blob: defb84ebb02f864a092da8db9fc1a19a8fffa30a [file] [log] [blame] [raw]
/* pdp11_xq.c: DEQNA/DELQA ethernet controller simulator
------------------------------------------------------------------------------
Copyright (c) 2002-2007, David T. Hittner
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of the author shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from the author.
------------------------------------------------------------------------------
This DEQNA/DELQA/DELQA-T simulation is based on:
Digital DELQA Users Guide, Part# EK-DELQA-UG-002
Digital DEQNA Users Guide, Part# EK-DEQNA-UG-001
Digital DELQA-Plus Addendum to DELQA Users Guide, Part# EK-DELQP-UG-001_Sep89.pdf
These manuals can be found online at:
http://www.bitsavers.org/pdf/dec/qbus
Certain adaptations have been made because this is an emulation:
Ethernet transceiver power flag CSR<12> is ON when attached.
External Loopback does not go out to the physical adapter, it is
implemented more like an extended Internal Loopback
Time Domain Reflectometry (TDR) numbers are faked
The 10-second approx. hardware/software reset delay does not exist
Some physical ethernet receive events like Runts, Overruns, etc. are
never reported back, since the packet-level driver never sees them
Certain advantages are derived from this emulation:
If the real ethernet controller is faster than 10Mbit/sec, the speed is
seen by the simulated cpu since there are no minimum response times.
Known Bugs or Unsupported features, in priority order:
1) MOP functionality not implemented
2) Local packet processing not implemented
Regression Tests:
VAX: 1. Console SHOW DEVICE
2. VMS v7.2 boots/initializes/shows device
3. VMS DECNET - SET HOST and COPY tests
4. VMS MultiNet - SET HOST/TELNET and FTP tests
5. VMS LAT - SET HOST/LAT tests
6. VMS Cluster - SHOW CLUSTER, SHOW DEVICE, and cluster COPY tests
7. Console boot into VMSCluster (>>>B XQAO)
8. Console DELQA Diagnostic (>>>TEST 82)
PDP11: 1. RT-11 v5.3 - FTPSB copy test
2. RSTS/E v10.1 - detects/enables device
------------------------------------------------------------------------------
Modification history:
20-Apr-11 MP Fixed missing information from save/restore which
caused operations to not complete correctly after
a restore until the OS reset the controller.
09-Dec-10 MP Added address conflict check during attach.
06-Dec-10 MP Fixed loopback processing to correctly handle forward packets.
29-Nov-10 MP Fixed interrupt dispatch issue which caused delivered packets
(in and out) to sometimes not interrupt the CPU after processing.
07-Mar-08 MP Fixed the SCP visibile SA registers to always display the
ROM mac address, even after it is changed by SET XQ MAC=.
07-Mar-08 MP Added changes so that the Console DELQA diagnostic (>>>TEST 82)
will succeed.
03-Mar-08 MP Added DELQA-T (aka DELQA Plus) device emulation support.
06-Feb-08 MP Added dropped frame statistics to record when the receiver discards
received packets due to the receiver being disabled, or due to the
XQ device's packet receive queue being full.
Fixed bug in receive processing when we're not polling. This could
cause receive processing to never be activated again if we don't
read all available packets via eth_read each time we get the
opportunity.
31-Jan-08 MP Added the ability to Coalesce received packet interrupts. This
is enabled by SET XQ POLL=DELAY=nnn where nnn is a number of
microseconds to delay the triggering of an interrupt when a packet
is received.
29-Jan-08 MP Added SET XQ POLL=DISABLE (aka SET XQ POLL=0) to operate without
polling for packet read completion.
29-Jan-08 MP Changed the sanity and id timer mechanisms to use a separate timer
unit so that transmit and recieve activities can be dealt with
by the normal xq_svc routine.
Dynamically determine the timer polling rate based on the
calibrated tmr_poll and clk_tps values of the simulator.
25-Jan-08 MP Enabled the SET XQ POLL to be meaningful if the simulator currently
doesn't support idling.
25-Jan-08 MP Changed xq_debug_setup to use sim_debug instead of printf so that
all debug output goes to the same place.
25-Jan-08 MP Restored the call to xq_svc after all successful calls to eth_write
to allow receive processing to happen before the next event
service time. This must have been inadvertently commented out
while other things were being tested.
23-Jan-08 MP Added debugging support to display packet headers and packet data
18-Jun-07 RMS Added UNIT_IDLE flag
29-Oct-06 RMS Synced poll and clock
27-Jan-06 RMS Fixed unaligned accesses in XQB (found by Doug Carman)
07-Jan-06 RMS Fixed unaligned access bugs (found by Doug Carman)
07-Sep-05 DTH Removed unused variable
16-Aug-05 RMS Fixed C++ declaration and cast problems
01-Dec-04 DTH Added runtime attach prompt
27-Feb-04 DTH Removed struct timeb deuggers
31-Jan-04 DTH Replaced #ifdef debuggers with inline debugging
19-Jan-04 DTH Combined service timers into one for efficiency
16-Jan-04 DTH Added more info to SHOW MOD commands, added SET/SHOW XQ DEBUG
13-Jan-04 DTH Corrected interrupt code with help from Tom Evans
06-Jan-04 DTH Added protection against changing mac and type if attached
05-Jan-04 DTH Moved most of xq_setmac to sim_ether
26-Dec-03 DTH Moved ethernet show and queue functions to sim_ether
03-Dec-03 DTH Added minimum name length to show xq eth
25-Nov-03 DTH Reworked interrupts to fix broken XQB implementation
19-Nov-03 MP Rearranged timer reset sequencing to allow for a device to be
disabled after it had been enabled.
17-Nov-03 DTH Standardized #include of timeb.h
28-Sep-03 MP - Fixed bug in xq_process_setup which would leave the
device in promiscuous or all multicast mode once it
ever had been there.
- Fixed output format in show_xq_sanity to end in "\n"
- Added display of All Multicast and promiscuous to
xq_show_filters
- The stuck in All Multicast or Promiscuous issue is
worse than previously thought. See comments in
xq_process_setup.
- Change xq_setmac to also allow ":" as a address
separator character, since sim_ether's eth_mac_fmt
formats them with this separator character.
- Changed xq_sw_reset to behave more like the set of
actions described in Table 3-6 of the DELQA manual.
The manual mentions "N/A" which I'm interpreting to
mean "Not Affected".
