/* 3b2_iu.c: SCN2681A Dual UART Implementation | |
Copyright (c) 2017, Seth J. Morabito | |
Permission is hereby granted, free of charge, to any person | |
obtaining a copy of this software and associated documentation | |
files (the "Software"), to deal in the Software without | |
restriction, including without limitation the rights to use, copy, | |
modify, merge, publish, distribute, sublicense, and/or sell copies | |
of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be | |
included in all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | |
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | |
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. | |
Except as contained in this notice, the name of the author shall | |
not be used in advertising or otherwise to promote the sale, use or | |
other dealings in this Software without prior written authorization | |
from the author. | |
*/ | |
#include "3b2_iu.h" | |
/* | |
* The 3B2/400 has two on-board serial ports, labeled CONSOLE and | |
* CONTTY. The CONSOLE port is (naturally) the system console. The | |
* CONTTY port serves as a secondary serial port for an additional | |
* terminal. | |
* | |
* These lines are driven by an SCN2681A Dual UART, with two receivers | |
* and two transmitters. | |
* | |
* In addition to the two TX/RX ports, the SCN27681A also has one | |
* programmable timer. | |
* | |
* The SCN2681A UART is represented here by five devices: | |
* | |
* - Console TTI (Input, port A) | |
* - Console TTO (Output, port A) | |
* - Contty TTI (Input, port B) | |
* - Contty TTO (Output, port B) | |
* - IU Timer | |
*/ | |
/* | |
* Registers | |
*/ | |
/* The IU state shared between A and B */ | |
IU_STATE iu_state; | |
/* The tx/rx state for ports A and B */ | |
IU_PORT iu_port_a; | |
IU_PORT iu_port_b; | |
/* The timer state */ | |
IU_TIMER_STATE iu_timer_state; | |
/* Flags for incrementing mode pointers */ | |
t_bool iu_increment_a = FALSE; | |
t_bool iu_increment_b = FALSE; | |
extern uint16 csr_data; | |
BITFIELD sr_bits[] = { | |
BIT(RXRDY), | |
BIT(FFULL), | |
BIT(TXRDY), | |
BIT(TXEMT), | |
BIT(OVRN_E), | |
BIT(PRTY_E), | |
BIT(FRM_E), | |
BIT(BRK), | |
ENDBITS | |
}; | |
BITFIELD isr_bits[] = { | |
BIT(TXRDYA), | |
BIT(RXRDY_FFA), | |
BIT(DLTA_BRKA), | |
BIT(CTR_RDY), | |
BIT(TXRDYB), | |
BIT(RXRDY_FFB), | |
BIT(DLTA_BRKB), | |
BIT(IPC), | |
ENDBITS | |
}; | |
BITFIELD acr_bits[] = { | |
BIT(BRG_SET), | |
BITFFMT(TMR_MODE,3,%d), | |
BIT(DLTA_IP3), | |
BIT(DLTA_IP2), | |
BIT(DLTA_IP1), | |
BIT(DLTA_IP0), | |
ENDBITS | |
}; | |
BITFIELD conf_bits[] = { | |
BIT(TX_EN), | |
BIT(RX_EN), | |
ENDBITS | |
}; | |
/* TTI (Port A) data structures */ | |
REG tti_a_reg[] = { | |
{ HRDATADF(STAT, iu_port_a.stat, 8, "Status", sr_bits) }, | |
