| /* hp2100_dr.c: HP 2100 12606B/12610B fixed head disk/drum simulator | |
| Copyright (c) 1993-2016, Robert M. Supnik | |
| Permission is hereby granted, free of charge, to any person obtaining a | |
| copy of this software and associated documentation files (the "Software"), | |
| to deal in the Software without restriction, including without limitation | |
| the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
| and/or sell copies of the Software, and to permit persons to whom the | |
| Software is furnished to do so, subject to the following conditions: | |
| The above copyright notice and this permission notice shall be included in | |
| all copies or substantial portions of the Software. | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
| ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
| IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
| CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
| Except as contained in this notice, the name of Robert M Supnik shall not be | |
| used in advertising or otherwise to promote the sale, use or other dealings | |
| in this Software without prior written authorization from Robert M Supnik. | |
| DR 12606B 2770/2771 fixed head disk | |
| 12610B 2773/2774/2775 drum | |
| 13-May-16 JDB Modified for revised SCP API function parameter types | |
| 30-Dec-14 JDB Added S-register parameters to ibl_copy | |
| 24-Dec-14 JDB Added casts for explicit downward conversions | |
| 10-Feb-12 JDB Deprecated DEVNO in favor of SC | |
| 28-Mar-11 JDB Tidied up signal handling | |
| 26-Oct-10 JDB Changed I/O signal handler for revised signal model | |
| 09-Jul-08 JDB Revised drc_boot to use ibl_copy | |
| 26-Jun-08 JDB Rewrote device I/O to model backplane signals | |
| 28-Dec-06 JDB Added ioCRS state to I/O decoders | |
| 07-Oct-04 JDB Fixed enable/disable from either device | |
| Fixed sector return in status word | |
| Provided protected tracks and "Writing Enabled" status bit | |
| Fixed DMA last word write, incomplete sector fill value | |
| Added "parity error" status return on writes for 12606 | |
| Added track origin test for 12606 | |
| Added SCP test for 12606 | |
| Fixed 12610 SFC operation | |
| Added "Sector Flag" status bit | |
| Added "Read Inhibit" status bit for 12606 | |
| Fixed current-sector determination | |
| Added PROTECTED, UNPROTECTED, TRACKPROT modifiers | |
| 26-Aug-04 RMS Fixed CLC to stop operation (from Dave Bryan) | |
| 26-Apr-04 RMS Fixed SFS x,C and SFC x,C | |
| Revised boot rom to use IBL algorithm | |
| Implemented DMA SRQ (follows FLG) | |
| 27-Jul-03 RMS Fixed drum sizes | |
| Fixed variable capacity interaction with SAVE/RESTORE | |
| 10-Nov-02 RMS Added BOOT command | |
| References: | |
| - 12606B Disc Memory Interface Kit Operating and Service Manual | |
| (12606-90012, Mar-1970) | |
| - 12610B Drum Memory Interface Kit Operating and Service Manual | |
| (12610-9001, Feb-1970) | |
| These head-per-track devices are buffered in memory, to minimize overhead. | |
| The drum data channel does not have a command flip-flop. Its control | |
| flip-flop is not wired into the interrupt chain; accordingly, the | |
| simulator uses command rather than control for the data channel. Its | |
| flag does not respond to SFS, SFC, or STF. | |
