blob: 0b46f595169e74cc0421a3c2dc6561933cdf029b [file] [log] [blame] [raw]
/* vax_io.c: VAX 3900 Qbus IO simulator
Copyright (c) 1998-2013, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
qba Qbus adapter
20-Dec-13 RMS Added unaligned access routines
25-Mar-12 RMS Added parameter to int_ack prototype (Mark Pizzolata)
28-May-08 RMS Inlined physical memory routines
25-Jan-08 RMS Fixed declarations (Mark Pizzolato)
03-Dec-05 RMS Added SHOW QBA VIRT and ex/dep via map
05-Oct-05 RMS Fixed bug in autoconfiguration (missing XU)
25-Jul-05 RMS Revised autoconfiguration algorithm and interface
30-Sep-04 RMS Revised Qbus interface
Moved mem_err, crd_err interrupts here from vax_cpu.c
09-Sep-04 RMS Integrated powerup into RESET (with -p)
05-Sep-04 RMS Added CRD interrupt handling
28-May-04 RMS Revised I/O dispatching (John Dundas)
21-Mar-04 RMS Added RXV21 support
21-Dec-03 RMS Fixed bug in autoconfigure vector assignment; added controls
21-Nov-03 RMS Added check for interrupt slot conflict (Dave Hittner)
29-Oct-03 RMS Fixed WriteX declaration (Mark Pizzolato)
19-Apr-03 RMS Added optimized byte and word DMA routines
12-Mar-03 RMS Added logical name support
22-Dec-02 RMS Added console halt support
12-Oct-02 RMS Added autoconfigure support
Added SHOW IO space routine
29-Sep-02 RMS Added dynamic table support
07-Sep-02 RMS Added TMSCP and variable vector support
*/
#include "vax_defs.h"
/* CQBIC system configuration register */
#define CQSCR_POK 0x00008000 /* power ok RO1 */
#define CQSCR_BHL 0x00004000 /* BHALT enb */
#define CQSCR_AUX 0x00000400 /* aux mode RONI */
#define CQSCR_DBO 0x0000000C /* offset NI */
#define CQSCR_RW (CQSCR_BHL | CQSCR_DBO)
#define CQSCR_MASK (CQSCR_RW | CQSCR_POK | CQSCR_AUX)
/* CQBIC DMA system error register - W1C */
#define CQDSER_BHL 0x00008000 /* BHALT NI */
#define CQDSER_DCN 0x00004000 /* DC ~OK NI */
#define CQDSER_MNX 0x00000080 /* master NXM */
#define CQDSER_MPE 0x00000020 /* master par NI */
#define CQDSER_SME 0x00000010 /* slv mem err NI */
#define CQDSER_LST 0x00000008 /* lost err */
#define CQDSER_TMO 0x00000004 /* no grant NI */
#define CQDSER_SNX 0x00000001 /* slave NXM */
#define CQDSER_ERR (CQDSER_MNX | CQDSER_MPE | CQDSER_TMO | CQDSER_SNX)
#define CQDSER_MASK 0x0000C0BD
/* CQBIC master error address register */
#define CQMEAR_MASK 0x00001FFF /* Qbus page */
/* CQBIC slave error address register */
#define CQSEAR_MASK 0x000FFFFF /* mem page */
/* CQBIC map base register */
#define CQMBR_MASK 0x1FFF8000 /* 32KB aligned */
/* CQBIC IPC register */
#define CQIPC_QME 0x00008000 /* Qbus read NXM W1C */
#define CQIPC_INV 0x00004000 /* CAM inval NIWO */
#define CQIPC_AHLT 0x00000100 /* aux halt NI */