{ HRDATADF(CONF, iu_port_a.conf, 8, "Config", conf_bits) }, | |
{ BRDATAD(DATA, iu_port_a.rxbuf, 16, 8, IU_BUF_SIZE, "Data") }, | |
{ NULL } | |
}; | |
UNIT tti_a_unit = { UDATA(&iu_svc_tti_a, UNIT_IDLE, 0), TMLN_SPD_9600_BPS }; | |
DEVICE tti_a_dev = { | |
"TTIA", &tti_a_unit, tti_a_reg, NULL, | |
1, 8, 32, 1, 8, 8, | |
NULL, NULL, &tti_a_reset, | |
NULL, NULL, NULL, NULL, | |
DEV_DEBUG, 0, sys_deb_tab | |
}; | |
/* TTO (Port A) data structures */ | |
REG tto_a_reg[] = { | |
{ HRDATADF(STAT, iu_port_a.stat, 8, "Status", sr_bits) }, | |
{ HRDATADF(ISTAT, iu_state.istat, 8, "Interrupt Status", isr_bits) }, | |
{ HRDATAD(IMR, iu_state.imr, 8, "Interrupt Mask") }, | |
{ HRDATADF(ACR, iu_state.acr, 8, "Auxiliary Control Register", acr_bits) }, | |
{ HRDATAD(DATA, iu_port_a.txbuf, 8, "Data") }, | |
{ NULL } | |
}; | |
UNIT tto_a_unit = { UDATA(&iu_svc_tto_a, TT_MODE_8B, 0), SERIAL_OUT_WAIT }; | |
DEVICE tto_a_dev = { | |
"TTOA", &tto_a_unit, tto_a_reg, NULL, | |
1, 8, 32, 1, 8, 8, | |
NULL, NULL, NULL, | |
NULL, NULL, NULL, NULL, | |
DEV_DEBUG, 0, sys_deb_tab | |
}; | |
/* TTI (Port B) data structures */ | |
REG tti_b_reg[] = { | |
{ HRDATADF(STAT, iu_port_b.stat, 8, "Status", sr_bits) }, | |
{ HRDATADF(CONF, iu_port_b.conf, 8, "Config", conf_bits) }, | |
{ BRDATAD(DATA, iu_port_b.rxbuf, 16, 8, IU_BUF_SIZE, "Data") }, | |
{ NULL } | |
}; | |
UNIT tti_b_unit = { UDATA(&iu_svc_tti_b, UNIT_IDLE, 0), TMLN_SPD_9600_BPS }; | |
DEVICE tti_b_dev = { | |
"TTIB", &tti_b_unit, tti_b_reg, NULL, | |
1, 8, 32, 1, 8, 8, | |
NULL, NULL, &tti_b_reset, | |
NULL, NULL, NULL, NULL, | |
DEV_DEBUG, 0, sys_deb_tab | |
}; | |
/* TTO (Port B) data structures */ | |
REG tto_b_reg[] = { | |
{ HRDATADF(STAT, iu_port_b.stat, 8, "Status", sr_bits) }, | |
{ HRDATADF(ISTAT, iu_state.istat, 8, "Interrupt Status", isr_bits) }, | |
{ HRDATAD(IMR, iu_state.imr, 8, "Interrupt Mask") }, | |
{ HRDATADF(ACR, iu_state.acr, 8, "Auxiliary Control Register", acr_bits) }, | |
{ HRDATAD(DATA, iu_port_b.txbuf, 8, "Data") }, | |
{ NULL } | |
}; | |
UNIT tto_b_unit = { UDATA(&iu_svc_tto_b, TT_MODE_8B, 0), SERIAL_OUT_WAIT }; | |
DEVICE tto_b_dev = { | |
"TTOB", &tto_b_unit, tto_b_reg, NULL, | |
1, 8, 32, 1, 8, 8, | |
NULL, NULL, NULL, | |
NULL, NULL, NULL, NULL, | |
DEV_DEBUG, 0, sys_deb_tab | |
}; | |
/* IU Timer data structures */ | |
REG iu_timer_reg[] = { | |
{ HRDATAD(CTR_SET, iu_timer_state.c_set, 16, "Counter Setting") }, | |
{ NULL } | |
}; | |
UNIT iu_timer_unit = { UDATA(&iu_svc_timer, 0, 0) }; | |
DEVICE iu_timer_dev = { | |
"IUTIMER", &iu_timer_unit, iu_timer_reg, NULL, | |
1, 8, 32, 1, 8, 8, | |
NULL, NULL, &iu_timer_reset, | |
NULL, NULL, NULL, NULL, | |
DEV_DEBUG, 0, sys_deb_tab | |
}; | |
void increment_modep_a() | |
{ | |
iu_increment_a = FALSE; | |
iu_port_a.modep++; | |