05-Jun-03 DTH Added receive packet splitting
03-Jun-03 DTH Added SHOW XQ FILTERS
02-Jun-03 DTH Added SET/SHOW XQ STATS (packet statistics), runt & giant processing
28-May-03 DTH Modified message queue for dynamic size to shrink executable
28-May-03 MP Fixed bug in xq_setmac
06-May-03 DTH Changed 32-bit t_addr to uint32 for v3.0
Removed SET ADDRESS functionality
05-May-03 DTH Added second controller
26-Mar-03 DTH Added PDP11 bootrom loader
Adjusted xq_ex and xq_dev to allow pdp11 to look at bootrom
Patched bootrom to allow "pass" of diagnostics on RSTS/E
06-Mar-03 DTH Corrected interrupts on IE state transition (code by Tom Evans)
Added interrupt clear on soft reset (first noted by Bob Supnik)
Removed interrupt when setting XL or RL (multiple people)
16-Jan-03 DTH Merged Mark Pizzolato's enhancements with main source
Corrected PDP11 XQ_DEBUG compilation
15-Jan-03 MP Fixed the number of units in the xq device structure.
13-Jan-03 MP Reworked the timer management logic which initiated
the system id broadcast messages. The original
implementation triggered this on the CSR transition
of Receiver Enabled. This was an issue since the
it seems that at least VMS's XQ driver makes this
transition often and the resulting overhead reduces
the simulated CPU instruction execution throughput by
about 40%. I start the system id timer on device
reset and it fires once a second so that it can
leverage the reasonably recalibrated tmr_poll value.
13-Jan-03 MP Changed the scheduling of xq_svc to leverage the
dynamically computed clock values to achieve an
approximate interval of 100 per second. This is
more than sufficient for normal system behaviour
expecially since we service receives with every
transmit. The previous fixed value of 2500
attempted to get 200/sec but it was a guess that
didn't adapt. On faster host systems (possibly
most of them) the 2500 number spends too much time
polling.
10-Jan-03 DTH Removed XQ_DEBUG dependency from Borland #pragmas
Added SET XQ BOOTROM command for PDP11s
07-Jan-03 DTH Added pointer to online manuals
02-Jan-03 DTH Added local packet processing
30-Dec-02 DTH Added automatic system id broadcast
27-Dec-02 DTH Merged Mark Pizzolato's enhancements with main source
20-Dec-02 MP Fix bug that caused VMS system crashes when attempting cluster
operations. Added additional conditionally compiled debug
info needed to track down the issue.
17-Dec-02 MP Added SIMH "registers" describing the Ethernet state
so this information can be recorded in a "saved" snapshot.
05-Dec-02 MP Adjusted the rtime value from 100 to 2500 which increased the
available CPU cycles for Instruction execution by almost 100%.
This made sense after the below enhancements which, in general
caused the draining of the received data stream much more
agressively with less overhead.
05-Dec-02 MP Added a call to xq_svc after all successful calls to eth_write
to allow receive processing to happen before the next event
service time.
05-Dec-02 MP Restructured the flow of processing in xq_svc so that eth_read
is called repeatedly until either a packet isn't found or
there is no room for another one in the queue. Once that has
been done, xq_process_rbdl is called to pass the queued packets
into the simulated system as space is available there.
xq_process_rbdl is also called at the beginning of xq_svc to
drain the queue into the simulated system, making more room
available in the queue. No processing is done at all in
xq_svc if the receiver is disabled.
04-Dec-02 MP Changed interface and usage to xq_insert_queue to pass
the packet to be inserted by reference. This avoids 3K bytes
of buffer copy operations for each packet received. Now only
copy actual received packet data.
31-Oct-02 DTH Cleaned up pointer warnings (found by Federico Schwindt)
Corrected unattached and no network behavior
Added message when SHOW XQ ETH finds no devices
23-Oct-02 DTH Beta 5 released
22-Oct-02 DTH Added all_multicast and promiscuous support
21-Oct-02 DTH Added write buffer max size check (code by Jason Thorpe)
Corrected copyright again
Implemented NXM testing and recovery
16-Oct-02 DTH Beta 4 released
Added and debugged Sanity Timer code
Corrected copyright
15-Oct-02 DTH Rollback to known good Beta3 and roll forward; TCP broken
12-Oct-02 DTH Fixed VAX network bootstrap; setup packets must return TDR > 0
11-Oct-02 DTH Added SET/SHOW XQ TYPE and SET/SHOW XQ SANITY commands
10-Oct-02 DTH Beta 3 released; Integrated with 2.10-0b1
Fixed off-by-1 bug on xq->setup.macs[7..13]
Added xq_make_checksum
Added rejection of multicast addresses in SET XQ MAC
08-Oct-02 DTH Beta 2 released; Integrated with 2.10-0p4
Added variable vector (fixes PDP11) and copyrights
03-Oct-02 DTH Beta version of xq/sim_ether released for SIMH 2.09-11