#define CQIPC_DBIE 0x00000040 /* dbell int enb NI */
#define CQIPC_LME 0x00000020 /* local mem enb */
#define CQIPC_DB 0x00000001 /* doorbell req NI */
#define CQIPC_W1C CQIPC_QME
#define CQIPC_RW (CQIPC_AHLT | CQIPC_DBIE | CQIPC_LME | CQIPC_DB)
#define CQIPC_MASK (CQIPC_RW | CQIPC_QME )
/* CQBIC map entry */
#define CQMAP_VLD 0x80000000 /* valid */
#define CQMAP_PAG 0x000FFFFF /* mem page */
#define QB_VEC_MASK 0x1FC /* Interrupt Vector value mask */
int32 int_req[IPL_HLVL] = { 0 }; /* intr, IPL 14-17 */
int32 int_vec_set[IPL_HLVL][32] = { 0 }; /* bits to set in vector */
int32 cq_scr = 0; /* SCR */
int32 cq_dser = 0; /* DSER */
int32 cq_mear = 0; /* MEAR */
int32 cq_sear = 0; /* SEAR */
int32 cq_mbr = 0; /* MBR */
int32 cq_ipc = 0; /* IPC */
int32 autcon_enb = 1; /* autoconfig enable */
extern int32 ssc_bto;
extern int32 vc_mem_rd (int32 pa);
extern void vc_mem_wr (int32 pa, int32 val, int32 lnt);
extern uint32 *vc_buf;
t_stat dbl_rd (int32 *data, int32 addr, int32 access);
t_stat dbl_wr (int32 data, int32 addr, int32 access);
int32 eval_int (void);
void cq_merr (int32 pa);
void cq_serr (int32 pa);
t_stat qba_reset (DEVICE *dptr);
t_stat qba_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw);
t_stat qba_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw);
t_bool qba_map_addr (uint32 qa, uint32 *ma);
t_bool qba_map_addr_c (uint32 qa, uint32 *ma);
t_stat set_autocon (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
t_stat show_autocon (FILE *st, UNIT *uptr, int32 val, CONST void *desc);
t_stat show_iospace (FILE *st, UNIT *uptr, int32 val, CONST void *desc);
t_stat qba_show_virt (FILE *of, UNIT *uptr, int32 val, CONST void *desc);
t_stat qba_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr);
const char *qba_description (DEVICE *dptr);
/* Qbus adapter data structures
qba_dev QBA device descriptor
qba_unit QBA units
qba_reg QBA register list
*/
#define IOLN_DBL 002
DIB qba_dib = { IOBA_AUTO, IOLN_DBL, &dbl_rd, &dbl_wr, 0 };
UNIT qba_unit = { UDATA (NULL, 0, 0) };
REG qba_reg[] = {
{ HRDATAD (SCR, cq_scr, 16, "system configuration register") },
{ HRDATAD (DSER, cq_dser, 8, "DMA system error register") },
{ HRDATAD (MEAR, cq_mear, 13, "master error address register") },
{ HRDATAD (SEAR, cq_sear, 20, "slave error address register") },
{ HRDATAD (MBR, cq_mbr, 29, "Qbus map base register") },
{ HRDATAD (IPC, cq_ipc, 16, "interprocessor communications register") },
{ HRDATAD (IPL17, int_req[3], 32, "IPL 17 interrupt flags"), REG_RO },
{ HRDATAD (IPL16, int_req[2], 32, "IPL 16 interrupt flags"), REG_RO },
{ HRDATAD (IPL15, int_req[1], 32, "IPL 15 interrupt flags"), REG_RO },
{ HRDATAD (IPL14, int_req[0], 32, "IPL 14 interrupt flags"), REG_RO },