| The drum control channel does not have any of the traditional flip-flops. | |
| The 12606 interface implements two diagnostic tests. An SFS CC instruction | |
| will skip if the disk has passed the track origin (sector 0) since the last | |
| CLF CC instruction, and an SFC CC instruction will skip if the Sector Clock | |
| Phase (SCP) flip-flop is clear, indicating that the current sector is | |
| accessible. The 12610 interface does not support these tests; the SKF signal | |
| is not driven, so neither SFC CC nor SFS CC will skip. | |
| The interface implements a track protect mechanism via a switch and a set of | |
| on-card diodes. The switch sets the protected/unprotected status, and the | |
| particular diodes installed indicate the range of tracks (a power of 2) that | |
| are read-only in the protected mode. | |
| Somewhat unusually, writing to a protected track completes normally, but the | |
| data isn't actually written, as the write current is inhibited. There is no | |
| "failure" status indication. Instead, a program must note the lack of | |
| "Writing Enabled" status before the write is attempted. | |
| Specifications (2770/2771): | |
| - 90 sectors per logical track | |
| - 45 sectors per revolution | |
| - 64 words per sector | |
| - 2880 words per revolution | |
| - 3450 RPM = 17.4 ms/revolution | |
| - data timing = 6.0 us/word, 375 us/sector | |
| - inst timing = 4 inst/word, 11520 inst/revolution | |
| Specifications 2773/2774/2775: | |
| - 32 sectors per logical track | |
| - 32 sectors per revolution | |
| - 64 words per sector | |
| - 2048 words per revolution | |
| - 3450 RPM = 17.4 ms/revolution | |
| - data timing = 8.5 us/word, 550 us/sector | |
| - inst timing = 6 inst/word, 12288 inst/revolution | |
| */ | |
| #include "hp2100_defs.h" | |
| #include "hp2100_cpu.h" | |
| #include <math.h> | |
| /* Constants */ | |
| #define DR_NUMWD 64 /* words/sector */ | |
| #define DR_FNUMSC 90 /* fhd sec/track */ | |
| #define DR_DNUMSC 32 /* drum sec/track */ | |
| #define DR_NUMSC ((drc_unit.flags & UNIT_DRUM)? DR_DNUMSC: DR_FNUMSC) | |
| #define DR_SIZE (512 * DR_DNUMSC * DR_NUMWD) /* initial size */ | |
| #define DR_FTIME 4 /* fhd per-word time */ | |
| #define DR_DTIME 6 /* drum per-word time */ | |
| #define DR_OVRHEAD 5 /* overhead words at track start */ | |
| #define UNIT_V_PROT (UNIT_V_UF + 0) /* track protect */ | |
| #define UNIT_V_SZ (UNIT_V_UF + 1) /* disk vs drum */ | |
| #define UNIT_M_SZ 017 /* size */ | |
| #define UNIT_PROT (1 << UNIT_V_PROT) | |
| #define UNIT_SZ (UNIT_M_SZ << UNIT_V_SZ) | |
| #define UNIT_DRUM (1 << UNIT_V_SZ) /* low order bit */ | |
| #define SZ_180K 000 /* disks */ | |
| #define SZ_360K 002 | |
| #define SZ_720K 004 | |
| #define SZ_1024K 001 /* drums: default size */ | |
| #define SZ_1536K 003 | |
| #define SZ_384K 005 | |
| #define SZ_512K 007 | |
| #define SZ_640K 011 | |
| #define SZ_768K 013 | |
| #define SZ_896K 015 | |
| #define DR_GETSZ(x) (((x) >> UNIT_V_SZ) & UNIT_M_SZ) | |
| /* Command word */ | |
| #define CW_WR 0100000 /* write vs read */ | |
| #define CW_V_FTRK 7 /* fhd track */ | |
| #define CW_M_FTRK 0177 | |
| #define CW_V_DTRK 5 /* drum track */ | |
| #define CW_M_DTRK 01777 | |
| #define MAX_TRK (((drc_unit.flags & UNIT_DRUM)? CW_M_DTRK: CW_M_FTRK) + 1) | |
