/* i650_cpu.c: IBM 650 CPU simulator | |
Copyright (c) 2018, Roberto Sancho | |
Permission is hereby granted, free of charge, to any person obtaining a | |
copy of this software and associated documentation files (the "Software"), | |
to deal in the Software without restriction, including without limitation | |
the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
ROBERTO SANCHO BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
cpu IBM 650 central processor | |
From Wikipedia: The IBM 650 Magnetic Drum Data-Processing Machine is one of | |
IBM's early computers, and the worlds first mass-produced computer. It was | |
announced in 1953 and in 1956 enhanced as the IBM 650 RAMAC with the | |
addition of up to four disk storage units. Almost 2,000 systems were | |
produced, the last in 1962. | |
The 650 was a two-address, bi-quinary coded decimal computer (both data and | |
addresses were decimal), with memory on a rotating magnetic drum. Character | |
support was provided by the input/output units converting punched card | |
alphabetical and special character encodings to/from a two-digit decimal | |
code. | |
Rotating drum memory provided 1,000, 2,000, or 4,000 words of memory (a | |
signed 10-digit number or five characters per word) at addresses 0000 to | |
0999, 1999, or 3999 respectively. | |
Instructions read from the drum went to a program register (in current | |
terminology, an instruction register). Data read from the drum went through | |
a 10-digit distributor. The 650 had a 20-digit accumulator, divided into | |
10-digit lower and upper accumulators with a common sign. Arithmetic was | |
performed by a one-digit adder. The console (10 digit switches, one sign | |
switch, and 10 bi-quinary display lights), distributor, lower and upper | |
accumulators were all addressable; 8000, 8001, 8002, 8003 respectively. | |
The 650 instructions consisted of a two-digit operation code, a four-digit | |
data address and the four-digit address of the next instruction. The sign | |
was ignored on the basic machine, but was used on machines with optional | |
features. The base machine had 44 operation codes. Additional operation | |
codes were provided for options, such as floating point, core storage, | |
index registers and additional I/O devices. With all options installed, | |
there were 97 operation codes. | |
The programmer visible system state for the IBM 650 is: | |
CSW <10:1> Console Switches | |
ACC[0] <10:1> Lower Accumulator register | |
ACC[1] <10:1> Upper Accumulator register | |
DIST <10:1> Distributor | |
OV<0:0> Overflow flag | |
The 650 had one basic instuction format. | |
Intructions are stores as 10 digits (0-9) words in drum memory | |
10 9 | 8 7 6 5 | 4 3 2 1 | 0 | |
-----+---------+---------+----- | |
op | Data | Instr | Sign | |
code | Addr | Addr | |
First two digits are opcodes | |
digits 8-5 is data address referenced by opcode | |
digits 4-1 is instruction address: address of next instruction | |
Instruction support as described in BitSavers 22-6060-2_650_OperMan.pdf | |
*/ | |
#include "i650_defs.h" | |
extern const char * get_opcode_data(int opcode, int * ReadData); | |
#define UNIT_V_MSIZE (UNIT_V_UF + 0) | |
#define UNIT_MSIZE (7 << UNIT_V_MSIZE) | |
#define UNIT_V_CPUMODEL (UNIT_V_UF + 4) | |
#define UNIT_MODEL (0x01 << UNIT_V_CPUMODEL) | |
#define CPU_MODEL ((cpu_unit.flags >> UNIT_V_CPUMODEL) & 0x01) | |
#define MODEL(x) (x << UNIT_V_CPUMODEL) | |
#define MEMAMOUNT(x) (x << UNIT_V_MSIZE) | |
//XXX #define OPTION_FLOAT (1 << (UNIT_V_CPUMODEL + 1)) | |
t_stat cpu_ex(t_value * vptr, t_addr addr, UNIT * uptr, int32 sw); | |
t_stat cpu_dep(t_value val, t_addr addr, UNIT * uptr, int32 sw); | |
t_stat cpu_reset(DEVICE * dptr); | |
t_stat cpu_set_size(UNIT * uptr, int32 val, CONST char *cptr, void *desc); | |
t_stat cpu_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr); | |
const char *cpu_description (DEVICE *dptr); | |
void mem_init(void); | |
t_int64 DRUM[MAXMEMSIZE] = {0}; | |
int DRUM_NegativeZeroFlag[MAXMEMSIZE] = {0}; | |
// cpu registers | |
t_int64 ACC[2]; /* lower, upper accumulator. 10 digits (=one word) each*/ | |
t_int64 DIST; /* ditributor. 10 digits */ | |
int OV; /* Overflow flag */ | |
t_int64 CSW = 0; /* Console Switches, 10 digits */ | |
int CSWProgStop = 1; /* Console programmed stop switch */ | |
int CSWOverflowStop = 0; /* Console stop on overflow switch */ | |