{ FLDATA (AUTOCON, autcon_enb, 0), REG_HRO },
{ NULL }
};
MTAB qba_mod[] = {
{ MTAB_XTD|MTAB_VDV|MTAB_NMO, 0, "IOSPACE", NULL,
NULL, &show_iospace, NULL, "Display I/O space address map" },
{ MTAB_XTD|MTAB_VDV, 1, "AUTOCONFIG", "AUTOCONFIG",
&set_autocon, &show_autocon, NULL, "Enable/Display autoconfiguration" },
{ MTAB_XTD|MTAB_VDV, 0, NULL, "NOAUTOCONFIG",
&set_autocon, NULL, NULL, "Disable autoconfiguration" },
{ MTAB_XTD|MTAB_VDV|MTAB_NMO|MTAB_SHP, 0, "VIRTUAL", NULL,
NULL, &qba_show_virt, NULL, "Display translation for Unibus address arg" },
{ 0 }
};
DEVICE qba_dev = {
"QBA", &qba_unit, qba_reg, qba_mod,
1, 16, CQMAWIDTH, 2, 16, 16,
&qba_ex, &qba_dep, &qba_reset,
NULL, NULL, NULL,
&qba_dib, DEV_QBUS, 0, NULL, NULL, NULL, &qba_help, NULL, NULL,
&qba_description
};
/* IO page dispatches */
t_stat (*iodispR[IOPAGESIZE >> 1])(int32 *dat, int32 ad, int32 md);
t_stat (*iodispW[IOPAGESIZE >> 1])(int32 dat, int32 ad, int32 md);
/* Interrupt request to interrupt action map */
int32 (*int_ack[IPL_HLVL][32])(void); /* int ack routines */
/* Interrupt request to vector map */
int32 int_vec[IPL_HLVL][32]; /* int req to vector */
/* The KA65x handles errors in I/O space as follows
- read: set DSER<7>, latch addr in MEAR, machine check
- write: set DSER<7>, latch addr in MEAR, MEMERR interrupt
*/
int32 ReadQb (uint32 pa)
{
int32 idx, val;
idx = (pa & IOPAGEMASK) >> 1;
if (iodispR[idx]) {
iodispR[idx] (&val, pa, READ);
return val;
}
cq_merr (pa);
MACH_CHECK (MCHK_READ);
return 0;
}
void WriteQb (uint32 pa, int32 val, int32 mode)
{
int32 idx;
idx = (pa & IOPAGEMASK) >> 1;
if (iodispW[idx]) {
iodispW[idx] (val, pa, mode);
return;
}
cq_merr (pa);
mem_err = 1;
return;
}
/* ReadIO - read I/O space - aligned access
Inputs:
pa = physical address
lnt = length (BWLQ)
Output:
longword of data
*/
int32 ReadIO (uint32 pa, int32 lnt)
{
int32 iod;
iod = ReadQb (pa); /* wd from Qbus */
if (lnt < L_LONG) /* bw? position */
iod = iod << ((pa & 2)? 16: 0);
else iod = (ReadQb (pa + 2) << 16) | iod; /* lw, get 2nd wd */
SET_IRQL;
return iod;
}
/* ReadIOU - read I/O space - unaligned access
Inputs:
pa = physical address
lnt = length (1, 2, 3 bytes)
Output:
data, not shifted
Note that all of these cases are presented to the existing aligned IO routine:
bo = 0, byte, word, or longword length
bo = 2, word
bo = 1, 2, 3, byte length
All the other cases are end up at ReadIOU and WriteIOU, and they must turn
the request into the exactly correct number of Qbus accesses AND NO MORE,
because Qbus reads can have side-effects, and word read-modify-write is NOT
the same as a byte write.
Note that the sum of the pa offset and the length cannot be greater than 4.