| #define CW_GETTRK(x) ((drc_unit.flags & UNIT_DRUM)? \ | |
| (((x) >> CW_V_DTRK) & CW_M_DTRK): \ | |
| (((x) >> CW_V_FTRK) & CW_M_FTRK)) | |
| #define CW_PUTTRK(x) ((drc_unit.flags & UNIT_DRUM)? \ | |
| (((x) & CW_M_DTRK) << CW_V_DTRK): \ | |
| (((x) & CW_M_FTRK) << CW_V_FTRK)) | |
| #define CW_V_FSEC 0 /* fhd sector */ | |
| #define CW_M_FSEC 0177 | |
| #define CW_V_DSEC 0 /* drum sector */ | |
| #define CW_M_DSEC 037 | |
| #define CW_GETSEC(x) ((drc_unit.flags & UNIT_DRUM)? \ | |
| (((x) >> CW_V_DSEC) & CW_M_DSEC): \ | |
| (((x) >> CW_V_FSEC) & CW_M_FSEC)) | |
| #define CW_PUTSEC(x) ((drc_unit.flags & UNIT_DRUM)? \ | |
| (((x) & CW_M_DSEC) << CW_V_DSEC): \ | |
| (((x) & CW_M_FSEC) << CW_V_FSEC)) | |
| /* Status register, ^ = dynamic */ | |
| #define DRS_V_NS 8 /* ^next sector */ | |
| #define DRS_M_NS 0177 | |
| #define DRS_SEC 0100000 /* ^sector flag */ | |
| #define DRS_RDY 0000200 /* ^ready */ | |
| #define DRS_RIF 0000100 /* ^read inhibit */ | |
| #define DRS_SAC 0000040 /* sector coincidence */ | |
| #define DRS_ABO 0000010 /* abort */ | |
| #define DRS_WEN 0000004 /* ^write enabled */ | |
| #define DRS_PER 0000002 /* parity error */ | |
| #define DRS_BSY 0000001 /* ^busy */ | |
| #define CALC_SCP(x) (((int32) fmod ((x) / (double) dr_time, \ | |
| (double) (DR_NUMWD))) >= (DR_NUMWD - 3)) | |
| int32 drc_cw = 0; /* fnc, addr */ | |
| int32 drc_sta = 0; /* status */ | |
| int32 drc_run = 0; /* run flip-flop */ | |
| struct { | |
| FLIP_FLOP control; /* control flip-flop */ | |
| FLIP_FLOP flag; /* flag flip-flop */ | |
| } drd = { CLEAR, CLEAR }; | |
| int32 drd_ibuf = 0; /* input buffer */ | |
| int32 drd_obuf = 0; /* output buffer */ | |
| int32 drd_ptr = 0; /* sector pointer */ | |
| int32 drc_pcount = 1; /* number of prot tracks */ | |
| int32 dr_stopioe = 1; /* stop on error */ | |
| int32 dr_time = DR_DTIME; /* time per word */ | |
| static int32 sz_tab[16] = { | |
| 184320, 1048576, 368640, 1572864, 737280, 393216, 0, 524288, | |
| 0, 655360, 0, 786432, 0, 917504, 0, 0 }; | |
| IOHANDLER drdio; | |
| IOHANDLER drcio; | |
| t_stat drc_svc (UNIT *uptr); | |
| t_stat drc_reset (DEVICE *dptr); | |
| t_stat drc_attach (UNIT *uptr, CONST char *cptr); | |
| t_stat drc_boot (int32 unitno, DEVICE *dptr); | |
| int32 dr_incda (int32 trk, int32 sec, int32 ptr); | |
| int32 dr_seccntr (double simtime); | |
| t_stat dr_set_prot (UNIT *uptr, int32 val, CONST char *cptr, void *desc); | |
| t_stat dr_show_prot (FILE *st, UNIT *uptr, int32 val, CONST void *desc); | |
| t_stat dr_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc); | |
| DEVICE drd_dev, drc_dev; | |
| /* DRD data structures | |
| drd_dev device descriptor | |
| drd_unit unit descriptor | |
| drd_reg register list | |
| */ | |
| DIB dr_dib[] = { | |
| { &drdio, DRD }, | |
| { &drcio, DRC } | |
| }; | |
| #define drd_dib dr_dib[0] | |
| #define drc_dib dr_dib[1] | |
| UNIT drd_unit[] = { | |
| { UDATA (NULL, 0, 0) }, | |
| { UDATA (NULL, UNIT_DIS, 0) } | |
| }; | |
| #define TMR_ORG 0 /* origin timer */ | |
| #define TMR_INH 1 /* inhibit timer */ | |
| REG drd_reg[] = { | |
| { ORDATA (IBUF, drd_ibuf, 16) }, | |
| { ORDATA (OBUF, drd_obuf, 16) }, | |
| { FLDATA (CTL, drd.control, 0) }, | |
| { FLDATA (FLG, drd.flag, 0) }, | |