t_int64 PR; /* Program Register: hold current instr in execution, 10 digits*/ | |
int AR; /* Address Register: address references to drum */ | |
int AccNegativeZeroFlag = 0; // set to 1 if acc has a negative zero | |
int DistNegativeZeroFlag = 0; // set to 1 if distributor has a negative zero | |
int IC; // addr of current intr in execution, just for debugginf purposes. IBM 650 has no program counter | |
void (*sim_vm_init) (void) = &mem_init; | |
/* CPU data structures | |
cpu_dev CPU device descriptor | |
cpu_unit CPU unit descriptor | |
cpu_reg CPU register list | |
cpu_mod CPU modifiers list | |
*/ | |
UNIT cpu_unit = | |
{ UDATA(NULL, MEMAMOUNT(0)|MODEL(0x0), 1000), 10 }; | |
REG cpu_reg[] = { | |
{DRDATAD(IC, IC, 16, "Current Instruction"), REG_FIT}, | |
{HRDATAD(DIST, DIST, 64, "Distributor"), REG_VMIO|REG_FIT}, | |
{HRDATAD(ACCLO, ACC[0], 64, "Lower Accumulator"), REG_VMIO|REG_FIT}, | |
{HRDATAD(ACCUP, ACC[1], 64, "Upper Accumulator"), REG_VMIO|REG_FIT}, | |
{HRDATAD(PR, PR, 64, "Program Register"), REG_VMIO|REG_FIT}, | |
{DRDATAD(AR, AR, 16, "Address Register"), REG_FIT}, | |
{ORDATAD(OV, OV, 1, "Overflow"), REG_FIT}, | |
{HRDATAD(CSW, CSW, 64, "Console Switches"), REG_VMIO|REG_FIT}, | |
{ORDATAD(CSWPS, CSWProgStop, 1, "Console Switch Program Stop"), REG_FIT}, | |
{ORDATAD(CSWOS, CSWOverflowStop, 1, "Console Switch Overflow Stop"), REG_FIT}, | |
{NULL} | |
}; | |
MTAB cpu_mod[] = { | |
{UNIT_MSIZE, MEMAMOUNT(0), "1K", "1K", &cpu_set_size}, | |
{UNIT_MSIZE, MEMAMOUNT(1), "2K", "2K", &cpu_set_size}, | |
{UNIT_MSIZE, MEMAMOUNT(2), "4K", "4K", &cpu_set_size}, | |
{0} | |
}; | |
DEVICE cpu_dev = { | |
"CPU", &cpu_unit, cpu_reg, cpu_mod, | |
1, 10, 12, 1, 10, 64, | |
&cpu_ex, &cpu_dep, &cpu_reset, NULL, NULL, NULL, | |
NULL, DEV_DEBUG, 0, dev_debug, | |
NULL, NULL, &cpu_help, NULL, NULL, &cpu_description | |
}; | |
// return 0 if drum addr invalid | |
int IsDrumAddrOk(int AR) | |
{ | |
if ((AR < 0) || (AR >= (int)MEMSIZE) || (AR >= MAXMEMSIZE)) return 0; | |
return 1; | |
} | |
// return 0 if write addr invalid | |
int WriteDrum(int AR, t_int64 d, int NegZero) | |
{ | |
if (IsDrumAddrOk(AR) == 0) return 0; | |
if (d) NegZero = 0; // sanity check on Minus Zero | |
DRUM[AR] = d; | |
DRUM_NegativeZeroFlag[AR] = NegZero; | |
return 1; | |
} | |
// return 0 if drum addr invalid | |
int ReadDrum(int AR, t_int64 * d, int * NegZero) | |
{ | |
if (IsDrumAddrOk(AR) == 0) return 0; | |
*d = DRUM[AR]; | |
*NegZero = DRUM_NegativeZeroFlag[AR]; | |
if (*d) { | |
*NegZero = 0; // sanity check on Minus Zero | |
DRUM_NegativeZeroFlag[AR] = 0; | |
} | |
return 1; | |
} | |
// return 0 if read addr invalid | |
int ReadAddr(int AR, t_int64 * d, int * NegZero) | |
{ | |
int r; | |
if (AR == 8000) {*d = CSW; *NegZero=0; r=1; } else | |
if (AR == 8001) {*d = DIST; *NegZero=DistNegativeZeroFlag; r=1; } else | |
if (AR == 8002) {*d = ACC[0]; *NegZero=AccNegativeZeroFlag; r=1; } else | |
if (AR == 8003) {*d = ACC[1]; *NegZero=AccNegativeZeroFlag; r=1; } else | |
{ r=ReadDrum(AR, d, NegZero); } | |
if (*d) *NegZero = 0; // sanity check on Minus Zero | |
return r; | |
} | |
int bAccNegComplement; // flag to signals acc has complemented a negative ass (== sign adjust) | |
// needed to compute execution cycles taken by the intruction | |
// add to accumulator, set Overflow | |
void AddToAcc(t_int64 a1, t_int64 a0) | |
{ | |
OV = 0; AccNegativeZeroFlag = 0; | |
bAccNegComplement = 0; | |
ACC[0] += a0; | |
ACC[1] += a1; | |
// adjust carry from Lower ACC to Upper Acc | |
if (ACC[0] >= D10) { ACC[0] -= D10; ACC[1]++; } | |
if (ACC[0] <= -D10) { ACC[0] += D10; ACC[1]--; } | |
// ajust sign | |
if ((ACC[0] > 0) && (ACC[1] < 0)) { | |
ACC[0] -= D10; ACC[1]++; | |
bAccNegComplement = 1; | |
} | |
if ((ACC[0] < 0) && (ACC[1] > 0)) { | |
ACC[0] += D10; ACC[1]--; | |
bAccNegComplement = 1; | |
} | |
// check overflow | |
if ((ACC[1] >= D10) || (ACC[1] <= -D10)) { | |
ACC[1] = ACC[1] % D10; | |
OV=1; | |
} | |
} | |
// shift acc 1 digit. If direction > 0 to the left, if direction < 0 to the right. | |
// Return overflow digit (with sign) | |
int ShiftAcc(int direction) | |
{ | |
t_int64 a0, a1; | |
int neg = 0; | |
int n, m; | |
a1 = ACC[1]; if (a1 < 0) {a1 = -a1; neg = 1;} | |
a0 = ACC[0]; if (a0 < 0) {a0 = -a0; neg = 1;} | |
if (direction > 0) { // shift left | |
n = Shift_Digits(&a1, 1); // n = Upper Acc high digit shifted out on the left | |