The read cases are:
bo = 0, byte or word - read one word
bo = 0, tribyte - read two words
bo = 1, byte - read one word
bo = 1, word or tribyte - read two words
bo = 2, byte or word - read one word
bo = 3, byte - read one word
*/
int32 ReadIOU (uint32 pa, int32 lnt)
{
int32 iod;
iod = ReadQb (pa); /* wd from Qbus */
if ((lnt + (pa & 1)) <= 2) /* byte or (word & even) */
iod = iod << ((pa & 2)? 16: 0); /* one op */
else iod = (ReadQb (pa + 2) << 16) | iod; /* two ops, get 2nd wd */
SET_IRQL;
return iod;
}
/* WriteIO - write I/O space - aligned access
Inputs:
pa = physical address
val = data to write, right justified in 32b longword
lnt = length (BWLQ)
Outputs:
none
*/
void WriteIO (uint32 pa, int32 val, int32 lnt)
{
if (lnt == L_BYTE)
WriteQb (pa, val, WRITEB);
else if (lnt == L_WORD)
WriteQb (pa, val, WRITE);
else {
WriteQb (pa, val & 0xFFFF, WRITE);
WriteQb (pa + 2, (val >> 16) & 0xFFFF, WRITE);
}
SET_IRQL;
return;
}
/* WriteIOU - write I/O space
Inputs:
pa = physical address
val = data to write, right justified in 32b longword
lnt = length (1, 2, or 3 bytes)
Outputs:
none
The write cases are:
bo = x, lnt = byte - write one byte
bo = 0 or 2, lnt = word - write one word
bo = 1, lnt = word - write two bytes
bo = 0, lnt = tribyte - write word, byte
bo = 1, lnt = tribyte - write byte, word
*/
void WriteIOU (uint32 pa, int32 val, int32 lnt)
{
switch (lnt) {
case L_BYTE: /* byte */
WriteQb (pa, val & BMASK, WRITEB);
break;
case L_WORD: /* word */
if (pa & 1) { /* odd addr? */
WriteQb (pa, val & BMASK, WRITEB);
WriteQb (pa + 1, (val >> 8) & BMASK, WRITEB);
}
else WriteQb (pa, val & WMASK, WRITE);
break;
case 3: /* tribyte */
if (pa & 1) { /* odd addr? */
WriteQb (pa, val & BMASK, WRITEB); /* byte then word */
WriteQb (pa + 1, (val >> 8) & WMASK, WRITE);
}
else { /* even */
WriteQb (pa, val & WMASK, WRITE); /* word then byte */
WriteQb (pa + 2, (val >> 16) & BMASK, WRITEB);
}
break;
}
SET_IRQL;
return;
}
/* Find highest priority outstanding interrupt */
int32 eval_int (void)
{
int32 ipl = PSL_GETIPL (PSL);
int32 i, t;
static const int32 sw_int_mask[IPL_SMAX] = {
0xFFFE, 0xFFFC, 0xFFF8, 0xFFF0, /* 0 - 3 */
0xFFE0, 0xFFC0, 0xFF80, 0xFF00, /* 4 - 7 */
0xFE00, 0xFC00, 0xF800, 0xF000, /* 8 - B */
0xE000, 0xC000, 0x8000 /* C - E */
};
if (hlt_pin) /* hlt pin int */
return IPL_HLTPIN;
if ((ipl < IPL_MEMERR) && mem_err) /* mem err int */
return IPL_MEMERR;
if ((ipl < IPL_CRDERR) && crd_err) /* crd err int */
return IPL_CRDERR;
for (i = IPL_HMAX; i >= IPL_HMIN; i--) { /* chk hwre int */
if (i <= ipl) /* at ipl? no int */
return 0;
if (int_req[i - IPL_HMIN]) /* req != 0? int */
return i;
}
if (ipl >= IPL_SMAX) /* ipl >= sw max? */
return 0;
if ((t = SISR & sw_int_mask[ipl]) == 0) /* eligible req */
return 0;
for (i = IPL_SMAX; i > ipl; i--) { /* check swre int */
if ((t >> i) & 1) /* req != 0? int */
return i;
}
return 0;
