf_time = 10; /* inter-word time */
int32 rf_burst = 1; /* burst mode flag */
int32 rf_stopioe = 1; /* stop on error */
DEVICE rf_dev;
int32 rf60 (int32 IR, int32 AC);
int32 rf61 (int32 IR, int32 AC);
int32 rf62 (int32 IR, int32 AC);
int32 rf64 (int32 IR, int32 AC);
t_stat rf_svc (UNIT *uptr);
t_stat pcell_svc (UNIT *uptr);
t_stat rf_reset (DEVICE *dptr);
t_stat rf_boot (int32 unitno, DEVICE *dptr);
t_stat rf_attach (UNIT *uptr, char *cptr);
t_stat rf_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
/* RF08 data structures
rf_dev RF device descriptor
rf_unit RF unit descriptor
pcell_unit photocell timing unit (orphan)
rf_reg RF register list
*/
DIB rf_dib = { DEV_RF, 5, { &rf60, &rf61, &rf62, NULL, &rf64 } };
UNIT rf_unit = {
UDATA (&rf_svc, UNIT_FIX+UNIT_ATTABLE+
UNIT_BUFABLE+UNIT_MUSTBUF, RF_DKSIZE)
};
UNIT pcell_unit = { UDATA (&pcell_svc, 0, 0) };
REG rf_reg[] = {
{ ORDATA (STA, rf_sta, 12) },
{ ORDATA (DA, rf_da, 20) },
{ ORDATA (WC, M[RF_WC], 12) },
{ ORDATA (MA, M[RF_MA], 12) },
{ FLDATA (DONE, rf_done, 0) },
{ FLDATA (INT, int_req, INT_V_RF) },
{ ORDATA (WLK, rf_wlk, 32) },
{ DRDATA (TIME, rf_time, 24), REG_NZ + PV_LEFT },
{ FLDATA (BURST, rf_burst, 0) },
{ FLDATA (STOP_IOE, rf_stopioe, 0) },
{ DRDATA (CAPAC, rf_unit.capac, 21), REG_HRO },
{ ORDATA (DEVNUM, rf_dib.dev, 6), REG_HRO },
{ NULL }
};
MTAB rf_mod[] = {
{ UNIT_PLAT, (0 << UNIT_V_PLAT), NULL, "1P", &rf_set_size },
{ UNIT_PLAT, (1 << UNIT_V_PLAT), NULL, "2P", &rf_set_size },
{ UNIT_PLAT, (2 << UNIT_V_PLAT), NULL, "3P", &rf_set_size },
{ UNIT_PLAT, (3 << UNIT_V_PLAT), NULL, "4P", &rf_set_size },
{ UNIT_AUTO, UNIT_AUTO, "autosize", "AUTOSIZE", NULL },
{ MTAB_XTD|MTAB_VDV, 0, "DEVNO", "DEVNO",
&set_dev, &show_dev, NULL },
{ 0 }
};
DEVICE rf_dev = {
"RF", &rf_unit, rf_reg, rf_mod,
1, 8, 20, 1, 8, 12,
NULL, NULL, &rf_reset,
&rf_boot, &rf_attach, NULL,
&rf_dib, DEV_DISABLE | DEV_DIS
};
/* IOT routines */
int32 rf60 (int32 IR, int32 AC)
{
int32 t;
int32 pulse = IR & 07;
UPDATE_PCELL; /* update photocell */
if (pulse & 1) { /* DCMA */
rf_da = rf_da & ~07777; /* clear DAR<8:19> */
rf_done = 0; /* clear done */
rf_sta = rf_sta & ~RFS_ERR; /* clear errors */
RF_INT_UPDATE; /* update int req */
}
if (pulse & 6) { /* DMAR, DMAW */
rf_da = rf_da | AC; /* DAR<8:19> |= AC */
rf_unit.FUNC = pulse & ~1; /* save function */
t = (rf_da & RF_WMASK) - GET_POS (rf_time); /* delta to new loc */
if (t < 0) t = t + RF_NUMWD; /* wrap around? */
sim_activate (&rf_unit, t * rf_time); /* schedule op */
AC = 0; /* clear AC */
}
return AC;
}
int32 rf61 (int32 IR, int32 AC)
{
int32 pulse = IR & 07;
UPDATE_PCELL; /* update photocell */
switch (pulse) { /* decode IR<9:11> */
case 1: /* DCIM */