m = Shift_Digits(&a0, 1); // m = intermediate digit that goes from one acc to the other | |
a1 = a1 + (t_int64) m; | |
} else if (direction < 0) { // shift right | |
m = Shift_Digits(&a1, -1); // m = intermediate digit that goes from one acc to the other | |
n = Shift_Digits(&a0, -1); // n = Lower Acc units digit shifted out on the right | |
a0 = a0 + (t_int64) m * (1000000000L); | |
} | |
if (neg) {a1=-a1; a0=-a0; n=-n;} | |
ACC[0] = a0; | |
ACC[1] = a1; | |
if ((neg == 1) && (a0 == 0) && (a1 == 0)) AccNegativeZeroFlag = 1; | |
return n; | |
} | |
t_int64 SetDA(t_int64 d, int DA) | |
{ | |
int neg = 0; | |
int op, nn, IA; | |
if (DA < 0) DA=-DA; | |
if (d < 0) {d=-d; neg=1;} | |
// extract parts of word | |
op = Shift_Digits(&d, 2); | |
nn = Shift_Digits(&d, 4); // discard current DA | |
IA = Shift_Digits(&d, 4); | |
// rebuild word with new DA | |
d = (t_int64) op * D8 + | |
(t_int64) DA * D4 + | |
(t_int64) IA; | |
if (neg) d=-d; | |
return d; | |
} | |
// set last 4 digits in d with IA contents | |
t_int64 SetIA(t_int64 d, int IA) | |
{ | |
int neg = 0; | |
if (IA < 0) IA=-IA; | |
if (d < 0) {d=-d; neg=1;} | |
d = d - ( d % D4); | |
d = d + (IA % D4); | |
if (neg) d=-d; | |
return d; | |
} | |
// set last 2 digits in d with IA contents | |
t_int64 SetIA2(t_int64 d, int n) | |
{ | |
int neg = 0; | |
if (n < 0) n=-n; | |
if (d < 0) {d=-d; neg=1;} | |
d = d - ( d % 100); | |
d = d + ( n % 100); | |
if (neg) d=-d; | |
return d; | |
} | |
t_stat | |
sim_instr(void) | |
{ | |
t_stat reason; | |
t_int64 d; | |
int n, i, sgn, r; | |
int opcode = 0; | |
int bReadData, bWriteDrum; | |
int instr_count = 0; /* Number of instructions to execute */ | |
const char * opname; /* points to opcode name */ | |
int PRNegZero; | |
int IA; // Instr Address: addr of next inst | |
int DA; // Data Address; addr of data to be used by current inst | |
int DrumAddr; // address where drum is currently positioned (0-49) | |
int MachineCycle, bBranchTaken, CpuStepsRemaining, WaitForInterlock; | |
int InterLockCount[3]; // interlock counters | |
#define IL_RD1 1 // interlock on drum area 01-10/51-60 used in reading for cdr1 | |
#define IL_WR1 2 // interlock on drum area 27-36/77-86 used in writing for cdp1 | |
if (sim_step != 0) { | |
instr_count = sim_step; | |
sim_cancel_step(); | |
} | |
reason = 0; | |
MachineCycle = CpuStepsRemaining = 0; | |
bReadData = bWriteDrum = 0; | |
DrumAddr = 0; | |
WaitForInterlock = 0; | |
InterLockCount[IL_RD1] = InterLockCount[IL_WR1] = 0; | |
while (reason == 0) { /* loop until halted */ | |
if (sim_interval <= 0) { /* event queue? */ | |
reason = sim_process_event(); | |
if (reason != SCPE_OK) { | |
break; /* process */ | |
} | |
} | |
/* Main instruction fetch/decode loop */ | |
sim_interval -= 1; /* count down */ | |
// simulate the rotating drum: incr current drum position | |
DrumAddr = ++DrumAddr % 50; | |
// if any interlock set, make it expire | |
if (InterLockCount[IL_RD1]) InterLockCount[IL_RD1]--; | |
if (InterLockCount[IL_WR1]) InterLockCount[IL_WR1]--; | |
if (MachineCycle == 0) { | |
/* Only check for break points during actual fetch */ | |
if (sim_brk_summ && sim_brk_test(IC, SWMASK('E'))) { | |
reason = STOP_IBKPT; | |
break; | |
} | |
// should wait for drum to fetch inst? | |
if ((AR >= 0) && (AR < (int)MEMSIZE)) { | |
if ((AR % 50) != DrumAddr) continue; // yes | |
} | |
CpuStepsRemaining = 0; // init inst execution | |
bReadData = bWriteDrum = 0; | |
MachineCycle = 1; // decode instr | |
} if (MachineCycle == 2) { | |
// should wait for cpu to exec the inst? | |
if (--CpuStepsRemaining > 0) continue; // yes | |
CpuStepsRemaining = 0; | |
// should wait for interlock release? | |
if (WaitForInterlock) { | |
if (InterLockCount[WaitForInterlock]) continue; // yes | |
WaitForInterlock = 0; | |
} | |
// should wait for drum to fetch data? | |
if ((bReadData) && (AR >= 0) && (AR < (int)MEMSIZE)) { | |
if ((AR % 50) != DrumAddr) continue; // yes | |
} | |
MachineCycle = 3; // exec instr | |
} if (MachineCycle == 4) { | |
// should wait for cpu to exec the inst? | |
if (--CpuStepsRemaining > 0) continue; // yes | |
CpuStepsRemaining = 0; | |
// should wait for drum to store data? | |
if ((bWriteDrum) && (AR >= 0) && (AR < (int)MEMSIZE)) { | |
if ((AR % 50) != DrumAddr) continue; // yes | |
} | |
MachineCycle = 5; // terminate the instr execution | |
} | |
// here, MachineCicly is either 1 (decode), 3 (exec), 5 (exec2) | |
if (MachineCycle == 1) { | |