}
/* Return vector for highest priority hardware interrupt at IPL lvl */
int32 get_vector (int32 lvl)
{
int32 i;
int32 l = lvl - IPL_HMIN;
if (lvl == IPL_MEMERR) { /* mem error? */
mem_err = 0;
return SCB_MEMERR;
}
if (lvl == IPL_CRDERR) { /* CRD error? */
crd_err = 0;
return SCB_CRDERR;
}
if (lvl > IPL_HMAX) { /* error req lvl? */
ABORT (STOP_UIPL); /* unknown intr */
}
for (i = 0; int_req[l] && (i < 32); i++) {
if ((int_req[l] >> i) & 1) {
int32 vec;
int_req[l] = int_req[l] & ~(1u << i);
if (int_ack[l][i])
vec = int_ack[l][i]();
else
vec = int_vec[l][i];
vec |= int_vec_set[l][i];
vec &= (int_vec_set[l][i] | QB_VEC_MASK);
return vec;
}
}
return 0;
}
/* CQBIC registers
SCR system configuration register
DSER DMA system error register (W1C)
MEAR master error address register (RO)
SEAR slave error address register (RO)
MBR map base register
IPC inter-processor communication register
*/
int32 cqbic_rd (int32 pa)
{
int32 rg = (pa - CQBICBASE) >> 2;
switch (rg) {
case 0: /* SCR */
return (cq_scr | CQSCR_POK) & CQSCR_MASK;
case 1: /* DSER */
return cq_dser & CQDSER_MASK;
case 2: /* MEAR */
return cq_mear & CQMEAR_MASK;
case 3: /* SEAR */
return cq_sear & CQSEAR_MASK;
case 4: /* MBR */
return cq_mbr & CQMBR_MASK;
}
return 0;
}
void cqbic_wr (int32 pa, int32 val, int32 lnt)
{
int32 nval, rg = (pa - CQBICBASE) >> 2;
if (lnt < L_LONG) {
int32 sc = (pa & 3) << 3;
int32 mask = (lnt == L_WORD)? 0xFFFF: 0xFF;
int32 t = cqbic_rd (pa);
nval = ((val & mask) << sc) | (t & ~(mask << sc));
val = val << sc;
}
else nval = val;
switch (rg) {
case 0: /* SCR */
cq_scr = ((cq_scr & ~CQSCR_RW) | (nval & CQSCR_RW)) & CQSCR_MASK;
break;
case 1: /* DSER */
cq_dser = (cq_dser & ~val) & CQDSER_MASK;
if (val & CQDSER_SME)
cq_ipc = cq_ipc & ~CQIPC_QME;
break;
case 2: case 3:
cq_merr (pa); /* MEAR, SEAR */
MACH_CHECK (MCHK_WRITE);
break;
case 4: /* MBR */
cq_mbr = nval & CQMBR_MASK;
break;
}
return;
}
/* IPC can be read as local register or as Qbus I/O
Because of the W1C */
int32 cqipc_rd (int32 pa)
{
return cq_ipc & CQIPC_MASK; /* IPC */
}
void cqipc_wr (int32 pa, int32 val, int32 lnt)
{
int32 nval = val;
if (lnt < L_LONG) {
int32 sc = (pa & 3) << 3;
nval = val << sc;
}
cq_ipc = cq_ipc & ~(nval & CQIPC_W1C); /* W1C */
if ((pa & 3) == 0) /* low byte only */
cq_ipc = ((cq_ipc & ~CQIPC_RW) | (val & CQIPC_RW)) & CQIPC_MASK;
return;
}
/* I/O page routines */
t_stat dbl_rd (int32 *data, int32 addr, int32 access)
{
*data = cq_ipc & CQIPC_MASK;
return SCPE_OK;
}
t_stat dbl_wr (int32 data, int32 addr, int32 access)
{
cqipc_wr (addr, data, (access == WRITEB)? L_BYTE: L_WORD);
return SCPE_OK;
}
/* CQBIC map read and write (reflects to main memory)
Read error: set DSER<0>, latch slave address, machine check
Write error: set DSER<0>, latch slave address, memory error interrupt
*/
int32 cqmap_rd (int32 pa)
{
int32 ma = (pa & CQMAPAMASK) + cq_mbr; /* mem addr */