if (iu_port_a.modep > 1) { | |
iu_port_a.modep = 0; | |
} | |
} | |
void increment_modep_b() | |
{ | |
iu_increment_b = FALSE; | |
iu_port_b.modep++; | |
if (iu_port_b.modep > 1) { | |
iu_port_b.modep = 0; | |
} | |
} | |
void iu_txrdy_a_irq() { | |
if ((iu_state.imr & ISTS_TAI) && | |
(iu_port_a.conf & TX_EN) && | |
(iu_port_a.stat & STS_TXR)) { | |
sim_debug(EXECUTE_MSG, &tto_a_dev, | |
"Firing IU TTY IRQ 13 ON TX/State Change: PORT A\n"); | |
csr_data |= CSRUART; | |
} | |
} | |
void iu_txrdy_b_irq() { | |
if ((iu_state.imr & ISTS_TBI) && | |
(iu_port_b.conf & TX_EN) && | |
(iu_port_b.stat & STS_TXR)) { | |
sim_debug(EXECUTE_MSG, &tto_b_dev, | |
"Firing IU TTY IRQ 13 ON TX/State Change: PORT B\n"); | |
csr_data |= CSRUART; | |
} | |
} | |
t_stat tti_a_reset(DEVICE *dptr) | |
{ | |
memset(&iu_state, 0, sizeof(IU_STATE)); | |
memset(&iu_port_a, 0, sizeof(IU_PORT)); | |
/* Start the TTI A polling loop */ | |
if (!sim_is_active(&tti_a_unit)) { | |
sim_activate(&tti_a_unit, tti_a_unit.wait); | |
} | |
return SCPE_OK; | |
} | |
t_stat tti_b_reset(DEVICE *dtpr) | |
{ | |
memset(&iu_state, 0, sizeof(IU_STATE)); | |
memset(&iu_port_b, 0, sizeof(IU_PORT)); | |
/* Start the TTI B polling loop */ | |
if (!sim_is_active(&tti_b_unit)) { | |
sim_activate(&tti_b_unit, tti_b_unit.wait); | |
} | |
return SCPE_OK; | |
} | |
t_stat iu_timer_reset(DEVICE *dptr) | |
{ | |
memset(&iu_timer_state, 0, sizeof(IU_TIMER_STATE)); | |
return SCPE_OK; | |
} | |
/* Service routines */ | |
t_stat iu_svc_tti_a(UNIT *uptr) | |
{ | |
int32 temp; | |
sim_clock_coschedule_tmr_abs(uptr, TMR_CLK, 2); | |
/* TODO: | |
- If there has been a change on IP0-IP3, set the corresponding | |
bits in IPCR, if configured to do so. We'll need to figure out | |
how these are wired (DCD pin, etc?) | |
- Update the Output Port pins (which are logically inverted) | |
based on the contents of the OPR, OPCR, MR, and CR registers. | |
*/ | |
if ((temp = sim_poll_kbd()) < SCPE_KFLAG) { | |
return temp; | |
} | |
sim_debug(READ_MSG, &tti_a_dev, | |
">>> TTIA: Receive %02x (%c)\n", | |
temp & 0xff, temp & 0xff); | |
if (iu_port_a.conf & RX_EN) { | |
if ((iu_port_a.stat & STS_FFL) == 0) { | |
iu_port_a.rxbuf[iu_port_a.w_p] = (temp & 0xff); | |
iu_port_a.w_p = (iu_port_a.w_p + 1) % IU_BUF_SIZE; | |
if (iu_port_a.w_p == iu_port_b.w_p) { | |
sim_debug(READ_MSG, &tti_a_dev, | |
">>> FIFO FULL ON KEYBOARD READ!!!! <<<\n"); | |
iu_port_a.stat |= STS_FFL; | |
} | |
} | |
iu_port_a.stat |= STS_RXR; | |
iu_state.istat |= ISTS_RAI; | |
if (iu_state.imr & 0x02) { | |
sim_debug(EXECUTE_MSG, &tti_a_dev, | |
"Firing IRQ 13 ON TTI A RECEIVE (%c)\n", | |
(temp & 0xff)); | |
csr_data |= CSRUART; | |
} | |
} | |
return SCPE_OK; | |
} | |
t_stat iu_svc_tti_b(UNIT *uptr) | |
{ | |
sim_clock_coschedule_tmr_abs(uptr, TMR_CLK, 2); | |