| { ORDATA (BPTR, drd_ptr, 6) }, | |
| { ORDATA (SC, drd_dib.select_code, 6), REG_HRO }, | |
| { ORDATA (DEVNO, drd_dib.select_code, 6), REG_HRO }, | |
| { NULL } | |
| }; | |
| MTAB drd_mod[] = { | |
| { MTAB_XTD | MTAB_VDV, 1, "SC", "SC", &hp_setsc, &hp_showsc, &drd_dev }, | |
| { MTAB_XTD | MTAB_VDV | MTAB_NMO, 1, "DEVNO", "DEVNO", &hp_setdev, &hp_showdev, &drd_dev }, | |
| { 0 } | |
| }; | |
| DEVICE drd_dev = { | |
| "DRD", drd_unit, drd_reg, drd_mod, | |
| 2, 0, 0, 0, 0, 0, | |
| NULL, NULL, &drc_reset, | |
| NULL, NULL, NULL, | |
| &drd_dib, DEV_DISABLE | |
| }; | |
| /* DRC data structures | |
| drc_dev device descriptor | |
| drc_unit unit descriptor | |
| drc_mod unit modifiers | |
| drc_reg register list | |
| */ | |
| UNIT drc_unit = { | |
| UDATA (&drc_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_BUFABLE+ | |
| UNIT_MUSTBUF+UNIT_DRUM+UNIT_BINK, DR_SIZE) | |
| }; | |
| REG drc_reg[] = { | |
| { DRDATA (PCNT, drc_pcount, 10), REG_HIDDEN | PV_LEFT }, | |
| { ORDATA (CW, drc_cw, 16) }, | |
| { ORDATA (STA, drc_sta, 16) }, | |
| { FLDATA (RUN, drc_run, 0) }, | |
| { DRDATA (TIME, dr_time, 24), REG_NZ + PV_LEFT }, | |
| { FLDATA (STOP_IOE, dr_stopioe, 0) }, | |
| { ORDATA (SC, drc_dib.select_code, 6), REG_HRO }, | |
| { ORDATA (DEVNO, drc_dib.select_code, 6), REG_HRO }, | |
| { DRDATA (CAPAC, drc_unit.capac, 24), REG_HRO }, | |
| { NULL } | |
| }; | |
| MTAB drc_mod[] = { | |
| { UNIT_DRUM, 0, "disk", NULL, NULL }, | |
| { UNIT_DRUM, UNIT_DRUM, "drum", NULL, NULL }, | |
| { UNIT_SZ, (SZ_180K << UNIT_V_SZ), NULL, "180K", &dr_set_size }, | |
| { UNIT_SZ, (SZ_360K << UNIT_V_SZ), NULL, "360K", &dr_set_size }, | |
| { UNIT_SZ, (SZ_720K << UNIT_V_SZ), NULL, "720K", &dr_set_size }, | |
| { UNIT_SZ, (SZ_384K << UNIT_V_SZ), NULL, "384K", &dr_set_size }, | |
| { UNIT_SZ, (SZ_512K << UNIT_V_SZ), NULL, "512K", &dr_set_size }, | |
| { UNIT_SZ, (SZ_640K << UNIT_V_SZ), NULL, "640K", &dr_set_size }, | |
| { UNIT_SZ, (SZ_768K << UNIT_V_SZ), NULL, "768K", &dr_set_size }, | |
| { UNIT_SZ, (SZ_896K << UNIT_V_SZ), NULL, "896K", &dr_set_size }, | |
| { UNIT_SZ, (SZ_1024K << UNIT_V_SZ), NULL, "1024K", &dr_set_size }, | |
| { UNIT_SZ, (SZ_1536K << UNIT_V_SZ), NULL, "1536K", &dr_set_size }, | |
| { UNIT_PROT, UNIT_PROT, "protected", "PROTECTED", NULL }, | |
| { UNIT_PROT, 0, "unprotected", "UNPROTECTED", NULL }, | |
| { MTAB_XTD | MTAB_VDV, 0, "TRACKPROT", "TRACKPROT", | |
| &dr_set_prot, &dr_show_prot, NULL }, | |
| { MTAB_XTD | MTAB_VDV, 1, "SC", "SC", &hp_setsc, &hp_showsc, &drd_dev }, | |
| { MTAB_XTD | MTAB_VDV | MTAB_NMO, 1, "DEVNO", "DEVNO", &hp_setdev, &hp_showdev, &drd_dev }, | |
| { 0 } | |
| }; | |
| DEVICE drc_dev = { | |
| "DRC", &drc_unit, drc_reg, drc_mod, | |
| 1, 8, 21, 1, 8, 16, | |
| NULL, NULL, &drc_reset, | |
| &drc_boot, &drc_attach, NULL, | |
| &drc_dib, DEV_DISABLE | |
| }; | |
| /* Data channel I/O signal handler. | |
| The data channel card does not follow the usual interface I/O configuration. | |
| PRL is always asserted, the card does not drive IRQ, FLG, or SKF and does not | |
| respond to IAK. SRQ is driven by the output of the flag flip-flop, which | |
| obeys CLF only. There is no flag buffer. The control flip-flop obeys STC | |
| and CLC. Clearing control clears the flag flip-flop, and setting control | |