if (ADDR_IS_MEM (ma))
return M[ma >> 2];
cq_serr (ma); /* set err */
MACH_CHECK (MCHK_READ); /* mcheck */
return 0;
}
void cqmap_wr (int32 pa, int32 val, int32 lnt)
{
int32 ma = (pa & CQMAPAMASK) + cq_mbr; /* mem addr */
if (ADDR_IS_MEM (ma)) {
if (lnt < L_LONG) {
int32 sc = (pa & 3) << 3;
int32 mask = (lnt == L_WORD)? 0xFFFF: 0xFF;
int32 t = M[ma >> 2];
val = ((val & mask) << sc) | (t & ~(mask << sc));
}
M[ma >> 2] = val;
}
else {
cq_serr (ma); /* error */
mem_err = 1;
}
return;
}
/* CQBIC Qbus memory read and write (reflects to main memory)
May give master or slave error, depending on where the failure occurs
*/
int32 cqmem_rd (int32 pa)
{
int32 qa = pa & CQMAMASK; /* Qbus addr */
uint32 ma;
if (qba_map_addr (qa, &ma)) /* map addr */
return M[ma >> 2];
if (ADDR_IS_QVM(pa) && vc_buf) /* QVSS memory? */
return vc_mem_rd (pa);
MACH_CHECK (MCHK_READ); /* err? mcheck */
return 0;
}
void cqmem_wr (int32 pa, int32 val, int32 lnt)
{
int32 qa = pa & CQMAMASK; /* Qbus addr */
uint32 ma;
if (qba_map_addr (qa, &ma)) { /* map addr */
if (lnt < L_LONG) {
int32 sc = (pa & 3) << 3;
int32 mask = (lnt == L_WORD)? 0xFFFF: 0xFF;
int32 t = M[ma >> 2];
val = ((val & mask) << sc) | (t & ~(mask << sc));
}
M[ma >> 2] = val;
}
else {
if (ADDR_IS_QVM(pa) && vc_buf) /* QVSS Memory */
vc_mem_wr (pa, val, lnt);
else
mem_err = 1;
}
return;
}
/* Map an address via the translation map */
t_bool qba_map_addr (uint32 qa, uint32 *ma)
{
int32 qblk = (qa >> VA_V_VPN); /* Qbus blk */
int32 qmma = ((qblk << 2) & CQMAPAMASK) + cq_mbr; /* map entry */
if (ADDR_IS_MEM (qmma)) { /* legit? */
int32 qmap = M[qmma >> 2]; /* get map */
if (qmap & CQMAP_VLD) { /* valid? */
*ma = ((qmap & CQMAP_PAG) << VA_V_VPN) + VA_GETOFF (qa);
if (ADDR_IS_MEM (*ma)) /* legit addr */
return TRUE;
cq_serr (*ma); /* slave nxm */
return FALSE;
}
cq_merr (qa); /* master nxm */
return FALSE;
}
cq_serr (0); /* inv mem */
return FALSE;
}
/* Map an address via the translation map - console version (no status changes) */
t_bool qba_map_addr_c (uint32 qa, uint32 *ma)
{
int32 qblk = (qa >> VA_V_VPN); /* Qbus blk */
int32 qmma = ((qblk << 2) & CQMAPAMASK) + cq_mbr; /* map entry */
if (ADDR_IS_MEM (qmma)) { /* legit? */
int32 qmap = M[qmma >> 2]; /* get map */
if (qmap & CQMAP_VLD) { /* valid? */
*ma = ((qmap & CQMAP_PAG) << VA_V_VPN) + VA_GETOFF (qa);
return TRUE; /* legit addr */
}
}
return FALSE;
}
/* Set master error */
void cq_merr (int32 pa)
{
if (cq_dser & CQDSER_ERR)
cq_dser = cq_dser | CQDSER_LST;
cq_dser = cq_dser | CQDSER_MNX; /* master nxm */
cq_mear = (pa >> VA_V_VPN) & CQMEAR_MASK; /* page addr */
return;
}
/* Set slave error */
void cq_serr (int32 pa)
{
if (cq_dser & CQDSER_ERR)
cq_dser = cq_dser | CQDSER_LST;
cq_dser = cq_dser | CQDSER_SNX; /* slave nxm */
cq_sear = (pa >> VA_V_VPN) & CQSEAR_MASK;
return;
}
/* Reset I/O bus */