24-Sep-02 DTH Moved more code to Sim_Ether module, added SHOW ETH command
23-Sep-02 DTH Added SET/SHOW MAC command
22-Sep-02 DTH Multinet TCP/IP loaded, tests OK via SET HOST/TELNET
20-Sep-02 DTH Cleaned up code fragments, fixed non-DECNET MAC use
19-Sep-02 DTH DECNET finally stays up; successful SET HOST to another node
15-Sep-02 DTH Added ethernet packet read/write
13-Sep-02 DTH DECNET starts, but circuit keeps going up & down
26-Aug-02 DTH DECNET loaded, returns device timeout
22-Aug-02 DTH VMS 7.2 recognizes device as XQA0
18-Aug-02 DTH VAX sees device as XQA0; shows hardcoded MAC correctly
15-Aug-02 DTH Started XQ simulation
------------------------------------------------------------------------------
*/
#include <assert.h>
#include "pdp11_xq.h"
#include "pdp11_xq_bootrom.h"
extern int32 tmxr_poll;
extern int32 tmr_poll, clk_tps;
extern char* read_line (char *ptr, int32 size, FILE *stream);
/* forward declarations */
t_stat xq_rd(int32* data, int32 PA, int32 access);
t_stat xq_wr(int32 data, int32 PA, int32 access);
t_stat xq_svc(UNIT * uptr);
t_stat xq_tmrsvc(UNIT * uptr);
t_stat xq_startsvc(UNIT * uptr);
t_stat xq_receivesvc(UNIT * uptr);
t_stat xq_srqrsvc(UNIT * uptr);
t_stat xq_reset (DEVICE * dptr);
t_stat xq_attach (UNIT * uptr, CONST char * cptr);
t_stat xq_detach (UNIT * uptr);
t_stat xq_showmac (FILE* st, UNIT* uptr, int32 val, CONST void* desc);
t_stat xq_setmac (UNIT* uptr, int32 val, CONST char* cptr, void* desc);
t_stat xq_show_filters (FILE* st, UNIT* uptr, int32 val, CONST void* desc);
t_stat xq_show_stats (FILE* st, UNIT* uptr, int32 val, CONST void* desc);
t_stat xq_set_stats (UNIT* uptr, int32 val, CONST char* cptr, void* desc);
t_stat xq_show_type (FILE* st, UNIT* uptr, int32 val, CONST void* desc);
t_stat xq_set_type (UNIT* uptr, int32 val, CONST char* cptr, void* desc);
t_stat xq_show_sanity (FILE* st, UNIT* uptr, int32 val, CONST void* desc);
t_stat xq_set_sanity (UNIT* uptr, int32 val, CONST char* cptr, void* desc);
t_stat xq_show_throttle (FILE* st, UNIT* uptr, int32 val, CONST void* desc);
t_stat xq_set_throttle (UNIT* uptr, int32 val, CONST char* cptr, void* desc);
t_stat xq_show_lockmode (FILE* st, UNIT* uptr, int32 val, CONST void* desc);
t_stat xq_set_lockmode (UNIT* uptr, int32 val, CONST char* cptr, void* desc);
t_stat xq_show_poll (FILE* st, UNIT* uptr, int32 val, CONST void* desc);
t_stat xq_set_poll (UNIT* uptr, int32 val, CONST char* cptr, void* desc);
t_stat xq_show_leds (FILE* st, UNIT* uptr, int32 val, CONST void* desc);
t_stat xq_process_xbdl(CTLR* xq);
t_stat xq_dispatch_xbdl(CTLR* xq);
t_stat xq_process_turbo_rbdl(CTLR* xq);
t_stat xq_process_turbo_xbdl(CTLR* xq);
void xq_start_receiver(CTLR* xq);
void xq_stop_receiver(CTLR* xq);
void xq_sw_reset(CTLR* xq);
t_stat xq_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat xq_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
void xq_reset_santmr(CTLR* xq);
t_stat xq_boot_host(CTLR* xq);
t_stat xq_system_id(CTLR* xq, const ETH_MAC dst, uint16 receipt_id);
void xqa_read_callback(int status);
void xqb_read_callback(int status);
void xqa_write_callback(int status);
void xqb_write_callback(int status);
void xq_setint (CTLR* xq);
void xq_clrint (CTLR* xq);
int32 xq_int (void);
void xq_csr_set_clr(CTLR* xq, uint16 set_bits, uint16 clear_bits);
void xq_show_debug_bdl(CTLR* xq, uint32 bdl_ba);
t_stat xq_boot (int32 unitno, DEVICE *dptr);
t_stat xq_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr);
const char *xq_description (DEVICE *dptr);
struct xq_device xqa = {
xqa_read_callback, /* read callback routine */
xqa_write_callback, /* write callback routine */
{0x08, 0x00, 0x2B, 0xAA, 0xBB, 0xCC}, /* mac */
XQ_T_DELQA_PLUS, /* type */
XQ_T_DELQA, /* mode */
XQ_SERVICE_INTERVAL, /* poll */
0, 0, /* coalesce */
{0}, /* sanity */
0, /* DEQNA-Lock mode */
ETH_THROT_DEFAULT_TIME, /* ms throttle window */
ETH_THROT_DEFAULT_BURST, /* packet packet burst in throttle window */
ETH_THROT_DISABLED_DELAY, /* throttle disabled */
XQ_STARTUP_DELAY /* instructions to delay when starting the receiver */
};
struct xq_device xqb = {
xqb_read_callback, /* read callback routine */
xqb_write_callback, /* write callback routine */
{0x08, 0x00, 0x2B, 0xBB, 0xCC, 0xDD}, /* mac */
XQ_T_DELQA_PLUS, /* type */
XQ_T_DELQA, /* mode */
XQ_SERVICE_INTERVAL, /* poll */
0, 0, /* coalesce */
{0}, /* sanity */
0, /* DEQNA-Lock mode */
ETH_THROT_DEFAULT_TIME, /* ms throttle window */
ETH_THROT_DEFAULT_BURST, /* packet packet burst in throttle window */
ETH_THROT_DISABLED_DELAY, /* throttle disabled */
XQ_STARTUP_DELAY /* instructions to delay when starting the receiver */
};
/* SIMH device structures */
#define IOLN_XQ 020
DIB xqa_dib = { IOBA_AUTO, IOLN_XQ, &xq_rd, &xq_wr,