| sets the flag flip-flop if the interface is configured for writing. On the | |
| 12606B, POPIO and CRS clear the track address register. | |
| Implementation notes: | |
| 1. In response to CRS, the 12606B data channel clears only the track address | |
| register; the command channel clears the sector address register and the | |
| direction flip-flop. Under simulation, all three form the control word, | |
| and as CRS is sent to all devices, we simply clear the control word here. | |
| */ | |
| uint32 drdio (DIB *dibptr, IOCYCLE signal_set, uint32 stat_data) | |
| { | |
| int32 t; | |
| IOSIGNAL signal; | |
| IOCYCLE working_set = IOADDSIR (signal_set); /* add ioSIR if needed */ | |
| while (working_set) { | |
| signal = IONEXT (working_set); /* isolate next signal */ | |
| switch (signal) { /* dispatch I/O signal */ | |
| case ioCLF: /* clear flag flip-flop */ | |
| drd.flag = CLEAR; | |
| break; | |
| case ioENF: /* enable flag */ | |
| drd.flag = SET; | |
| break; | |
| case ioIOI: /* I/O data input */ | |
| stat_data = IORETURN (SCPE_OK, drd_ibuf); /* merge in return status */ | |
| break; | |
| case ioIOO: /* I/O data output */ | |
| drd_obuf = IODATA (stat_data); /* clear supplied status */ | |
| break; | |
| case ioCRS: /* control reset */ | |
| if (!(drc_unit.flags & UNIT_DRUM)) /* 12606B? */ | |
| drc_cw = 0; /* clear control word */ | |
| /* fall into CLC handler */ | |
| case ioCLC: /* clear control flip-flop */ | |
| drd.flag = drd.control = CLEAR; /* clear control and flag */ | |
| if (!drc_run) /* cancel curr op */ | |
| sim_cancel (&drc_unit); | |
| drc_sta = drc_sta & ~DRS_SAC; /* clear SAC flag */ | |
| break; | |
| case ioSTC: /* set control flip-flop */ | |
| drd.control = SET; /* set ctl */ | |
| if (drc_cw & CW_WR) /* writing? */ | |
| drd.flag = SET; /* prime DMA */ | |
| drc_sta = 0; /* clr status */ | |
| drd_ptr = 0; /* clear sec ptr */ | |
| sim_cancel (&drc_unit); /* cancel curr op */ | |
| t = CW_GETSEC (drc_cw) - dr_seccntr (sim_gtime()); | |
| if (t <= 0) t = t + DR_NUMSC; | |
| sim_activate (&drc_unit, t * DR_NUMWD * dr_time); | |
| break; | |
| case ioSIR: /* set interrupt request */ | |
| setstdSRQ (drd); /* set SRQ signal */ | |
| break; | |
| default: /* all other signals */ | |
| break; /* are ignored */ | |
| } | |
| working_set = working_set & ~signal; /* remove current signal from set */ | |
| } | |
| return stat_data; | |
| } | |
| /* Command channel I/O signal dispatcher. | |
| The command channel card does not follow the usual interface I/O | |
| configuration. PRL is always asserted, the card does not drive IRQ, FLG, or | |
| SRQ and does not respond to IAK. There are no control, flag, or flag buffer | |
| flip-flops. CLF clears the track origin flip-flop; STF is ignored. The | |
| 12606B drives SKF, whereas the 12610B does not. On the 12610B, SFS tests the | |
| Track Origin flip-flop, and SFC tests the Sector Clock Phase (SCP) flip-flop. | |
| Implementation notes: | |
| 1. CRS clears the Run Flip-Flop, stopping the current operation. Under | |
| simulation, we allow the data channel signal handler to do this, as the | |
| same operation is invoked by CLC DC, and as CRS is sent to all devices. | |
| 2. The command channel cannot interrupt, so there is no SIR handler. | |
| */ | |