void ioreset_wr (int32 data)
{
reset_all (5); /* from qba on... */
return;
}
/* Powerup CQBIC */
t_stat qba_powerup (void)
{
cq_mbr = 0;
cq_scr = CQSCR_POK;
return SCPE_OK;
}
/* Reset CQBIC */
t_stat qba_reset (DEVICE *dptr)
{
int32 i;
if (sim_switches & SWMASK ('P'))
qba_powerup ();
cq_scr = (cq_scr & CQSCR_BHL) | CQSCR_POK;
cq_dser = cq_mear = cq_sear = cq_ipc = 0;
for (i = 0; i < IPL_HLVL; i++)
int_req[i] = 0;
return SCPE_OK;
}
/* Qbus I/O buffer routines, aligned access
Map_ReadB - fetch byte buffer from memory
Map_ReadW - fetch word buffer from memory
Map_WriteB - store byte buffer into memory
Map_WriteW - store word buffer into memory
*/
int32 Map_ReadB (uint32 ba, int32 bc, uint8 *buf)
{
int32 i;
uint32 ma, dat;
if ((ba | bc) & 03) { /* check alignment */
for (i = ma = 0; i < bc; i++, buf++) { /* by bytes */
if ((ma & VA_M_OFF) == 0) { /* need map? */
if (!qba_map_addr (ba + i, &ma)) /* inv or NXM? */
return (bc - i);
}
*buf = (uint8)ReadB (ma);
ma = ma + 1;
}
}
else {
for (i = ma = 0; i < bc; i = i + 4, buf++) { /* by longwords */
if ((ma & VA_M_OFF) == 0) { /* need map? */
if (!qba_map_addr (ba + i, &ma)) /* inv or NXM? */
return (bc - i);
}
dat = ReadL (ma); /* get lw */
*buf++ = dat & BMASK; /* low 8b */
*buf++ = (dat >> 8) & BMASK; /* next 8b */
*buf++ = (dat >> 16) & BMASK; /* next 8b */
*buf = (dat >> 24) & BMASK;
ma = ma + 4;
}
}
return 0;
}
int32 Map_ReadW (uint32 ba, int32 bc, uint16 *buf)
{
int32 i;
uint32 ma,dat;
ba = ba & ~01;
bc = bc & ~01;
if ((ba | bc) & 03) { /* check alignment */
for (i = ma = 0; i < bc; i = i + 2, buf++) { /* by words */
if ((ma & VA_M_OFF) == 0) { /* need map? */
if (!qba_map_addr (ba + i, &ma)) /* inv or NXM? */
return (bc - i);
}
*buf = (uint16)ReadW (ma);
ma = ma + 2;
}
}
else {
for (i = ma = 0; i < bc; i = i + 4, buf++) { /* by longwords */
if ((ma & VA_M_OFF) == 0) { /* need map? */
if (!qba_map_addr (ba + i, &ma)) /* inv or NXM? */
return (bc - i);
}
dat = ReadL (ma); /* get lw */
*buf++ = dat & WMASK; /* low 16b */
*buf = (dat >> 16) & WMASK; /* high 16b */
ma = ma + 4;
}
}
return 0;
}
int32 Map_WriteB (uint32 ba, int32 bc, const uint8 *buf)
{
int32 i;
uint32 ma, dat;
if ((ba | bc) & 03) { /* check alignment */
for (i = ma = 0; i < bc; i++, buf++) { /* by bytes */
if ((ma & VA_M_OFF) == 0) { /* need map? */
if (!qba_map_addr (ba + i, &ma)) /* inv or NXM? */
return (bc - i);
}
WriteB (ma, *buf);
ma = ma + 1;
}
}
else {
for (i = ma = 0; i < bc; i = i + 4, buf++) { /* by longwords */
if ((ma & VA_M_OFF) == 0) { /* need map? */
if (!qba_map_addr (ba + i, &ma)) /* inv or NXM? */
return (bc - i);
}
dat = (uint32) *buf++; /* get low 8b */
dat = dat | (((uint32) *buf++) << 8); /* merge next 8b */
dat = dat | (((uint32) *buf++) << 16); /* merge next 8b */
dat = dat | (((uint32) *buf) << 24); /* merge hi 8b */
WriteL (ma, dat); /* store lw */
ma = ma + 4;
}
}
return 0;
}
