blob: 09f9a43cf3540073e67337ea82002e4b121f2014 [file] [log] [blame] [raw]
/* ssem_cpu.c: Manchester University SSEM (Small Scale Experimental Machine)
CPU simulator
Based on the SIMH package written by Robert M Supnik
Copyright (c) 2006-2013, Gerardo Ospina
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of the author shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from the author.
This is not a supported product, but the author welcomes bug reports and fixes.
Mail to ngospina@gmail.com
cpu SSEM CPU
The system state for the SSEM is:
A[0]<0:31> accumulator
C[0]<0:31> current instruction
C[1]<0:31> present instruction
The SSEM has just one instruction format:
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |inst | |address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
SSEM instructions:
<13:15> operation
000 0 C[0] <- S[n]
001 1 C[0] <- C[0] + S[n]
010 2 A[0] <- -S[n]
011 3 S[n] <- A[0]
100 4 A[0] <- A[0] - S[n]
110 6 C[0] <- C[0] + 1 if (A[0] < 0)
111 7 Stop the machine
The SSEM has 32 32b words of memory.
This routine is the instruction decode routine for the SSEM.
It is called from the simulator control program to execute
instructions in simulated memory, starting at the simulated
CI. It runs until 'reason' is set non-zero.
General notes:
1. Reasons to stop. The simulator can be stopped by:
Stop instruction
breakpoint encountered
2. Interrupts. There are no interrupts.
3. Non-existent memory. All of memory always exists.
4. Adding I/O devices. The SSEM could not support additional
I/O devices.
*/
#include "ssem_defs.h"
uint32 S[MEMSIZE] = { 0 }; /* storage (memory) */
int32 A[MEMSIZE] = { 0 }; /* A[0] accumulator */
uint32 C[MEMSIZE] = { 0, 0 }; /* C[0] current instruction */
/* C[1] present instruction */
uint32 Staticisor = 0;
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_one_inst (uint32 opc, uint32 ir);
/* CPU data structures
cpu_dev CPU device descriptor
cpu_unit CPU unit descriptor
cpu_reg CPU register list
cpu_mod CPU modifiers list
*/
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX, MEMSIZE) };
REG cpu_reg[] = {
{ DRDATA (CI, C[0], 5), REG_VMAD },
{ HRDATA (A, A[0], 32), REG_VMIO },
{ HRDATA (PI, C[1], 32), REG_VMIO + REG_HRO },
{ HRDATA (LF, Staticisor, 32), REG_VMIO + REG_HRO },
{ NULL }
};
MTAB cpu_mod[] = {
{ UNIT_SSEM, 0, "Manchester University SSEM (Small Scale Experimental Machine)", "SSEM" },
{ 0 }
};
DEVICE cpu_dev = {
"CPU", &cpu_unit, cpu_reg, cpu_mod,
1, 10, 5, 1, 16, 32,
&cpu_ex, &cpu_dep, &cpu_reset,
NULL, NULL, NULL
};
t_stat sim_instr (void)
{
t_stat reason = 0;
sim_cancel_step (); /* defang SCP step */
/* Main instruction fetch/decode loop */
do {
if (sim_interval <= 0) { /* check clock queue */
#if !UNIX_PLATFORM
if ((reason = sim_poll_kbd()) == SCPE_STOP) { /* poll on platforms without reliable signalling */
break;
}
#endif
if ((reason = sim_process_event ()))
break;
}
if (sim_brk_summ && /* breakpoint? */
sim_brk_test (*C, SWMASK ('E'))) {
reason = STOP_IBKPT; /* stop simulation */
break;
}
/* Increment current instruction */
*C = (*C + 1) & AMASK;
/* Get present instruction */
C[1] = Read (*C);
Staticisor = C[1] & IMASK; /* get instruction */
sim_interval = sim_interval - 1;
if ((reason = cpu_one_inst (*C, Staticisor))) { /* one instr; error? */
break;
}
if (sim_step && (--sim_step <= 0)) /* do step count */
reason = SCPE_STOP;
} while (reason == 0); /* loop until halted */
return reason;
}
t_stat cpu_reset (DEVICE *dptr)
{
sim_brk_types = sim_brk_dflt = SWMASK ('E');
return SCPE_OK;
}
/* Memory examine */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
if (vptr != NULL) *vptr = Read (addr);
return SCPE_OK;
}
/* Memory deposit */
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
Write (addr, val);
return SCPE_OK;
}
/* Execute one instruction */
t_stat cpu_one_inst (uint32 opc, uint32 ir)
{
uint32 ea, op;
t_stat reason = 0;
op = I_GETOP (ir); /* opcode */
switch (op) { /* case on opcode */
case OP_JUMP_INDIRECT: /* C[0] <- S[ea] */
ea = I_GETEA (ir); /* address */
*C = Read(ea);
break;
case OP_JUMP_INDIRECT_RELATIVE: /* C[0] <- C[0] + S[ea] */
ea = I_GETEA (ir); /* address */
*C += Read(ea);
break;
case OP_LOAD_NEGATED: /* A[0] <- -S[ea] */
ea = I_GETEA (ir); /* address */
*A = -((int32)Read(ea));
break;
case OP_STORE: /* S[ea] <- A[0] */
ea = I_GETEA (ir); /* address */
Write(ea, (uint32) *A);
break;
case OP_SUBSTRACT: /* A[0] <- A[0] - S[ea] */
case OP_UNDOCUMENTED:
ea = I_GETEA (ir); /* address */
*A -= ((int32) Read(ea));
break;
case OP_TEST: /* C[0] <- C[0] + 1 if (A[0] < 0) */
if (*A < 0){
*C += 1;
}
break;
case OP_STOP: /* Stop the machine */
reason = STOP_STOP; /* stop simulation */
break;
} /* end switch */
return reason;
}
/* Support routines */
uint32 Read (uint32 ea)
{
return S[ea] & MMASK;
}
void Write (uint32 ea, uint32 dat)
{
S[ea] = dat & MMASK;
return;
}