// fetch current intruction from mem, save current instr addr in IC | |
IC = AR; | |
if (0==ReadAddr(AR, &PR, &PRNegZero)) { | |
reason = STOP_ADDR; | |
goto end_of_while; | |
} | |
// decode inst | |
d = PR; | |
opcode = Shift_Digits(&d, 2); // current inste opcode | |
DA = Shift_Digits(&d, 4); // addr of data used by current instr | |
IA = Shift_Digits(&d, 4); // addr of next instr | |
opname = get_opcode_data(opcode, &bReadData); | |
if (opname == NULL) { | |
reason = STOP_UUO; // unknown opcode | |
goto end_of_while; | |
} | |
sim_debug(DEBUG_CMD, &cpu_dev, "Exec %04d: %02d %-6s %04d %04d\r\n", IC, opcode, opname, DA, IA); | |
if ((opcode == OP_NOOP) && (IC == 0) && (IA == 0)) { | |
// if loop on NOOP on addr zero -> machine idle -> stop cpu | |
reason = STOP_HALT; | |
goto end_of_while; | |
} | |
// check if opcode should wait for and already set interlock | |
if ((opcode == OP_RD) && (InterLockCount[IL_RD1])) { | |
WaitForInterlock = IL_RD1; | |
} else if ((opcode == OP_PCH) && (InterLockCount[IL_WR1])) { | |
WaitForInterlock = IL_WR1; | |
} else { | |
WaitForInterlock = 0; | |
} | |
AR = DA; | |
CpuStepsRemaining = 1; | |
MachineCycle = 2; | |
continue; | |
} | |
if (MachineCycle == 3) { | |
// fetch data from drum if needed | |
if (bReadData) { | |
r = ReadAddr(AR, &DIST, &DistNegativeZeroFlag); | |
sim_debug(DEBUG_DATA, &cpu_dev, "... Read %04d: %06d%04d%c\r\n", | |
AR, printfd); | |
if (r==0) { | |
reason = STOP_ADDR; | |
goto end_of_while; | |
} | |
} else { | |
if (0==IsDrumAddrOk(AR)) { // even if no data is fetched from drum, DA addr must be a valid one | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "Invalid AR addr %d ERROR\r\n", AR); | |
reason = STOP_ADDR; | |
goto end_of_while; | |
} | |
} | |
bWriteDrum = 0; // set to 1 by opcode if it is necessary to write dist back to drum | |
bBranchTaken = 0; // flag if branch is taken | |
switch(opcode) { | |
case OP_NOOP : // No operation | |
break; | |
case OP_STOP : // Stop if console switch is set to stop, otherwise continue as a NO-OP | |
if (CSWProgStop) { | |
reason = STOP_PROG; | |
goto end_of_while; | |
} | |
break; | |
// arithmetic | |
case OP_RAL: // Reset and Add into Lower | |
case OP_RSL: // Reset and Subtract into Lower | |
case OP_RAABL: // Reset and Add Absolute into Lower | |
case OP_RSABL: // Reset and Subtract Absolute into Lower | |
d = DIST; | |
if ((opcode == OP_RAABL) || (opcode == OP_RSABL)) d = AbsWord(d); | |
if ((opcode == OP_RSL) || (opcode == OP_RSABL)) d = -d; | |
OV = 0; AccNegativeZeroFlag = 0; | |
ACC[1] = 0; | |
ACC[0] = d; | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... ACC: %06d%04d %06d%04d%c, OV: %d\r\n", | |
printfa, | |
OV); | |
// sequence chart for Add/Substract | |
// (1) (0..49) (1) (0/1) (2) (0/2) (1) | |
// Enable Search Data to Wait Dist to Complement Remove A | |
// Dist Data dist for even Acc Neg Sum interlock | |
// (1) (1) (1) (0..49) | |
// Restart IA to AR Enable PR Search next | |
// Signal Inst | |
CpuStepsRemaining = 1+1+2+1; | |
if ((DrumAddr % 2) != 0) CpuStepsRemaining++; // using lower acc -> wait for even | |
// no need to complement neg sum | |
break; | |
case OP_AL: // Add to Lower | |
case OP_SL: // Subtract from Lower | |
case OP_AABL: // Add Absolute to lower | |
case OP_SABL: // Subtract Absolute from lower | |
if ((opcode == OP_AL) && (ACC[1] == 0) && (ACC[0] == 0) && (AccNegativeZeroFlag) && | |
(DIST == 0) && (DistNegativeZeroFlag)) { | |
// special case as stated in Operation manual 22(22-6060-2_650_OperMan.pdf), page 95 | |
// Acc result on minus zero if acc contains minus zero and AU or AL with a drum | |
// location that contains minus zero | |
OV=0; | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... ACC: 0000000000 0000000000- (Minus Zero), OV: 0\r\n"); | |
// acc keeps the minus zero it already has | |
break; | |
} | |
d = DIST; | |
if ((opcode == OP_AABL) || (opcode == OP_SABL)) d = AbsWord(d); | |
if ((opcode == OP_SL) || (opcode == OP_SABL)) d = -d; | |
AddToAcc(0,d); | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... ACC: %06d%04d %06d%04d%c, OV: %d\r\n", | |
printfa, | |
OV); | |
CpuStepsRemaining = 1+1+2+1; | |
if ((DrumAddr % 2) != 0) CpuStepsRemaining++; // using lower acc -> wait for even | |
if (bAccNegComplement) CpuStepsRemaining += 2; // acc sign change -> need to complement neg sum | |
break; | |
case OP_RAU: // Reset and Add into Upper | |