1, IVCL (XQ), 0, { &xq_int }, IOLN_XQ };
UNIT xqa_unit[] = {
{ UDATA (&xq_svc, UNIT_IDLE|UNIT_ATTABLE, 2047) }, /* receive timer */
{ UDATA (&xq_tmrsvc, UNIT_IDLE|UNIT_DIS, 0) },
{ UDATA (&xq_startsvc, UNIT_DIS, 0) },
{ UDATA (&xq_receivesvc, UNIT_DIS, 0) },
{ UDATA (&xq_srqrsvc, UNIT_DIS, 0) },
};
BITFIELD xq_csr_bits[] = {
BIT(RE), BIT(SR), BIT(NI), BIT(BD), BIT(XL), BIT(RL), BIT(IE), BIT(XI),
BIT(IL), BIT(EL), BIT(SE), BIT(RR), BIT(OK), BIT(CA), BIT(PE), BIT(RI),
ENDBITS
};
BITFIELD xq_var_bits[] = {
BIT(ID), BIT(RR), BIT(V0), BIT(V1), BIT(V2), BIT(V3), BIT(V4), BIT(V5),
BIT(V6), BIT(V7), BIT(S1), BIT(S2), BIT(S3), BIT(RS), BIT(OS), BIT(MS),
ENDBITS
};
BITFIELD xq_srr_bits[] = {
BIT(RS0), BIT(RS1), BITNC, BITNC, BITNC, BITNC, BITNC, BITNC,
BITNC, BIT(TBL), BIT(IME), BIT(PAR), BIT(NXM), BITNC, BIT(CHN), BIT(FES),
ENDBITS
};
REG xqa_reg[] = {
{ GRDATA ( SA0, xqa.mac[0], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATA ( SA1, xqa.mac[1], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATA ( SA2, xqa.mac[2], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATA ( SA3, xqa.mac[3], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATA ( SA4, xqa.mac[4], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATA ( SA5, xqa.mac[5], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATA ( MX0, xqa.mac_checksum[0], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATA ( MX1, xqa.mac_checksum[1], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATAD ( RBDL, xqa.rbdl[0], XQ_RDX, 16, 0, "Receive BDL Address(low)"), REG_FIT },
{ GRDATAD ( RBDH, xqa.rbdl[1], XQ_RDX, 16, 0, "Receive BDL Address(high)"), REG_FIT },
{ GRDATAD ( XBDL, xqa.xbdl[0], XQ_RDX, 16, 0, "Transmit BDL Address(low)"), REG_FIT },
{ GRDATAD ( XBDH, xqa.xbdl[1], XQ_RDX, 16, 0, "Transmit BDL Address(high)"), REG_FIT },
{ GRDATADF ( VAR, xqa.var, XQ_RDX, 16, 0, "Vector Address Register ", xq_var_bits), REG_FIT },
{ GRDATADF ( CSR, xqa.csr, XQ_RDX, 16, 0, "Control and Status Register", xq_csr_bits), REG_FIT },
{ FLDATA ( INT, xqa.irq, 0) },
{ GRDATA ( TYPE, xqa.type, XQ_RDX, 32, 0), REG_FIT },
{ GRDATA ( MODE, xqa.mode, XQ_RDX, 32, 0), REG_FIT },
{ GRDATA ( POLL, xqa.poll, XQ_RDX, 16, 0), REG_HRO},
{ GRDATA ( CLAT, xqa.coalesce_latency, XQ_RDX, 16, 0), REG_HRO},
{ GRDATA ( CLATT, xqa.coalesce_latency_ticks, XQ_RDX, 16, 0), REG_HRO},
{ GRDATA ( RBDL_BA, xqa.rbdl_ba, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( XBDL_BA, xqa.xbdl_ba, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SETUP_PRM, xqa.setup.promiscuous, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SETUP_MLT, xqa.setup.multicast, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SETUP_L1, xqa.setup.l1, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SETUP_L2, xqa.setup.l2, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SETUP_L3, xqa.setup.l3, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SETUP_SAN, xqa.setup.sanity_timer, XQ_RDX, 32, 0), REG_HRO},
{ BRDATA ( SETUP_MACS, &xqa.setup.macs, XQ_RDX, 8, sizeof(xqa.setup.macs)), REG_HRO},
{ BRDATA ( STATS, &xqa.stats, XQ_RDX, 8, sizeof(xqa.stats)), REG_HRO},
{ BRDATA ( TURBO_INIT, &xqa.init, XQ_RDX, 8, sizeof(xqa.init)), REG_HRO},
{ GRDATADF ( SRR, xqa.srr, XQ_RDX, 16, 0, "Status and Response Register", xq_srr_bits), REG_FIT },
{ GRDATAD ( SRQR, xqa.srqr, XQ_RDX, 16, 0, "Synchronous Request Register"), REG_FIT },
{ GRDATAD ( IBA, xqa.iba, XQ_RDX, 32, 0, "Init Block Address Register"), REG_FIT },
{ GRDATAD ( ICR, xqa.icr, XQ_RDX, 16, 0, "Interrupt Request Register"), REG_FIT },
{ GRDATA ( IPEND, xqa.pending_interrupt, XQ_RDX, 16, 0), REG_FIT },
{ GRDATA ( TBINDX, xqa.tbindx, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( RBINDX, xqa.rbindx, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( IDTMR, xqa.idtmr, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( VECTOR, xqa_dib.vec, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( MUST_POLL, xqa.must_poll, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SANT_ENAB, xqa.sanity.enabled, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SANT_QSECS, xqa.sanity.quarter_secs, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SANT_TIMR, xqa.sanity.timer, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( LOCKMODE, xqa.lockmode, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( THR_TIME, xqa.throttle_time, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( THR_BURST, xqa.throttle_burst, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( THR_DELAY, xqa.throttle_delay, XQ_RDX, 32, 0), REG_HRO},
{ GRDATAD ( START_DELAY, xqa.startup_delay, XQ_RDX, 32, 0, "instruction delay before receiver starts"), REG_FIT },
{ NULL },
};
DIB xqb_dib = { IOBA_AUTO, IOLN_XQ, &xq_rd, &xq_wr,
1, IVCL (XQ), 0, { &xq_int }, IOLN_XQ };