rf_sta = rf_sta & 07007; /* clear STA<3:8> */
int_req = int_req & ~INT_RF; /* clear int req */
sim_cancel (&pcell_unit); /* cancel photocell */
return AC;
case 2: /* DSAC */
return ((rf_da & RF_WMASK) == GET_POS (rf_time))? IOT_SKP: 0;
case 5: /* DIML */
rf_sta = (rf_sta & 07007) | (AC & 0770); /* STA<3:8> <- AC */
if (rf_sta & RFS_PIE) /* photocell int? */
sim_activate (&pcell_unit, (RF_NUMWD - GET_POS (rf_time)) *
rf_time);
else sim_cancel (&pcell_unit);
RF_INT_UPDATE; /* update int req */
return 0; /* clear AC */
case 6: /* DIMA */
return rf_sta; /* AC <- STA<0:11> */
}
return AC;
}
int32 rf62 (int32 IR, int32 AC)
{
int32 pulse = IR & 07;
UPDATE_PCELL; /* update photocell */
if (pulse & 1) { /* DFSE */
if (rf_sta & RFS_ERR) AC = AC | IOT_SKP;
}
if (pulse & 2) { /* DFSC */
if (pulse & 4) AC = AC & ~07777; /* for DMAC */
else if (rf_done) AC = AC | IOT_SKP;
}
if (pulse & 4) AC = AC | (rf_da & 07777); /* DMAC */
return AC;
}
int32 rf64 (int32 IR, int32 AC)
{
int32 pulse = IR & 07;
UPDATE_PCELL; /* update photocell */
switch (pulse) { /* decode IR<9:11> */
case 1: /* DCXA */
rf_da = rf_da & 07777; /* clear DAR<0:7> */
break;
case 3: /* DXAL */
rf_da = rf_da & 07777; /* clear DAR<0:7> */
case 2: /* DXAL w/o clear */
rf_da = rf_da | ((AC & 0377) << 12); /* DAR<0:7> |= AC */
AC = 0; /* clear AC */
break;
case 5: /* DXAC */
AC = 0; /* clear AC */
case 4: /* DXAC w/o clear */
AC = AC | ((rf_da >> 12) & 0377); /* AC |= DAR<0:7> */
break;
default:
AC = (stop_inst << IOT_V_REASON) + AC;
break;
} /* end switch */
if ((uint32) rf_da >= rf_unit.capac) rf_sta = rf_sta | RFS_NXD;
else rf_sta = rf_sta & ~RFS_NXD;
RF_INT_UPDATE;
return AC;
}
/* Unit service
Note that for reads and writes, memory addresses wrap around in the
current field. This code assumes the entire disk is buffered.
*/
t_stat rf_svc (UNIT *uptr)
{
int32 pa, t, mex;
int16 *fbuf = uptr->filebuf;
UPDATE_PCELL; /* update photocell */
if ((uptr->flags & UNIT_BUF) == 0) { /* not buf? abort */
rf_sta = rf_sta | RFS_NXD;
rf_done = 1;
RF_INT_UPDATE; /* update int req */
return IORETURN (rf_stopioe, SCPE_UNATT);
}
mex = GET_MEX (rf_sta);
do {
if ((uint32) rf_da >= rf_unit.capac) { /* disk overflow? */
rf_sta = rf_sta | RFS_NXD;
break;
}
M[RF_WC] = (M[RF_WC] + 1) & 07777; /* incr word count */
M[RF_MA] = (M[RF_MA] + 1) & 07777; /* incr mem addr */
pa = mex | M[RF_MA]; /* add extension */
if (uptr->FUNC == RF_READ) { /* read? */
if (MEM_ADDR_OK (pa)) /* if !nxm */
M[pa] = fbuf[rf_da]; /* read word */
}
else { /* write */
t = ((rf_da >> 15) & 030) | ((rf_da >> 14) & 07);
if ((rf_wlk >> t) & 1) /* write locked? */
rf_sta = rf_sta | RFS_WLS;
else { /* not locked */
fbuf[rf_da] = M[pa]; /* write word */