case OP_RSU: // Reset and Subtract into Upper | |
case OP_AU: // Add to Upper | |
case OP_SU: // Substract from Upper | |
if ((opcode == OP_AU) && (ACC[1] == 0) && (ACC[0] == 0) && (AccNegativeZeroFlag) && | |
(DIST == 0) && (DistNegativeZeroFlag)) { | |
// special case as stated in Operation manual 22(22-6060-2_650_OperMan.pdf), page 95 | |
// Acc result on minus zero if acc contains minus zero and AU or AL with a drum | |
// location that contains minus zero | |
OV=0; | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... ACC: 0000000000 0000000000- (Minus Zero), OV: 0\r\n"); | |
// acc keeps the minus zero it already has | |
break; | |
} | |
d = DIST; | |
if ((opcode == OP_RAU) || (opcode == OP_RSU)) ACC[1] = ACC[0] = 0; | |
if ((opcode == OP_SU) || (opcode == OP_RSU)) d = -d; | |
AddToAcc(d,0); | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... ACC: %06d%04d %06d%04d%c, OV: %d\r\n", | |
printfa, | |
OV); | |
CpuStepsRemaining = 1+1+2+1; | |
if ((DrumAddr % 2) == 0) CpuStepsRemaining++; // using upper acc -> wait for odd | |
if (bAccNegComplement) CpuStepsRemaining += 2; // acc sign change -> need to complement neg sum | |
break; | |
// Multiply/divide | |
case OP_MULT: // Multiply | |
if ((ACC[1] == 0) && (ACC[0] == 1) && (DIST == 0) && (DistNegativeZeroFlag)) { | |
// special case as stated in Operation manual 22(22-6060-2_650_OperMan.pdf), page 95 | |
// Acc result on minus zero if a drum location that contains minus zero | |
// is multiplied by +1 | |
OV = 0; | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... ACC: 0000000000 0000000000- (Minus Zero), OV: 0\r\n"); | |
// acc set to minus zero | |
ACC[1] = ACC[0] = 0; | |
AccNegativeZeroFlag = 1; | |
break; | |
} | |
OV = 0; | |
sgn = (DIST < 0) ? -1:1; if (ACC[0] < 0) sgn = -sgn; | |
d = AbsWord(DIST); | |
ACC[0] = AbsWord(ACC[0]); | |
ACC[1] = AbsWord(ACC[1]); | |
for(i=0;i<10;i++) { | |
n = ShiftAcc(1); | |
while (n-- > 0) { | |
AddToAcc(0, d); | |
if (OV) {i=10; break;} | |
} | |
} | |
if (sgn < 0) { | |
ACC[0] = -ACC[0]; | |
ACC[1] = -ACC[1]; | |
} | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... ACC: %06d%04d %06d%04d%c, OV: %d\r\n", | |
printfa, | |
OV); | |
// sequence chart for Multiply/Divide | |
// (1) (0..49) (1) (0/1) (20..200) (1) | |
// Enable Search Data to Wait Mult/Div Remove A | |
// Dist Data dist for even loop interlock | |
// (1) (1) (1) (0..49) | |
// Restart IA to AR Enable PR Search next | |
// Signal Inst | |
CpuStepsRemaining = 1+1+1+1; | |
if ((DrumAddr % 2) != 0) CpuStepsRemaining++; // wait for even | |
if (i < 0) i=0; if (i>9) i=9; // i holds the number of loops done | |
CpuStepsRemaining += 20*(i+1); | |
break; | |
case OP_DIV: // Divide | |
case OP_DIVRU: // Divide and reset upper accumulator | |
if (DIST == 0) { | |
OV = 1; | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "Divide By Zero -> OV set \r\n"); | |
} else if (AbsWord(DIST) <= AbsWord(ACC[1])) { | |
OV = 1; | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "Quotient Overflow -> OV set and ERROR\r\n"); | |
reason = STOP_OV; // quotient overfow allways stops the machine | |
} else { | |
OV = 0; | |
sgn = (DIST < 0) ? -1:1; if (ACC[0] < 0) sgn = -sgn; | |
d = AbsWord(DIST); | |
ACC[0] = AbsWord(ACC[0]); | |
ACC[1] = AbsWord(ACC[1]); | |
for(i=0;i<10;i++) { | |
ShiftAcc(1); | |
while (d <= ACC[1]) { | |
AddToAcc(-d, 0); | |
ACC[0]++; | |
} | |
} | |
if (sgn < 0) { | |
ACC[0] = -ACC[0]; | |
ACC[1] = -ACC[1]; | |
} | |
if (opcode == OP_DIVRU) { | |
ACC[1] = 0; | |
} | |
CpuStepsRemaining = 1+1+1+1; | |
if ((DrumAddr % 2) != 0) CpuStepsRemaining++; // wait for even | |
// i holds the number of loops done | |
if (i < 0) i=0; if (i>9) i=9; | |
CpuStepsRemaining += 20*(i+1) + 40; | |
} | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... ACC: %06d%04d %06d%04d%c, OV: %d\r\n", | |
printfa, | |
OV); | |
break; | |
// shift | |
case OP_SLT: // Shift Left | |
case OP_SRT: // Shift Right | |
case OP_SRD: // Shift Right and Round | |
n = AR % 10; // number of digits to shift | |
d = 0; | |
while (n-- > 0) { | |
d = ShiftAcc((opcode == OP_SLT) ? 1:-1); | |
} | |
if (opcode == OP_SRD) { | |
if (d <= - 5) AddToAcc(0,-1); | |
if (d >= 5) AddToAcc(0,+1); | |
OV = 0; | |
} | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... ACC: %06d%04d %06d%04d%c, OV: %d\r\n", | |
printfa, | |
OV); | |
// sequence chart for shift | |
// (1) (0/1) (2) (1) | |