UNIT xqb_unit[] = {
{ UDATA (&xq_svc, UNIT_IDLE|UNIT_ATTABLE, 2047) }, /* receive timer */
{ UDATA (&xq_tmrsvc, UNIT_IDLE|UNIT_DIS, 0) },
{ UDATA (&xq_startsvc, UNIT_DIS, 0) },
{ UDATA (&xq_receivesvc, UNIT_DIS, 0) },
{ UDATA (&xq_srqrsvc, UNIT_DIS, 0) },
};
REG xqb_reg[] = {
{ GRDATA ( SA0, xqb.mac[0], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATA ( SA1, xqb.mac[1], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATA ( SA2, xqb.mac[2], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATA ( SA3, xqb.mac[3], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATA ( SA4, xqb.mac[4], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATA ( SA5, xqb.mac[5], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATA ( MX0, xqb.mac_checksum[0], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATA ( MX1, xqb.mac_checksum[1], XQ_RDX, 8, 0), REG_RO|REG_FIT},
{ GRDATAD ( RBDL, xqb.rbdl[0], XQ_RDX, 16, 0, "Receive BDL Address(low)"), REG_FIT },
{ GRDATAD ( RBDH, xqb.rbdl[1], XQ_RDX, 16, 0, "Receive BDL Address(high)"), REG_FIT },
{ GRDATAD ( XBDL, xqb.xbdl[0], XQ_RDX, 16, 0, "Transmit BDL Address(low)"), REG_FIT },
{ GRDATAD ( XBDH, xqb.xbdl[1], XQ_RDX, 16, 0, "Transmit BDL Address(high)"), REG_FIT },
{ GRDATADF ( VAR, xqb.var, XQ_RDX, 16, 0, "Vector Address Register", xq_var_bits), REG_FIT },
{ GRDATADF ( CSR, xqb.csr, XQ_RDX, 16, 0, "Control and Status Register", xq_csr_bits), REG_FIT },
{ FLDATA ( INT, xqb.irq, 0) },
{ GRDATA ( TYPE, xqb.type, XQ_RDX, 32, 0), REG_FIT },
{ GRDATA ( MODE, xqb.mode, XQ_RDX, 32, 0), REG_FIT },
{ GRDATA ( POLL, xqb.poll, XQ_RDX, 16, 0), REG_HRO},
{ GRDATA ( CLAT, xqb.coalesce_latency, XQ_RDX, 16, 0), REG_HRO},
{ GRDATA ( CLATT, xqb.coalesce_latency_ticks, XQ_RDX, 16, 0), REG_HRO},
{ GRDATA ( RBDL_BA, xqb.rbdl_ba, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( XBDL_BA, xqb.xbdl_ba, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SETUP_PRM, xqb.setup.promiscuous, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SETUP_MLT, xqb.setup.multicast, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SETUP_L1, xqb.setup.l1, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SETUP_L2, xqb.setup.l2, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SETUP_L3, xqb.setup.l3, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SETUP_SAN, xqb.setup.sanity_timer, XQ_RDX, 32, 0), REG_HRO},
{ BRDATA ( SETUP_MACS, &xqb.setup.macs, XQ_RDX, 8, sizeof(xqb.setup.macs)), REG_HRO},
{ BRDATA ( STATS, &xqb.stats, XQ_RDX, 8, sizeof(xqb.stats)), REG_HRO},
{ BRDATA ( TURBO_INIT, &xqb.init, XQ_RDX, 8, sizeof(xqb.init)), REG_HRO},
{ GRDATADF ( SRR, xqb.srr, XQ_RDX, 16, 0, "Status and Response Register", xq_srr_bits), REG_FIT },
{ GRDATAD ( SRQR, xqb.srqr, XQ_RDX, 16, 0, "Synchronous Request Register"), REG_FIT },
{ GRDATAD ( IBA, xqb.iba, XQ_RDX, 32, 0, "Init Block Address Register"), REG_FIT },
{ GRDATAD ( ICR, xqb.icr, XQ_RDX, 16, 0, "Interrupt Request Register"), REG_FIT },
{ GRDATA ( IPEND, xqb.pending_interrupt, XQ_RDX, 16, 0), REG_FIT },
{ GRDATA ( TBINDX, xqb.tbindx, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( RBINDX, xqb.rbindx, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( IDTMR, xqb.idtmr, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( VECTOR, xqb_dib.vec, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( MUST_POLL, xqb.must_poll, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SANT_ENAB, xqb.sanity.enabled, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SANT_QSECS, xqb.sanity.quarter_secs, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( SANT_TIMR, xqb.sanity.timer, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( LOCKMODE, xqb.lockmode, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( THR_TIME, xqb.throttle_time, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( THR_BURST, xqb.throttle_burst, XQ_RDX, 32, 0), REG_HRO},
{ GRDATA ( THR_DELAY, xqb.throttle_delay, XQ_RDX, 32, 0), REG_HRO},
{ GRDATAD ( START_DELAY, xqb.startup_delay, XQ_RDX, 32, 0, "instruction delay before receiver starts"), REG_FIT },
{ NULL },
};
MTAB xq_mod[] = {
{ MTAB_XTD|MTAB_VDV, 0, "ADDRESS", NULL,
NULL, &show_addr, NULL, "Qbus address" },
{ MTAB_XTD|MTAB_VDV, 0, "VECTOR", NULL,
NULL, &show_vec, NULL, "Interrupt vector" },
{ MTAB_XTD|MTAB_VDV|MTAB_VALR|MTAB_NC, 0, "MAC", "MAC=xx:xx:xx:xx:xx:xx",
&xq_setmac, &xq_showmac, NULL, "MAC address" },
{ MTAB_XTD|MTAB_VDV|MTAB_NMO, 0, "ETH", NULL,
NULL, &eth_show, NULL, "Display attachable devices" },
{ MTAB_XTD|MTAB_VDV|MTAB_NMO, 0, "FILTERS", NULL,
NULL, &xq_show_filters, NULL, "Display address filters" },
{ MTAB_XTD|MTAB_VDV|MTAB_NMO, 0, "STATS", "STATS",
&xq_set_stats, &xq_show_stats, NULL, "Display or reset statistics" },