| uint32 drcio (DIB *dibptr, IOCYCLE signal_set, uint32 stat_data) | |
| { | |
| uint16 data; | |
| int32 sec; | |
| IOSIGNAL signal; | |
| IOCYCLE working_set = IOADDSIR (signal_set); /* add ioSIR if needed */ | |
| while (working_set) { | |
| signal = IONEXT (working_set); /* isolate next signal */ | |
| switch (signal) { /* dispatch I/O signal */ | |
| case ioCLF: /* clear flag flip-flop */ | |
| if (!(drc_unit.flags & UNIT_DRUM)) { /* disk? */ | |
| sec = dr_seccntr (sim_gtime ()); /* current sector */ | |
| sim_cancel (&drd_unit[TMR_ORG]); /* sched origin tmr */ | |
| sim_activate (&drd_unit[TMR_ORG], | |
| (DR_FNUMSC - sec) * DR_NUMWD * dr_time); | |
| } | |
| break; | |
| case ioSFC: /* skip if flag is clear */ | |
| if (!(drc_unit.flags & UNIT_DRUM)) /* 12606? */ | |
| setSKF (!(CALC_SCP (sim_gtime()))); /* skip if nearing end of sector */ | |
| break; | |
| case ioSFS: /* skip if flag is set */ | |
| if (!(drc_unit.flags & UNIT_DRUM)) /* 12606? */ | |
| setSKF (!sim_is_active (&drd_unit[TMR_ORG])); /* skip if origin seen */ | |
| break; | |
| case ioIOI: /* I/O data input */ | |
| data = (uint16) drc_sta; /* static bits */ | |
| if (!(drc_unit.flags & UNIT_PROT) || /* not protected? */ | |
| (CW_GETTRK(drc_cw) >= drc_pcount)) /* or not in range? */ | |
| data = data | DRS_WEN; /* set wrt enb status */ | |
| if (drc_unit.flags & UNIT_ATT) { /* attached? */ | |
| data = data | (uint16) (dr_seccntr (sim_gtime()) << DRS_V_NS) | DRS_RDY; | |
| if (sim_is_active (&drc_unit)) /* op in progress? */ | |
| data = data | DRS_BSY; | |
| if (CALC_SCP (sim_gtime())) /* SCP ff set? */ | |
| data = data | DRS_SEC; /* set sector flag */ | |
| if (sim_is_active (&drd_unit[TMR_INH]) && /* inhibit timer on? */ | |
| !(drc_cw & CW_WR)) | |
| data = data | DRS_RIF; /* set read inh flag */ | |
| } | |
| stat_data = IORETURN (SCPE_OK, data); /* merge in return status */ | |
| break; | |
| case ioIOO: /* I/O data output */ | |
| if (!(drc_unit.flags & UNIT_DRUM)) { /* disk? */ | |
| sim_cancel (&drd_unit[TMR_INH]); /* schedule inhibit timer */ | |
| sim_activate (&drd_unit[TMR_INH], DR_FTIME * DR_NUMWD); | |
| } | |
| drc_cw = IODATA (stat_data); /* get control word */ | |
| break; | |
| default: /* all other signals */ | |
| break; /* are ignored */ | |
| } | |
| working_set = working_set & ~signal; /* remove current signal from set */ | |
| } | |
| return stat_data; | |
| } | |
| /* Unit service */ | |
| t_stat drc_svc (UNIT *uptr) | |
| { | |
| int32 trk, sec; | |
| uint32 da; | |
| uint16 *bptr = (uint16 *) uptr->filebuf; | |
| if ((uptr->flags & UNIT_ATT) == 0) { | |
| drc_sta = DRS_ABO; | |
| return IOERROR (dr_stopioe, SCPE_UNATT); | |
| } | |
| trk = CW_GETTRK (drc_cw); | |
| sec = CW_GETSEC (drc_cw); | |
| da = ((trk * DR_NUMSC) + sec) * DR_NUMWD; | |
| drc_sta = drc_sta | DRS_SAC; | |
| drc_run = 1; /* set run ff */ | |
| if (drc_cw & CW_WR) { /* write? */ | |
| if ((da < uptr->capac) && (sec < DR_NUMSC)) { | |
| bptr[da + drd_ptr] = (uint16) drd_obuf; | |
| if (((uint32) (da + drd_ptr)) >= uptr->hwmark) | |
| uptr->hwmark = da + drd_ptr + 1; | |
| } | |
| drd_ptr = dr_incda (trk, sec, drd_ptr); /* inc disk addr */ | |
| if (drd.control) { /* dch active? */ | |
| drdio (&drd_dib, ioENF, 0); /* set SRQ */ | |