/* TODO: Handle TTIB as a terminal */ | |
return SCPE_OK; | |
} | |
t_stat iu_svc_tto_a(UNIT *uptr) | |
{ | |
iu_txrdy_a_irq(); | |
return SCPE_OK; | |
} | |
t_stat iu_svc_tto_b(UNIT *uptr) | |
{ | |
iu_txrdy_b_irq(); | |
return SCPE_OK; | |
} | |
t_stat iu_svc_timer(UNIT *uptr) | |
{ | |
iu_state.istat |= ISTS_CRI; | |
if (iu_state.imr & 0x08) { | |
csr_data |= CSRUART; | |
} | |
return SCPE_OK; | |
} | |
/* | |
* Reg | Name (Read) | Name (Write) | |
* -----+-------------------------+---------------------------- | |
* 0 | Mode Register 1/2 A | Mode Register 1/2 A | |
* 1 | Status Register A | Clock Select Register A | |
* 2 | BRG Test | Command Register A | |
* 3 | Rx Holding Register A | Tx Holding Register A | |
* 4 | Input Port Change Reg. | Aux. Control Register | |
* 5 | Interrupt Status Reg. | Interrupt Mask Register | |
* 6 | Counter/Timer Upper Val | C/T Upper Preset Val. | |
* 7 | Counter/Timer Lower Val | C/T Lower Preset Val. | |
* 8 | Mode Register B | Mode Register B | |
* 9 | Status Register B | Clock Select Register B | |
* 10 | 1X/16X Test | Command Register B | |
* 11 | Rx Holding Register B | Tx Holding Register B | |
* 12 | *Reserved* | *Reserved* | |
* 13 | Input Ports IP0 to IP6 | Output Port Conf. Reg. | |
* 14 | Start Counter Command | Set Output Port Bits Cmd. | |
* 15 | Stop Counter Command | Reset Output Port Bits Cmd. | |
*/ | |
uint32 iu_read(uint32 pa, size_t size) | |
{ | |
uint8 reg, modep; | |
uint32 data, delay; | |
reg = (uint8) (pa - IUBASE); | |
switch (reg) { | |
case MR12A: | |
modep = iu_port_a.modep; | |
data = iu_port_a.mode[modep]; | |
iu_increment_a = TRUE; | |
break; | |
case SRA: | |
data = iu_port_a.stat; | |
break; | |
case RHRA: | |
data = iu_port_a.rxbuf[iu_port_a.r_p]; | |
iu_port_a.r_p = (iu_port_a.r_p + 1) % IU_BUF_SIZE; | |
sim_debug(READ_MSG, &tti_a_dev, | |
"[%08x] RHRA = %02x (%c)\n", | |
R[NUM_PC], (data & 0xff), (data & 0xff)); | |
iu_port_a.stat &= ~(STS_RXR|STS_FFL); | |
iu_state.istat &= ~ISTS_RAI; | |
csr_data &= ~CSRUART; | |
break; | |
case IPCR: | |
data = iu_state.ipcr; | |
/* Reading the port resets the upper four bits */ | |
iu_state.ipcr &= 0x0f; | |
csr_data &= ~CSRUART; | |
break; | |
case ISR: | |
data = iu_state.istat; | |
break; | |
case CTU: | |
data = (iu_timer_state.c_set >> 8) & 0xff; | |
break; | |
case CTL: | |
data = iu_timer_state.c_set & 0xff; | |
break; | |
case MR12B: | |
modep = iu_port_b.modep; | |
data = iu_port_b.mode[modep]; | |
iu_increment_b = TRUE; | |
break; | |
case SRB: | |
data = iu_port_b.stat; | |
sim_debug(READ_MSG, &tti_b_dev, | |
"[%08x] SRB = %02x\n", | |
R[NUM_PC], (data & 0xff)); | |
break; | |
case RHRB: | |
data = iu_port_b.rxbuf[iu_port_b.r_p]; | |
iu_port_b.r_p = (iu_port_b.r_p + 1) % IU_BUF_SIZE; | |