{ MTAB_XTD|MTAB_VDV|MTAB_VALR, 0, "TYPE", "TYPE={DEQNA|DELQA|DELQA-T}",
&xq_set_type, &xq_show_type, NULL, "Display current device type being simulated" },
#ifdef USE_READER_THREAD
{ MTAB_XTD|MTAB_VDV|MTAB_VALR, 0, "POLL", "POLL={DEFAULT|DISABLED|4..2500|DELAY=nnn}",
&xq_set_poll, &xq_show_poll, NULL, "Display the current polling mode" },
#else
{ MTAB_XTD|MTAB_VDV, 0, "POLL", "POLL={DEFAULT|DISABLED|4..2500}",
&xq_set_poll, &xq_show_poll, NULL, "Display the current polling mode" },
#endif
{ MTAB_XTD|MTAB_VDV|MTAB_VALR, 0, "SANITY", "SANITY={ON|OFF}",
&xq_set_sanity, &xq_show_sanity, NULL, "Sanity timer" },
{ MTAB_XTD|MTAB_VDV|MTAB_VALR, 0, "THROTTLE", "THROTTLE=DISABLED|TIME=n{;BURST=n{;DELAY=n}}",
&xq_set_throttle, &xq_show_throttle, NULL, "Display transmit throttle configuration" },
{ MTAB_XTD|MTAB_VDV|MTAB_VALR, 0, "DEQNALOCK", "DEQNALOCK={ON|OFF}",
&xq_set_lockmode, &xq_show_lockmode, NULL, "DEQNA-Lock mode" },
{ MTAB_XTD|MTAB_VDV, 0, "LEDS", NULL,
NULL, &xq_show_leds, NULL, "Display status LEDs" },
{ 0 },
};
DEBTAB xq_debug[] = {
{"TRACE", DBG_TRC, "trace routine calls"},
{"CSR", DBG_CSR, "watch CSR"},
{"VAR", DBG_VAR, "watch VAR"},
{"WARN", DBG_WRN, "display warnings"},
{"RBDL", DBG_RBL, "display RBDL warnings"},
{"XBDL", DBG_XBL, "display XBDL warnings"},
{"SETUP", DBG_SET, "display setup info"},
{"SANITY", DBG_SAN, "display sanity timer info"},
{"REG", DBG_REG, "trace read/write registers"},
{"PACKET", DBG_PCK, "display packet headers"},
{"DATA", DBG_DAT, "display packet data"},
{"ETH", DBG_ETH, "debug ethernet device"},
{0}
};
DEVICE xq_dev = {
"XQ", xqa_unit, xqa_reg, xq_mod,
5, XQ_RDX, 11, 1, XQ_RDX, 16,
&xq_ex, &xq_dep, &xq_reset,
&xq_boot, &xq_attach, &xq_detach,
&xqa_dib, DEV_DISABLE | DEV_QBUS | DEV_DEBUG | DEV_ETHER,
0, xq_debug, NULL, NULL, &xq_help, NULL, NULL,
&xq_description
};
DEVICE xqb_dev = {
"XQB", xqb_unit, xqb_reg, xq_mod,
5, XQ_RDX, 11, 1, XQ_RDX, 16,
&xq_ex, &xq_dep, &xq_reset,
&xq_boot, &xq_attach, &xq_detach,
&xqb_dib, DEV_DISABLE | DEV_DIS | DEV_QBUS | DEV_DEBUG | DEV_ETHER,
0, xq_debug, NULL, NULL, NULL, NULL, NULL,
&xq_description
};
CTLR xq_ctrl[] = {
{&xq_dev, xqa_unit, &xqa_dib, &xqa}, /* XQA controller */
{&xqb_dev, xqb_unit, &xqb_dib, &xqb} /* XQB controller */
};
const char* const xq_recv_regnames[] = {
"MAC0", "MAC1", "MAC2", "MAC3", "MAC4", "MAC5", "VAR", "CSR"
};
const char* const xqt_recv_regnames[] = {
"MAC0", "MAC1", "MAC2", "MAC3", "MAC4", "MAC5", "SRR", ""
};
const char* const xq_xmit_regnames[] = {
"XCR0", "XCR1", "RBDL-Lo", "RBDL-Hi", "XBDL-Lo", "XBDL-Hi", "VAR", "CSR"
};
const char* const xqt_xmit_regnames[] = {
"IBAL", "IBAH", "ICR", "", "SRQR", "", "", "ARQR"
};
/* internal debugging routines */
void xq_debug_setup(CTLR* xq);
void xq_debug_turbo_setup(CTLR* xq);
/*============================================================================*/
/* Multicontroller support */
CTLR* xq_unit2ctlr(UNIT* uptr)
{
unsigned int i,j;
for (i=0; i<XQ_MAX_CONTROLLERS; i++)
for (j=0; j<xq_ctrl[i].dev->numunits; j++)
if (&xq_ctrl[i].unit[j] == uptr)
return &xq_ctrl[i];
/* not found */
return 0;
}
CTLR* xq_dev2ctlr(DEVICE* dptr)
{
int i;
for (i=0; i<XQ_MAX_CONTROLLERS; i++)
if (xq_ctrl[i].dev == dptr)
return &xq_ctrl[i];
/* not found */
return 0;
}
CTLR* xq_pa2ctlr(uint32 PA)
{
int i;
for (i=0; i<XQ_MAX_CONTROLLERS; i++)
if ((PA >= xq_ctrl[i].dib->ba) && (PA < (xq_ctrl[i].dib->ba + xq_ctrl[i].dib->lnt)))
return &xq_ctrl[i];
/* not found */
return 0;
}
/*============================================================================*/
/* stop simh from reading non-existant unit data stream */
t_stat xq_ex (t_value* vptr, t_addr addr, UNIT* uptr, int32 sw)
{
/* on PDP-11, allow EX command to look at bootrom */
CTLR* xq = xq_unit2ctlr(uptr);
uint16 *bootrom = NULL;
if (xq->var->type == XQ_T_DEQNA)
bootrom = xq_bootrom_deqna;
else
if (xq->var->type == XQ_T_DELQA)
bootrom = xq_bootrom_delqa;
else
if (xq->var->type == XQ_T_DELQA_PLUS)
bootrom = xq_bootrom_delqat;
if ((bootrom) && (addr < sizeof(xq_bootrom_delqa)/2))
*vptr = bootrom[addr];
else
*vptr = 0;
return SCPE_OK;
}
/* stop simh from writing non-existant unit data stream */
t_stat xq_dep (t_value val, t_addr addr, UNIT* uptr, int32 sw)
{
return SCPE_NOFNC;
}
t_stat xq_showmac (FILE* st, UNIT* uptr, int32 val, CONST void* desc)
{
CTLR* xq = xq_unit2ctlr(uptr);
char buffer[20];
eth_mac_fmt((ETH_MAC*)xq->var->mac, buffer);
fprintf(st, "MAC=%s", buffer);
return SCPE_OK;
}
void xq_make_checksum(CTLR* xq)
{
/* checksum calculation routine detailed in vaxboot.zip/xqbtdrivr.mar */
uint32 checksum = 0;
const uint32 wmask = 0xFFFF;
size_t i;
for (i = 0; i < sizeof(ETH_MAC); i += 2) {
checksum <<= 1;
if (checksum > wmask)
checksum -= wmask;
checksum += (xq->var->mac[i] << 8) | xq->var->mac[i+1];