| sim_activate (uptr, dr_time); /* sched next word */ | |
| } | |
| else { /* done */ | |
| if (drd_ptr) /* need to fill? */ | |
| for ( ; drd_ptr < DR_NUMWD; drd_ptr++) | |
| bptr[da + drd_ptr] = (uint16) drd_obuf; /* fill with last word */ | |
| if (!(drc_unit.flags & UNIT_DRUM)) /* disk? */ | |
| drc_sta = drc_sta | DRS_PER; /* parity bit sets on write */ | |
| drc_run = 0; /* clear run ff */ | |
| } | |
| } /* end write */ | |
| else { /* read */ | |
| if (drd.control) { /* dch active? */ | |
| if ((da >= uptr->capac) || (sec >= DR_NUMSC)) drd_ibuf = 0; | |
| else drd_ibuf = bptr[da + drd_ptr]; | |
| drd_ptr = dr_incda (trk, sec, drd_ptr); | |
| drdio (&drd_dib, ioENF, 0); /* set SRQ */ | |
| sim_activate (uptr, dr_time); /* sched next word */ | |
| } | |
| else drc_run = 0; /* clear run ff */ | |
| } | |
| return SCPE_OK; | |
| } | |
| /* Increment current disk address */ | |
| int32 dr_incda (int32 trk, int32 sec, int32 ptr) | |
| { | |
| ptr = ptr + 1; /* inc pointer */ | |
| if (ptr >= DR_NUMWD) { /* end sector? */ | |
| ptr = 0; /* new sector */ | |
| sec = sec + 1; /* adv sector */ | |
| if (sec >= DR_NUMSC) { /* end track? */ | |
| sec = 0; /* new track */ | |
| trk = trk + 1; /* adv track */ | |
| if (trk >= MAX_TRK) trk = 0; /* wraps at max */ | |
| } | |
| drc_cw = (drc_cw & CW_WR) | CW_PUTTRK (trk) | CW_PUTSEC (sec); | |
| } | |
| return ptr; | |
| } | |
| /* Read the sector counter | |
| The hardware sector counter contains the number of the next sector that will | |
| pass under the heads (so it is one ahead of the current sector). For the | |
| duration of the last sector of the track, the sector counter contains 90 for | |
| the 12606 and 0 for the 12610. The sector counter resets to 0 at track | |
| origin and increments at the start of the first sector. Therefore, the | |
| counter value ranges from 0-90 for the 12606 and 0-31 for the 12610. The 0 | |
| state is quite short in the 12606 and long in the 12610, relative to the | |
| other sector counter states. | |
| The simulated sector counter is calculated from the simulation time, based on | |
| the time per word and the number of words per track. | |
| */ | |
| int32 dr_seccntr (double simtime) | |
| { | |
| int32 curword; | |
| curword = (int32) fmod (simtime / (double) dr_time, | |
| (double) (DR_NUMWD * DR_NUMSC + DR_OVRHEAD)); | |
| if (curword <= DR_OVRHEAD) return 0; | |
| else return ((curword - DR_OVRHEAD) / DR_NUMWD + | |
| ((drc_unit.flags & UNIT_DRUM)? 0: 1)); | |
| } | |
| /* Reset routine */ | |
| t_stat drc_reset (DEVICE *dptr) | |
| { | |
| DIB *dibptr = (DIB *) dptr->ctxt; /* DIB pointer */ | |
| hp_enbdis_pair (dptr, /* make pair cons */ | |
| (dptr == &drd_dev)? &drc_dev: &drd_dev); | |
| if (sim_switches & SWMASK ('P')) { /* power-on reset? */ | |
| drd_ptr = 0; /* clear sector pointer */ | |
| drc_sta = drc_cw = 0; /* clear controller state variables */ | |
| } | |
| IOPRESET (dibptr); /* PRESET device (does not use PON) */ | |
| sim_cancel (&drc_unit); | |
| sim_cancel (&drd_unit[TMR_ORG]); | |
| sim_cancel (&drd_unit[TMR_INH]); | |
| return SCPE_OK; | |
| } | |
| /* Attach routine */ | |
| t_stat drc_attach (UNIT *uptr, CONST char *cptr) | |
| { | |
| int32 sz = sz_tab[DR_GETSZ (uptr->flags)]; | |
| if (sz == 0) return SCPE_IERR; | |