if (((uint32) rf_da) >= uptr->hwmark) uptr->hwmark = rf_da + 1;
}
}
rf_da = (rf_da + 1) & 03777777; /* incr disk addr */
} while ((M[RF_WC] != 0) && (rf_burst != 0)); /* brk if wc, no brst */
if ((M[RF_WC] != 0) && ((rf_sta & RFS_ERR) == 0)) /* more to do? */
sim_activate (&rf_unit, rf_time); /* sched next */
else {
rf_done = 1; /* done */
RF_INT_UPDATE; /* update int req */
}
return SCPE_OK;
}
/* Photocell unit service */
t_stat pcell_svc (UNIT *uptr)
{
rf_sta = rf_sta | RFS_PCA; /* set photocell */
if (rf_sta & RFS_PIE) { /* int enable? */
sim_activate (&pcell_unit, RF_NUMWD * rf_time);
int_req = int_req | INT_RF;
}
return SCPE_OK;
}
/* Reset routine */
t_stat rf_reset (DEVICE *dptr)
{
rf_sta = rf_da = 0;
rf_done = 1;
int_req = int_req & ~INT_RF; /* clear interrupt */
sim_cancel (&rf_unit);
sim_cancel (&pcell_unit);
return SCPE_OK;
}
/* Bootstrap routine */
#define OS8_START 07750
#define OS8_LEN (sizeof (os8_rom) / sizeof (int16))
#define DM4_START 00200
#define DM4_LEN (sizeof (dm4_rom) / sizeof (int16))
static const uint16 os8_rom[] = {
07600, /* 7750, CLA CLL ; also word count */
06603, /* 7751, DMAR ; also address */
06622, /* 7752, DFSC ; done? */
05352, /* 7753, JMP .-1 ; no */
05752 /* 7754, JMP @.-2 ; enter boot */
};
static const uint16 dm4_rom[] = {
00200, 07600, /* 0200, CLA CLL */
00201, 06603, /* 0201, DMAR ; read */
00202, 06622, /* 0202, DFSC ; done? */
00203, 05202, /* 0203, JMP .-1 ; no */
00204, 05600, /* 0204, JMP @.-4 ; enter boot */
07750, 07576, /* 7750, 7576 ; word count */
07751, 07576 /* 7751, 7576 ; address */
};
t_stat rf_boot (int32 unitno, DEVICE *dptr)
{
int32 i;
extern int32 sim_switches, saved_PC;
if (rf_dib.dev != DEV_RF) return STOP_NOTSTD; /* only std devno */
if (sim_switches & SWMASK ('D')) {
for (i = 0; i < DM4_LEN; i = i + 2)
M[dm4_rom[i]] = dm4_rom[i + 1];
saved_PC = DM4_START;
}
else {
for (i = 0; i < OS8_LEN; i++)
M[OS8_START + i] = os8_rom[i];
saved_PC = OS8_START;
}
return SCPE_OK;
}
/* Attach routine */
t_stat rf_attach (UNIT *uptr, char *cptr)
{
uint32 sz, p;
uint32 ds_bytes = RF_DKSIZE * sizeof (int16);
t_stat r;
r = attach_unit (uptr, cptr);
if (r != SCPE_OK) return r;
if ((uptr->flags & UNIT_AUTO) && (sz = sim_fsize (uptr->fileref))) {
p = (sz + ds_bytes - 1) / ds_bytes;
if (p >= RF_NUMDK) p = RF_NUMDK - 1;
uptr->flags = (uptr->flags & ~UNIT_PLAT) |
(p << UNIT_V_PLAT);
}
uptr->capac = UNIT_GETP (uptr->flags) * RF_DKSIZE;
return SCPE_OK;
}
/* Change disk size */
t_stat rf_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (val < 0) return SCPE_IERR;
if (uptr->flags & UNIT_ATT) return SCPE_ALATT;
uptr->capac = UNIT_GETP (val) * RF_DKSIZE;
uptr->flags = uptr->flags & ~UNIT_AUTO;
return SCPE_OK;
}