// Enable Wait Per Remove A | |
// Sh count for even shift interlock | |
// (0/1) (1) (1) (0..49) | |
// Restart IA to AR Enable PR Search next | |
// Signal Inst | |
CpuStepsRemaining = 1+1+1; | |
if ((DrumAddr % 2) != 0) CpuStepsRemaining++; // wait for even | |
n = AR % 10; // number of shifts done | |
if (n > 0) CpuStepsRemaining += 2*n; | |
if (opcode == OP_SRD) CpuStepsRemaining++; | |
break; | |
case OP_SCT : // Shift accumulator left and count | |
n = 10 - AR % 10; // shift count (nine's complement of unit digit of DA) | |
if (n==10) n=0; | |
if (ACC[1] == 0) { | |
// upper acc is zero -> will have 10 or more shifts | |
ACC[1] = ACC[0]; | |
ACC[0] = 10; | |
if (n) { | |
OV = 1; // overflow because n <> 0 | |
} else { | |
if (Get_HiDigit(ACC[1]) == 0) OV = 1; // overflow because not just 10 shifts | |
} | |
} else if (Get_HiDigit(ACC[1]) != 0) { | |
// no shift will be done | |
ACC[0] = SetIA2(ACC[0], 0); // replace last two digits by 00 | |
} else { | |
while (Get_HiDigit(ACC[1]) == 0) { | |
ShiftAcc(1); // shift left | |
if (n==10) { | |
OV = 1; | |
break; | |
} | |
n++; | |
} | |
ACC[0] = SetIA2(ACC[0], n); // replace last two digits by 00 | |
} | |
AccNegativeZeroFlag = 0; | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... ACC: %06d%04d %06d%04d%c, OV: %d\r\n", | |
printfa, | |
OV); | |
CpuStepsRemaining = 1+1+1; | |
if ((DrumAddr % 2) != 0) CpuStepsRemaining++; // wait for even | |
n = AR % 10; // number of shifts done | |
if (n > 0) CpuStepsRemaining += 2*n; | |
if (opcode == OP_SRD) CpuStepsRemaining++; | |
break; | |
// load and store | |
case OP_STL: // Store Lower in Mem | |
case OP_STU: // Store Upper in Mem | |
if ((ACC[0] == 0) && (ACC[0] == 0) && (AccNegativeZeroFlag)) { | |
DistNegativeZeroFlag = 1; | |
} else { | |
DistNegativeZeroFlag = 0; | |
} | |
DIST = (opcode == OP_STU) ? ACC[1] : ACC[0]; | |
// sequence chart for store | |
// (1) (0/1) (1) (0..49) (1) (1) (1) | |
// Enable Wait L/U acc Search Store IA to AR Enable PR | |
// Dist for even to dist data data | |
// or odd | |
CpuStepsRemaining = 1+1+1+1+1; | |
if ((DrumAddr % 2) == ( (opcode == OP_STU) ? 0:1)) CpuStepsRemaining++; // wait for odd/even | |
bWriteDrum = 1; // to write DIST in drum at AR | |
break; | |
case OP_STD: // store distributor | |
CpuStepsRemaining = 1+1+1+1; | |
bWriteDrum = 1; // to write DIST in drum at AR | |
break; | |
case OP_STDA: // Store Lower Data Address | |
n = ((ACC[0] / D4) % D4); // get data addr xxDDDDxxxx from lower Acc | |
d = SetDA(DIST, n); // replace it in distributor | |
if ((d == 0) && ((DIST < 0) || ( (DIST == 0) && (DistNegativeZeroFlag) ))) { | |
// if dist results in zero but was negative or negative zero before replacing digits | |
// then it is set to minus zero | |
DistNegativeZeroFlag = 1; | |
} else { | |
DistNegativeZeroFlag = 0; | |
} | |
DIST = d; | |
CpuStepsRemaining = 1+1+1+1; | |
if ((DrumAddr % 2) == 0) CpuStepsRemaining++; // wait for even | |
bWriteDrum = 1; // to write DIST in drum at AR | |
break; | |
case OP_STIA: // Store Lower Instruction Address | |
n = (ACC[0] % D4); // get inst addr xxyyyyAAAA | |
d = SetIA(DIST, n); // replace it in distributor | |
if ((d == 0) && ((DIST < 0) || ( (DIST == 0) && (DistNegativeZeroFlag) ))) { | |
// if dist results in zero but was negative or negative zero before replacing digits | |
// then it is set to minus zero | |
DistNegativeZeroFlag = 1; | |
} else { | |
DistNegativeZeroFlag = 0; | |
} | |
DIST = d; | |
CpuStepsRemaining = 1+1+1+1; | |
if ((DrumAddr % 2) == 0) CpuStepsRemaining++; // wait for even | |
bWriteDrum = 1; // to write DIST in drum at AR | |
break; | |
case OP_LD: // Load Distributor | |
CpuStepsRemaining = 1+1+1+1; | |
break; | |
case OP_TLU : // Table lookup | |
sim_debug(DEBUG_DATA, &cpu_dev, "... Search DIST: %06d%04d%c\r\n", | |
printfd); | |
AR = (DA / 50) * 50; // set AR to start of band based on DA | |
AR--; n=-1; | |
while (1) { | |
int dNegZero; | |
AR++; n++; | |
if (0==IsDrumAddrOk(AR)) { | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "Invalid AR addr %d ERROR\r\n", AR); | |
reason = STOP_ADDR; | |
goto end_of_while; | |
} | |
if ((AR % 50) > 47) continue; // skip addr 48 & 49 of band that cannot be used for tables | |
if (0==ReadAddr(AR, &d, &dNegZero)) { // read table argument | |
reason = STOP_ADDR; | |
goto end_of_while; | |
} | |
if (AbsWord(d) >= AbsWord(DIST)) break; // found | |
} | |