| uptr->capac = sz; | |
| return attach_unit (uptr, cptr); | |
| } | |
| /* Set protected track count */ | |
| t_stat dr_set_prot (UNIT *uptr, int32 val, CONST char *cptr, void *desc) | |
| { | |
| int32 count; | |
| t_stat status; | |
| if (cptr == NULL) | |
| return SCPE_ARG; | |
| count = (int32) get_uint (cptr, 10, 768, &status); | |
| if (status != SCPE_OK) | |
| return status; | |
| else switch (count) { | |
| case 1: | |
| case 2: | |
| case 4: | |
| case 8: | |
| case 16: | |
| case 32: | |
| case 64: | |
| case 128: | |
| drc_pcount = count; | |
| break; | |
| case 256: | |
| case 512: | |
| case 768: | |
| if (drc_unit.flags & UNIT_DRUM) | |
| drc_pcount = count; | |
| else return SCPE_ARG; | |
| break; | |
| default: | |
| return SCPE_ARG; | |
| } | |
| return SCPE_OK; | |
| } | |
| /* Show protected track count */ | |
| t_stat dr_show_prot (FILE *st, UNIT *uptr, int32 val, CONST void *desc) | |
| { | |
| fprintf (st, "protected tracks=%d", drc_pcount); | |
| return SCPE_OK; | |
| } | |
| /* Set size routine */ | |
| t_stat dr_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc) | |
| { | |
| int32 sz; | |
| int32 szindex; | |
| if (val < 0) return SCPE_IERR; | |
| if ((sz = sz_tab[szindex = DR_GETSZ (val)]) == 0) return SCPE_IERR; | |
| if (uptr->flags & UNIT_ATT) return SCPE_ALATT; | |
| uptr->capac = sz; | |
| if (szindex & UNIT_DRUM) dr_time = DR_DTIME; /* drum */ | |
| else { | |
| dr_time = DR_FTIME; /* disk */ | |
| if (drc_pcount > 128) drc_pcount = 128; /* max prot track count */ | |
| } | |
| return SCPE_OK; | |
| } | |
| /* Fixed head disk/drum bootstrap routine (disc subset of disc/paper tape loader) */ | |
| #define BOOT_START 060 | |
| static const BOOT_ROM dr_rom = { /* padded to start at x7760 */ | |
| 0, 0, 0, 0, 0, 0, 0, 0, | |
| 0, 0, 0, 0, 0, 0, 0, 0, | |
| 0, 0, 0, 0, 0, 0, 0, 0, | |
| 0, 0, 0, 0, 0, 0, 0, 0, | |
| 0, 0, 0, 0, 0, 0, 0, 0, | |
| 0, 0, 0, 0, 0, 0, | |
| 0020010, /*DMA 20000+DC */ | |
| 0000000, /* 0 */ | |
| 0107700, /* CLC 0,C */ | |
| 0063756, /* LDA DMA ; DMA ctrl */ | |
| 0102606, /* OTA 6 */ | |
| 0002700, /* CLA,CCE */ | |
| 0102611, /* OTA CC ; trk = sec = 0 */ | |
| 0001500, /* ERA ; A = 100000 */ | |
| 0102602, /* OTA 2 ; DMA in, addr */ | |
| 0063777, /* LDA M64 */ | |
| 0102702, /* STC 2 */ | |
| 0102602, /* OTA 2 ; DMA wc = -64 */ | |
| 0103706, /* STC 6,C ; start DMA */ | |
| 0067776, /* LDB JSF ; get JMP . */ | |
| 0074077, /* STB 77 ; in base page */ | |
| 0102710, /* STC DC ; start disc */ | |
| 0024077, /*JSF JMP 77 ; go wait */ | |
| 0177700 /*M64 -100 */ | |
| }; | |
| t_stat drc_boot (int32 unitno, DEVICE *dptr) | |
| { | |
| const int32 dev = drd_dib.select_code; /* data chan select code */ | |
| if (unitno != 0) /* boot supported on drive unit 0 only */ | |
| return SCPE_NOFNC; /* report "Command not allowed" if attempted */ | |
| if (ibl_copy (dr_rom, dev, IBL_S_NOCLR, IBL_S_NOSET)) /* copy the boot ROM to memory and configure */ | |
| return SCPE_IERR; /* return an internal error if the copy failed */ | |
| WritePW (PC + IBL_DPC, dr_rom [IBL_DPC]); /* restore overwritten word */ | |
| WritePW (PC + IBL_END, dr_rom [IBL_END]); /* restore overwritten word */ | |
| PC = PC + BOOT_START; /* correct starting address */ | |
| return SCPE_OK; | |
| } |