sim_debug(READ_MSG, &tti_b_dev, | |
"[%08x] RHRB = %02x (%c)\n", | |
R[NUM_PC], (data & 0xff), (data & 0xff)); | |
iu_port_b.stat &= ~(STS_RXR|STS_FFL); | |
iu_state.istat &= ~ISTS_RBI; | |
break; | |
case INPRT: | |
/* TODO: Correct behavior for DCD on contty */ | |
/* For now, this enables DCD/DTR on console only */ | |
data = 0x8e; | |
break; | |
case START_CTR: | |
data = 0; | |
iu_state.istat &= ~ISTS_CRI; | |
delay = (uint32) (IU_TIMER_STP * iu_timer_state.c_set); | |
sim_activate_abs(&iu_timer_unit, (int32) DELAY_US(delay)); | |
sim_debug(READ_MSG, &iu_timer_dev, | |
"[%08x] Activating IU timer to fire in %04x steps\n", | |
R[NUM_PC], iu_timer_state.c_set); | |
break; | |
case STOP_CTR: | |
data = 0; | |
iu_state.istat &= ~ISTS_CRI; | |
csr_data &= ~CSRUART; | |
sim_cancel(&iu_timer_unit); | |
sim_debug(READ_MSG, &iu_timer_dev, | |
"[%08x] Cancelling IU timer\n", | |
R[NUM_PC]); | |
break; | |
case 17: /* Clear DMAC interrupt */ | |
data = 0; | |
iu_port_a.drq = FALSE; | |
iu_port_b.drq = FALSE; | |
csr_data &= ~CSRDMA; | |
break; | |
default: | |
data = 0; | |
break; | |
} | |
return data; | |
} | |
void iu_write(uint32 pa, uint32 val, size_t size) | |
{ | |
uint8 reg; | |
uint8 modep; | |
reg = (uint8) (pa - IUBASE); | |
switch (reg) { | |
case MR12A: | |
modep = iu_port_a.modep; | |
iu_port_a.mode[modep] = val & 0xff; | |
iu_increment_a = TRUE; | |
break; | |
case CSRA: | |
/* Set baud rate - not implemented */ | |
break; | |
case CRA: /* Command A */ | |
sim_debug(WRITE_MSG, &tti_a_dev, | |
"[%08x] CRA = %02x\n", | |
R[NUM_PC], (val & 0xff)); | |
iu_w_cmd(PORT_A, (uint8) val); | |
break; | |
case THRA: /* TX/RX Buf A */ | |
sim_debug(WRITE_MSG, &tto_a_dev, | |
"[%08x] THRA = %02x (%c)\n", | |
R[NUM_PC], (val & 0xff), (val & 0xff)); | |
/* Loopback mode */ | |
if ((iu_port_a.mode[1] & 0xc0) == 0x80) { | |
iu_port_a.txbuf = (uint8) val; | |
/* This is also a Receive */ | |
if ((iu_port_a.stat & STS_FFL) == 0) { | |
iu_port_a.rxbuf[iu_port_a.w_p] = (uint8) val; | |
iu_port_a.w_p = (iu_port_a.w_p + 1) % IU_BUF_SIZE; | |
if (iu_port_a.w_p == iu_port_a.r_p) { | |
sim_debug(WRITE_MSG, &tto_a_dev, | |
">>> FIFO FULL ON LOOPBACK THRA! <<<"); | |
iu_port_a.stat |= STS_FFL; | |
} | |
} | |
iu_port_a.stat |= STS_RXR; | |
iu_state.istat |= ISTS_RAI; | |
} else { | |
iu_tx(PORT_A, (uint8) val); | |
} | |
csr_data &= ~CSRUART; | |
break; | |
case ACR: /* Auxiliary Control Register */ | |
iu_state.acr = (uint8) val; | |
break; | |
case IMR: | |
sim_debug(WRITE_MSG, &tti_a_dev, | |
"[%08x] IMR = %02x\n", | |
R[NUM_PC], (val & 0xff)); | |
iu_state.imr = (uint8) val; | |
csr_data &= ~CSRUART; | |
/* Possibly cause an interrupt */ | |
iu_txrdy_a_irq(); | |
iu_txrdy_b_irq(); | |
break; | |
case CTUR: /* Counter/Timer Upper Preset Value */ | |