// set the result as xxNNNNxxxx in lower acc | |
ACC[0] = SetDA(ACC[0], DA+n); | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... ACC: %06d%04d %06d%04d%c, OV: %d\r\n", | |
printfa, | |
OV); | |
CpuStepsRemaining = 1+1+1+1+1+1; | |
if ((DrumAddr % 2) == 0) CpuStepsRemaining++; // wait for even | |
CpuStepsRemaining += n; // number of reads to find the argument searched for | |
break; | |
// branch | |
case OP_BRD1: case OP_BRD2: case OP_BRD3: case OP_BRD4: case OP_BRD5: // Branch on 8 in distributor positions 1-10 | |
case OP_BRD6: case OP_BRD7: case OP_BRD8: case OP_BRD9: case OP_BRD10: | |
sim_debug(DEBUG_DATA, &cpu_dev, "... Check DIST: %06d%04d%c\r\n", | |
printfd); | |
d = DIST; | |
n = opcode - OP_BRD10; if (n == 0) n = 10; | |
while (--n > 0) d = d / 10; | |
d = d % 10; | |
if (d == 8) { | |
IA = AR; // IA (next instr addr) will be taken from AR. Branch taken | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "Digit is %d -> Branch Taken\r\n", (int32) d); | |
bBranchTaken = 1; | |
} else if (d == 9) { | |
// IA kept as already set. Branch not taken | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "Digit is %d -> Branch Not Taken\r\n", (int32) d); | |
} else { | |
// any other value for tested digit -> stop | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "Digit is %d -> Branch ERROR\r\n", (int32) d); | |
reason = STOP_ERRO; | |
} | |
CpuStepsRemaining = 1+1; | |
if (bBranchTaken) CpuStepsRemaining++; | |
break; | |
case OP_BRNZU: // Branch on Non-Zero in Upper | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... ACC: %06d%04d %06d%04d%c, OV: %d\r\n", | |
printfa, | |
OV); | |
if (ACC[1] != 0) { | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "Upper ACC not Zero -> Branch Taken\r\n"); | |
IA = AR; | |
bBranchTaken = 1; | |
} | |
CpuStepsRemaining = 1; | |
if (bBranchTaken) CpuStepsRemaining++; | |
if ((DrumAddr % 2) == 0) CpuStepsRemaining++; // wait for even | |
break; | |
case OP_BRNZ: // Branch on Non-Zero | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... ACC: %06d%04d %06d%04d%c, OV: %d\r\n", | |
printfa, | |
OV); | |
if ((ACC[1] != 0) || (ACC[0] != 0)) { | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "ACC not Zero -> Branch Taken\r\n"); | |
IA = AR; | |
bBranchTaken = 1; | |
} | |
CpuStepsRemaining = 1; | |
if (bBranchTaken) CpuStepsRemaining++; | |
if ((DrumAddr % 2) != 0) CpuStepsRemaining++; // wait for odd | |
break; | |
case OP_BRMIN: // Branch on Minus | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... ACC: %06d%04d %06d%04d%c, OV: %d\r\n", | |
printfa, | |
OV); | |
if (AccNegative) { | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "ACC is Negative -> Branch Taken\r\n"); | |
IA = AR; | |
bBranchTaken = 1; | |
} | |
CpuStepsRemaining = 1; | |
if (bBranchTaken) CpuStepsRemaining++; | |
break; | |
case OP_BROV: // Branch on Overflow | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... Check OV: %d\r\n", OV); | |
if (OV) { | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "OV Set -> Branch Taken\r\n"); | |
IA = AR; | |
bBranchTaken = 1; | |
} | |
CpuStepsRemaining = 1; | |
if (bBranchTaken) CpuStepsRemaining++; | |
break; | |
// Card I/O | |
case OP_RD : // Read a card | |
AR = (DA / 50) * 50 + 1; // Read Band is XX01 to XX10 or XX51 to XX60 | |
{ | |
uint32 r; | |
int i; | |
char s[6]; | |
r = cdr_cmd(&cdr_unit[1], IO_RDS,AR); | |
if (r == SCPE_NOCARDS) { | |
//XXX SCPE_BUSY | |
reason = STOP_CARD; | |
goto end_of_while; | |
} | |
for (i=0;i<10;i++) { | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... Read Card %04d: %06d%04d%c '%s'\r\n", | |
AR+i, printfw(DRUM[AR+i],DRUM_NegativeZeroFlag[AR+i]), | |
word_to_ascii(s, 1, 5, DRUM[AR+i])); | |
} | |
if (cdr_unit[1].u5 & URCSTA_LOAD) { | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... Is a LOAD Card\r\n"); | |
IA = DA; // load card -> next inste is taken from DA | |
} | |
} | |
// 300 msec read cycle, 270 available for computing | |
CpuStepsRemaining = 312; // 30 msec / 0.096 msec word time; | |
// set interlock | |
InterLockCount[IL_RD1] = 3120; // 300 msec for read card processing | |
break; | |
case OP_PCH : // Punch a card | |
AR = (DA / 50) * 50 + 27; // Read Band is XX27 to XX36 or XX77 to XX86 | |
{ | |
uint32 r; | |
int i; | |
char s[6]; | |
for (i=0;i<10;i++) { | |
sim_debug(DEBUG_DETAIL, &cpu_dev, "... Punch Card %04d: %06d%04d%c '%s'\r\n", | |
AR+i, printfw(DRUM[AR+i],DRUM_NegativeZeroFlag[AR+i]), | |