if (checksum > wmask)
checksum -= wmask;
}
if (checksum == wmask)
checksum = 0;
/* set checksum bytes */
xq->var->mac_checksum[0] = (uint8)(checksum);
xq->var->mac_checksum[1] = (uint8)(checksum >> 8);
}
t_stat xq_setmac (UNIT* uptr, int32 val, CONST char* cptr, void* desc)
{
t_stat status;
CTLR* xq = xq_unit2ctlr(uptr);
if (!cptr) return SCPE_IERR;
if (uptr->flags & UNIT_ATT) return SCPE_ALATT;
status = eth_mac_scan_ex(&xq->var->mac, cptr, uptr);
if (status != SCPE_OK)
return status;
/* calculate mac checksum */
xq_make_checksum(xq);
return SCPE_OK;
}
t_stat xq_set_stats (UNIT* uptr, int32 val, CONST char* cptr, void* desc)
{
/* this sets all ints in the stats structure to the integer passed */
CTLR* xq = xq_unit2ctlr(uptr);
if (cptr) {
/* set individual stats to passed parameter value */
int init = atoi(cptr);
int* stat_array = (int*) &xq->var->stats;
int elements = sizeof(struct xq_stats)/sizeof(int);
int i;
for (i=0; i<elements; i++)
stat_array[i] = init;
} else {
/* set stats to zero */
memset(&xq->var->stats, 0, sizeof(struct xq_stats));
}
return SCPE_OK;
}
t_stat xq_show_stats (FILE* st, UNIT* uptr, int32 val, CONST void* desc)
{
const char* fmt = " %-15s%d\n";
CTLR* xq = xq_unit2ctlr(uptr);
fprintf(st, "XQ Ethernet statistics:\n");
fprintf(st, fmt, "Recv:", xq->var->stats.recv);
fprintf(st, fmt, "Dropped:", xq->var->stats.dropped + xq->var->ReadQ.loss);
fprintf(st, fmt, "Xmit:", xq->var->stats.xmit);
fprintf(st, fmt, "Xmit Fail:", xq->var->stats.fail);
fprintf(st, fmt, "Runts:", xq->var->stats.runt);
fprintf(st, fmt, "Oversize:", xq->var->stats.giant);
fprintf(st, fmt, "SW Reset:", xq->var->stats.reset);
fprintf(st, fmt, "Setup:", xq->var->stats.setup);
fprintf(st, fmt, "Loopback:", xq->var->stats.loop);
fprintf(st, fmt, "Recv Overrun:",xq->var->stats.recv_overrun);
fprintf(st, fmt, "ReadQ count:", xq->var->ReadQ.count);
fprintf(st, fmt, "ReadQ high:", xq->var->ReadQ.high);
eth_show_dev(st, xq->var->etherface);
return SCPE_OK;
}
t_stat xq_show_filters (FILE* st, UNIT* uptr, int32 val, CONST void* desc)
{
CTLR* xq = xq_unit2ctlr(uptr);
char buffer[20];
size_t i;
if (xq->var->mode == XQ_T_DELQA_PLUS) {
eth_mac_fmt(&xq->var->init.phys, buffer);
fprintf(st, "Physical Address=%s\n", buffer);
if (xq->var->etherface->hash_filter) {
fprintf(st, "Multicast Hash: ");
for (i=0; i<sizeof(xq->var->etherface->hash); ++i)
fprintf(st, "%02X ", xq->var->etherface->hash[i]);
fprintf(st, "\n");
}
if (xq->var->init.mode & XQ_IN_MO_PRO)
fprintf(st, "Promiscuous Receive Mode\n");
} else {
fprintf(st, "Filters:\n");
for (i=0; i<XQ_FILTER_MAX; i++) {
eth_mac_fmt((ETH_MAC*)xq->var->setup.macs[i], buffer);
fprintf(st, " [%2d]: %s\n", (int)i, buffer);
}
if (xq->var->setup.multicast)
fprintf(st, "All Multicast Receive Mode\n");
if (xq->var->setup.promiscuous)
fprintf(st, "Promiscuous Receive Mode\n");
}
return SCPE_OK;
}
t_stat xq_show_type (FILE* st, UNIT* uptr, int32 val, CONST void* desc)
{
CTLR* xq = xq_unit2ctlr(uptr);
fprintf(st, "type=");
switch (xq->var->type) {
case XQ_T_DEQNA: fprintf(st, "DEQNA"); break;
case XQ_T_DELQA: fprintf(st, "DELQA"); break;
case XQ_T_DELQA_PLUS: fprintf(st, "DELQA-T"); break;
}
if (xq->var->type != xq->var->mode) {
fprintf(st, ", mode=");
switch (xq->var->mode) {
case XQ_T_DEQNA: fprintf(st, "DEQNA"); break;
case XQ_T_DELQA: fprintf(st, "DELQA"); break;
case XQ_T_DELQA_PLUS: fprintf(st, "DELQA-T"); break;
}
}
return SCPE_OK;
}
t_stat xq_set_type (UNIT* uptr, int32 val, CONST char* cptr, void* desc)
{
CTLR* xq = xq_unit2ctlr(uptr);
if (!cptr) return SCPE_IERR;
if (uptr->flags & UNIT_ATT) return SCPE_ALATT;
/* this assumes that the parameter has already been upcased */
if (!strcmp(cptr, "DEQNA")) xq->var->type = XQ_T_DEQNA;
else if (!strcmp(cptr, "DELQA")) xq->var->type = XQ_T_DELQA;
else if (!strcmp(cptr, "DELQA-T")) xq->var->type = XQ_T_DELQA_PLUS;
else return SCPE_ARG;
xq->var->mode = XQ_T_DELQA;
if (xq->var->type == XQ_T_DEQNA)
xq->var->mode = XQ_T_DEQNA;
return SCPE_OK;
}
t_stat xq_show_poll (FILE* st, UNIT* uptr, int32 val, CONST void* desc)
{
CTLR* xq = xq_unit2ctlr(uptr);
if (xq->var->poll)
fprintf(st, "poll=%d", xq->var->poll);
else {
fprintf(st, "polling=disabled");
if (xq->var->coalesce_latency)
fprintf(st, ",latency=%d", xq->var->coalesce_latency);
}
return SCPE_OK;
}
t_stat xq_set_poll (UNIT* uptr, int32 val, CONST char* cptr, void* desc)
{
CTLR* xq = xq_unit2ctlr(uptr);
if (!cptr) return SCPE_IERR;
if (uptr->flags & UNIT_ATT) return SCPE_ALATT;
/* this assumes that the parameter has already been upcased */
if (!strcmp(cptr, "DEFAULT"))
xq->var->poll = XQ_SERVICE_INTERVAL;
else if ((!strcmp(cptr, "DISABLED")) || (!strncmp(cptr, "DELAY=", 6))) {
xq->var->poll = 0;
if (!strncmp(cptr, "DELAY=", 6)) {
int delay = 0;
if (1 != sscanf(cptr+6, "%d", &delay))