/* Clear out high byte */ | |
iu_timer_state.c_set &= 0x00ff; | |
/* Set high byte */ | |
iu_timer_state.c_set |= (val & 0xff) << 8; | |
break; | |
case CTLR: /* Counter/Timer Lower Preset Value */ | |
/* Clear out low byte */ | |
iu_timer_state.c_set &= 0xff00; | |
/* Set low byte */ | |
iu_timer_state.c_set |= (val & 0xff); | |
break; | |
case MR12B: | |
modep = iu_port_b.modep; | |
iu_port_b.mode[modep] = val & 0xff; | |
iu_increment_b = TRUE; | |
break; | |
case CRB: /* Command B */ | |
sim_debug(WRITE_MSG, &tti_b_dev, | |
"[%08x] CRB = %02x\n", | |
R[NUM_PC], (val & 0xff)); | |
iu_w_cmd(PORT_B, (uint8) val); | |
break; | |
case CSRB: | |
break; | |
case THRB: /* TX/RX Buf B */ | |
sim_debug(WRITE_MSG, &tto_b_dev, | |
"[%08x] THRB = %02x (%c)\n", | |
R[NUM_PC], (val & 0xff), (val & 0xff)); | |
/* Loopback mode */ | |
if ((iu_port_b.mode[1] & 0xc0) == 0x80) { | |
iu_port_a.txbuf = (uint8) val; | |
/* This is also a Receive */ | |
if ((iu_port_b.stat & STS_FFL) == 0) { | |
iu_port_b.rxbuf[iu_port_b.w_p] = (uint8) val; | |
iu_port_b.w_p = (iu_port_b.w_p + 1) % IU_BUF_SIZE; | |
if (iu_port_b.w_p == iu_port_b.r_p) { | |
sim_debug(WRITE_MSG, &tto_b_dev, | |
">>> FIFO FULL ON LOOPBACK THRB! <<<"); | |
iu_port_b.stat |= STS_FFL; | |
} | |
} | |
iu_port_b.stat |= STS_RXR; | |
iu_state.istat |= ISTS_RBI; | |
} else { | |
iu_tx(PORT_B, (uint8) val); | |
} | |
break; | |
case OPCR: | |
iu_state.opcr = (uint8) val; | |
break; | |
case SOPR: | |
break; | |
case ROPR: | |
break; | |
default: | |
break; | |
} | |
} | |
void iua_drq_handled() | |
{ | |
sim_debug(EXECUTE_MSG, &tto_a_dev, | |
"Firing IU IRQ 13 on DRQ (A) Hanlded\n"); | |
csr_data |= CSRDMA; | |
} | |
void iub_drq_handled() | |
{ | |
sim_debug(EXECUTE_MSG, &tto_a_dev, | |
"Firing IU IRQ 13 on DRQ (B) Hanlded\n"); | |
csr_data |= CSRDMA; | |
} | |
static SIM_INLINE void iu_tx(uint8 portno, uint8 val) | |
{ | |
IU_PORT *p; | |
UNIT *uptr; | |
if (portno == 0) { | |
p = &iu_port_a; | |
uptr = &tto_a_unit; | |
} else { | |
p = &iu_port_b; | |
uptr = &tto_b_unit; | |
} | |
p->txbuf = val; | |
if (p->conf & TX_EN) { | |
p->stat &= ~(STS_TXR|STS_TXE); | |
iu_state.istat &= ~(1 << (portno*4)); | |
if (portno == PORT_A) { | |
/* Write the character to the SIMH console */ | |
sim_putchar(val); | |
} | |
/* The buffer is now empty, we've transmitted, so set TXR */ | |
p->stat |= STS_TXR; | |
iu_state.istat |= (1 << (portno*4)); | |
/* Possibly cause an interrupt */ | |
sim_activate_abs(uptr, uptr->wait); | |
} | |
} | |
static SIM_INLINE void iu_w_cmd(uint8 portno, uint8 cmd) | |
{ | |
IU_PORT *p; | |
if (portno == 0) { | |
p = &iu_port_a; | |
} else { | |
p = &iu_port_b; | |
} | |
/* Enable or disable transmitter */ | |
/* Disable always wins, if both are set */ | |
if (cmd & CMD_DTX) { | |