word_to_ascii(s, 1, 5, DRUM[AR+i])); | |
} | |
r = cdp_cmd(&cdp_unit[1], IO_WRS,AR); | |
if (r == SCPE_NOCARDS) { | |
//XXX SCPE_BUSY | |
reason = STOP_CARD; | |
goto end_of_while; | |
} | |
} | |
// 600 msec punch cycle, 565 available for computing | |
CpuStepsRemaining = 365; // 35 msec / 0.096 msec word time; | |
// set interlock | |
InterLockCount[IL_WR1] = 6250; // 600 msec for punch card processing | |
break; | |
default: | |
reason = STOP_UUO; | |
break; | |
} | |
if (reason) goto end_of_while; | |
if ((OV) && (CSWOverflowStop)) { | |
reason = STOP_OV; | |
goto end_of_while; | |
} | |
MachineCycle = 4; | |
if (CpuStepsRemaining > 2) CpuStepsRemaining -= 2; // decrease by 2 as each inst passes at minimum two times by DrumAddr++ | |
continue; | |
} /* end of opcode switch */ | |
if (MachineCycle == 5) { | |
if (bWriteDrum) { | |
sim_debug(DEBUG_DATA, &cpu_dev, "... Write %04d: %06d%04d%c\r\n", | |
AR, printfd); | |
if (0==WriteDrum(AR, DIST, DistNegativeZeroFlag)) { | |
reason = STOP_ADDR; | |
goto end_of_while; | |
} | |
} | |
MachineCycle = 6; | |
continue; | |
} | |
end_of_while: | |
// set AR to point to next instr | |
AR = IA; | |
if (instr_count != 0 && --instr_count == 0) { | |
if (reason == 0) { | |
IC = AR; | |
// if cpu not stoped (just stepped) set IC so next inst to be executed is shown. | |
// if cpu stopped because some error (reason != 0), does not advance IC so instr shown is offending one | |
reason = SCPE_STEP; | |
} | |
return reason; | |
} | |
MachineCycle = 0; // ready to process to next instr | |
} /* end while */ | |
// flush 407 printout | |
if ((cdp_unit[0].flags & UNIT_ATT) && (cdp_unit[0].fileref)) { | |
fflush(cdp_unit[0].fileref); | |
} | |
/* Simulation halted */ | |
return reason; | |
} | |
/* Initialize memory to all plus zero */ | |
void | |
mem_init() { | |
int i; | |
for(i = 0; i < MAXMEMSIZE; i++) | |
DRUM[i] = DRUM_NegativeZeroFlag[i] = 0; | |
} | |
/* Reset routine */ | |
t_stat | |
cpu_reset(DEVICE * dptr) | |
{ | |
ACC[0] = ACC[1] = DIST = 0; | |
PR = AR = OV = 0; | |
AccNegativeZeroFlag = 0; | |
DistNegativeZeroFlag = 0; | |
IC = 0; | |
sim_brk_types = sim_brk_dflt = SWMASK('E'); | |
return SCPE_OK; | |
} | |
/* Memory examine */ | |
t_stat | |
cpu_ex(t_value * vptr, t_addr addr, UNIT * uptr, int32 sw) | |
{ | |
t_int64 d; | |
int NegZero; | |
t_value val; | |
if (0==ReadAddr(addr, &d, &NegZero)) { | |
return SCPE_NXM; | |
} | |
if (vptr != NULL) { | |
if (NegZero) { | |
val = NEGZERO_value; // val has this special value to represent -0 (minus zero == negative zero) | |
} else { | |
val = (t_value) d; | |
} | |
*vptr = val; | |
} | |
return SCPE_OK; | |
} | |
/* Memory deposit */ | |
t_stat | |
cpu_dep(t_value val, t_addr addr, UNIT * uptr, int32 sw) | |
{ | |
t_int64 d; | |
if (addr >= MEMSIZE) | |
return SCPE_NXM; | |
d = val; | |
if (val == NEGZERO_value) { | |
DRUM[addr] = 0; // Minus Zero is coded as val = NEGZERO_value constant | |
DRUM_NegativeZeroFlag[addr] = 1; | |
} else { | |
DRUM[addr] = d; | |
DRUM_NegativeZeroFlag[addr] = 0; | |
} | |
return SCPE_OK; | |
} | |
t_stat | |
cpu_set_size(UNIT * uptr, int32 val, CONST char *cptr, void *desc) | |
{ | |
int mc = 0; | |
uint32 i; | |
int32 v; | |
v = val >> UNIT_V_MSIZE; | |
if (v == 0) {v = 1000;} else | |
if (v == 1) {v = 2000;} else | |
if (v == 2) {v = 4000;} else v = 0; | |
if ((v <= 0) || (v > MAXMEMSIZE)) | |
return SCPE_ARG; | |
for (i = v-1; i < MEMSIZE; i++) { | |
if (DRUM[i] != 0) { | |
mc = 1; | |
break; | |
} | |
} | |
if ((mc != 0) && (!get_yn("Really truncate memory [N]?", FALSE))) | |
return SCPE_OK; | |
cpu_unit.flags &= ~UNIT_MSIZE; | |
cpu_unit.flags |= val; | |
MEMSIZE = v; | |
for (i = MEMSIZE; i < MAXMEMSIZE; i++) | |
DRUM[i] = DRUM_NegativeZeroFlag[i] = 0; | |
return SCPE_OK; | |
} | |
t_stat | |
cpu_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) { | |
fprintf (st, "These switches are recognized when examining or depositing in CPU memory:\r\n\r\n"); | |
fprintf (st, " -c examine/deposit characters, 5 per word\r\n"); | |
fprintf (st, " -m examine/deposit IBM 650 instructions\r\n\r\n"); | |
fprintf (st, "The memory of the CPU can be set to 1000, 2000 or 4000 words.\r\n\r\n"); | |
fprintf (st, " sim> SET CPU nK\r\n\r\n"); | |
fprint_set_help(st, dptr); | |
fprint_show_help(st, dptr); | |
return SCPE_OK; | |
} | |
const char * cpu_description (DEVICE *dptr) { | |
return "IBM 650 CPU"; | |
} | |