int32 Map_WriteW (uint32 ba, int32 bc, const uint16 *buf)
{
int32 i;
uint32 ma, dat;
ba = ba & ~01;
bc = bc & ~01;
if ((ba | bc) & 03) { /* check alignment */
for (i = ma = 0; i < bc; i = i + 2, buf++) { /* by words */
if ((ma & VA_M_OFF) == 0) { /* need map? */
if (!qba_map_addr (ba + i, &ma)) /* inv or NXM? */
return (bc - i);
}
WriteW (ma, *buf);
ma = ma + 2;
}
}
else {
for (i = ma = 0; i < bc; i = i + 4, buf++) { /* by longwords */
if ((ma & VA_M_OFF) == 0) { /* need map? */
if (!qba_map_addr (ba + i, &ma)) /* inv or NXM? */
return (bc - i);
}
dat = (uint32) *buf++; /* get low 16b */
dat = dat | (((uint32) *buf) << 16); /* merge hi 16b */
WriteL (ma, dat); /* store lw */
ma = ma + 4;
}
}
return 0;
}
/* Memory examine via map (word only) */
t_stat qba_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw)
{
uint32 qa = (uint32) exta, pa;
if ((vptr == NULL) || (qa >= CQMSIZE))
return SCPE_ARG;
if (qba_map_addr_c (qa, &pa) && ADDR_IS_MEM (pa)) {
*vptr = (uint32) ReadW (pa);
return SCPE_OK;
}
return SCPE_NXM;
}
/* Memory deposit via map (word only) */
t_stat qba_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw)
{
uint32 qa = (uint32) exta, pa;
if (qa >= CQMSIZE)
return SCPE_ARG;
if (qba_map_addr_c (qa, &pa) && ADDR_IS_MEM (pa)) {
WriteW (pa, (int32) val);
return SCPE_OK;
}
return SCPE_NXM;
}
/* Build dib_tab from device list */
t_stat build_dib_tab (void)
{
int32 i;
DEVICE *dptr;
DIB *dibp;
t_stat r;
init_ubus_tab (); /* init bus tables */
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */
dibp = (DIB *) dptr->ctxt; /* get DIB */
if (dibp && !(dptr->flags & DEV_DIS)) { /* defined, enabled? */
if ((r = build_ubus_tab (dptr, dibp))) /* add to bus tab */
return r;
} /* end if enabled */
} /* end for */
return SCPE_OK;
}
/* Show QBA virtual address */
t_stat qba_show_virt (FILE *of, UNIT *uptr, int32 val, CONST void *desc)
{
t_stat r;
const char *cptr = (const char *) desc;
uint32 qa, pa;
if (cptr) {
qa = (uint32) get_uint (cptr, 16, CQMSIZE - 1, &r);
if (r == SCPE_OK) {
if (qba_map_addr_c (qa, &pa))
fprintf (of, "Qbus %-X = physical %-X\n", qa, pa);
else fprintf (of, "Qbus %-X: invalid mapping\n", qa);
return SCPE_OK;
}
}
fprintf (of, "Invalid argument\n");
return SCPE_OK;
}
t_stat qba_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr)
{
fprintf (st, "Qbus Adapter (QBA)\n\n");
fprintf (st, "The Qbus adapter (QBA) simulates the CQBIC Qbus adapter chip.\n");
fprint_set_help (st, dptr);
fprint_show_help (st, dptr);
fprintf (st, "\nThe QBA implements main memory examination and modification via the Qbus\n");
fprintf (st, "map. The data width is always 16b:\n\n");
fprintf (st, "EXAMINE QBA 0/10 examine main memory words corresponding\n");
fprintf (st, " to Qbus addresses 0-10\n");
fprint_reg_help (st, dptr);
return SCPE_OK;
}
const char *qba_description (DEVICE *dptr)
{
return "Qbus adapter";
}