p->conf &= ~TX_EN; | |
p->stat &= ~STS_TXR; | |
p->stat &= ~STS_TXE; | |
p->drq = FALSE; | |
} else if (cmd & CMD_ETX) { | |
p->conf |= TX_EN; | |
/* TXE and TXR are always set by an ENABLE */ | |
p->stat |= STS_TXR; | |
p->stat |= STS_TXE; | |
p->drq = TRUE; | |
iu_state.istat |= 1 << (portno*4); | |
if (portno == 0) { | |
iu_txrdy_a_irq(); | |
} else { | |
iu_txrdy_b_irq(); | |
} | |
} | |
/* Enable or disable receiver. */ | |
/* Disable always wins, if both are set */ | |
if (cmd & CMD_DRX) { | |
p->conf &= ~RX_EN; | |
p->stat &= ~STS_RXR; | |
} else if (cmd & CMD_ERX) { | |
p->conf |= RX_EN; | |
} | |
/* Command register bits 6-4 have special meaning */ | |
switch ((cmd >> CMD_MISC_SHIFT) & CMD_MISC_MASK) { | |
case 1: | |
/* Causes the Channel A MR pointer to point to MR1. */ | |
p->modep = 0; | |
break; | |
case 2: | |
/* Reset receiver. Resets the Channel's receiver as if a | |
hardware reset had been applied. The receiver is disabled | |
and the FIFO is flushed. */ | |
p->stat &= ~STS_RXR; | |
p->conf &= ~RX_EN; | |
p->w_p = 0; | |
p->r_p = 0; | |
break; | |
case 3: | |
/* Reset transmitter. Resets the Channel's transmitter as if a | |
hardware reset had been applied. */ | |
p->stat &= ~STS_TXR; | |
p->stat &= ~STS_TXE; | |
p->conf &= ~TX_EN; | |
p->w_p = 0; | |
p->r_p = 0; | |
break; | |
case 4: | |
/* Reset error status. Clears the Channel's Received Break, | |
Parity Error, and Overrun Error bits in the status register | |
(SRA[7:4]). Used in character mode to clear OE status | |
(although RB, PE and FE bits will also be cleared) and in | |
block mode to clear all error status after a block of data | |
has been received. */ | |
p->stat &= ~(STS_FER|STS_PER|STS_OER); | |
break; | |
case 5: | |
/* Reset Channel's break change interrupt. Causes the Channel | |
A break detect change bit in the interrupt status register | |
(ISR[2] for Chan. A, ISR[6] for Chan. B) to be cleared to | |
zero. */ | |
iu_state.istat &= ~(1 << (2 + portno*4)); | |
break; | |
case 6: | |
/* Start break. Forces the TxDA output LOW (spacing). If the | |
transmitter is empty the start of the break condition will | |
be delayed up to two bit times. If the transmitter is | |
active the break begins when transmission of the character | |
is completed. If a character is in the THR, the start of | |
the break will be delayed until that character, or any | |
other loaded subsequently are transmitted. The transmitter | |
must be enabled for this command to be accepted. */ | |
/* Not Implemented */ | |
break; | |
case 7: | |
/* Stop break. The TxDA line will go HIGH (marking) within two | |
bit times. TxDA will remain HIGH for one bit time before | |
the next character, if any, is transmitted. */ | |
/* Not Implemented */ | |
break; | |
} | |
} |