return SCPE_ARG;
xq->var->coalesce_latency = delay;
xq->var->coalesce_latency_ticks = (tmr_poll * clk_tps * xq->var->coalesce_latency) / 1000000;
}
}
else {
int newpoll = 0;
if (1 != sscanf(cptr, "%d", &newpoll))
return SCPE_ARG;
if ((newpoll == 0) ||
((!sim_idle_enab) && (newpoll >= 4) && (newpoll <= 2500)))
xq->var->poll = newpoll;
else
return SCPE_ARG;
}
return SCPE_OK;
}
t_stat xq_show_sanity (FILE* st, UNIT* uptr, int32 val, CONST void* desc)
{
CTLR* xq = xq_unit2ctlr(uptr);
fprintf(st, "sanity=%s", (xq->var->sanity.enabled & XQ_SAN_HW_SW) ? "ON" : "OFF");
return SCPE_OK;
}
t_stat xq_set_sanity (UNIT* uptr, int32 val, CONST char* cptr, void* desc)
{
CTLR* xq = xq_unit2ctlr(uptr);
if (!cptr) return SCPE_IERR;
if (uptr->flags & UNIT_ATT) return SCPE_ALATT;
/* this assumes that the parameter has already been upcased */
if (!strcmp(cptr, "ON")) xq->var->sanity.enabled = XQ_SAN_HW_SW;
else if (!strcmp(cptr, "OFF")) xq->var->sanity.enabled = 0;
else return SCPE_ARG;
return SCPE_OK;
}
t_stat xq_show_throttle (FILE* st, UNIT* uptr, int32 val, CONST void* desc)
{
CTLR* xq = xq_unit2ctlr(uptr);
if (xq->var->throttle_delay == ETH_THROT_DISABLED_DELAY)
fprintf(st, "throttle=disabled");
else
fprintf(st, "throttle=time=%d;burst=%d;delay=%d", xq->var->throttle_time, xq->var->throttle_burst, xq->var->throttle_delay);
return SCPE_OK;
}
t_stat xq_set_throttle (UNIT* uptr, int32 val, CONST char* cptr, void* desc)
{
CTLR* xq = xq_unit2ctlr(uptr);
char tbuf[CBUFSIZE], gbuf[CBUFSIZE];
const char *tptr = cptr;
uint32 newval;
uint32 set_time = xq->var->throttle_time;
uint32 set_burst = xq->var->throttle_burst;
uint32 set_delay = xq->var->throttle_delay;
t_stat r = SCPE_OK;
if (!cptr) {
xq->var->throttle_delay = ETH_THROT_DEFAULT_DELAY;
eth_set_throttle (xq->var->etherface, xq->var->throttle_time, xq->var->throttle_burst, xq->var->throttle_delay);
return SCPE_OK;
}
/* this assumes that the parameter has already been upcased */
if ((!strcmp (cptr, "ON")) ||
(!strcmp (cptr, "ENABLED")))
xq->var->throttle_delay = ETH_THROT_DEFAULT_DELAY;
else
if ((!strcmp (cptr, "OFF")) ||
(!strcmp (cptr, "DISABLED")))
xq->var->throttle_delay = ETH_THROT_DISABLED_DELAY;
else {
if (set_delay == ETH_THROT_DISABLED_DELAY)
set_delay = ETH_THROT_DEFAULT_DELAY;
while (*tptr) {
tptr = get_glyph_nc (tptr, tbuf, ';');
cptr = tbuf;
cptr = get_glyph (cptr, gbuf, '=');
if ((NULL == cptr) || ('\0' == *cptr))
return SCPE_ARG;
newval = (uint32)get_uint (cptr, 10, 100, &r);
if (r != SCPE_OK)
return SCPE_ARG;
if (!MATCH_CMD(gbuf, "TIME")) {
set_time = newval;
}
else
if (!MATCH_CMD(gbuf, "BURST")) {
if (newval > 30)
return SCPE_ARG;
set_burst = newval;
}
else
if (!MATCH_CMD(gbuf, "DELAY")) {
set_delay = newval;
}
else
return SCPE_ARG;
}
xq->var->throttle_time = set_time;
xq->var->throttle_burst = set_burst;
xq->var->throttle_delay = set_delay;
}
eth_set_throttle (xq->var->etherface, xq->var->throttle_time, xq->var->throttle_burst, xq->var->throttle_delay);
return SCPE_OK;
}
t_stat xq_show_lockmode (FILE* st, UNIT* uptr, int32 val, CONST void* desc)
{
CTLR* xq = xq_unit2ctlr(uptr);
if (xq->var->type == XQ_T_DEQNA) return SCPE_NOFNC;
fprintf(st, "DEQNALock=%s", (xq->var->lockmode) ? "ON" : "OFF");
return SCPE_OK;
}
t_stat xq_set_lockmode (UNIT* uptr, int32 val, CONST char* cptr, void* desc)
{
CTLR* xq = xq_unit2ctlr(uptr);
if (!cptr) return SCPE_IERR;
if (uptr->flags & UNIT_ATT) return SCPE_ALATT;
if (xq->var->type == XQ_T_DEQNA) return SCPE_NOFNC;
/* this assumes that the parameter has already been upcased */
if (!strcmp(cptr, "ON")) xq->var->lockmode = 1;
else if (!strcmp(cptr, "OFF")) xq->var->lockmode = 0;
else return SCPE_ARG;
xq->var->mode = (xq->var->lockmode ? XQ_T_DEQNA : XQ_T_DELQA);
return SCPE_OK;
}
t_stat xq_show_leds (FILE* st, UNIT* uptr, int32 val, CONST void* desc)
{
CTLR* xq = xq_unit2ctlr(uptr);
fprintf(st, "leds=(%s,%s,%s)", xq->var->setup.l1 ? "ON" : "OFF",
xq->var->setup.l2 ? "ON" : "OFF",
xq->var->setup.l3 ? "ON" : "OFF");
return SCPE_OK;
}
/*============================================================================*/
t_stat xq_nxm_error(CTLR* xq)
{
const uint16 set_bits = XQ_CSR_NI | XQ_CSR_XI | XQ_CSR_XL | XQ_CSR_RL;
sim_debug(DBG_WRN, xq->dev, "Non Existent Memory Error!\n");
if (xq->var->mode == XQ_T_DELQA_PLUS) {
/* set NXM and associated bits in SRR */
xq->var->srr |= (XQ_SRR_FES | XQ_SRR_NXM);
xq_setint(xq);
} else
/* set NXM and associated bits in CSR */
xq_csr_set_clr(xq, set_bits , 0);
return SCPE_OK;
}
/*
** write callback
*/
void xq_write_callback (CTLR* xq, int status)
{
int32 wstatus;
const uint16 TDR = (uint16)(100 + xq->var->write_buffer.len * 8); /* arbitrary value */
uint16 write_success[2] = {0};
uint16 write_failure[2] = {XQ_DSC_C};
write_success[1] = TDR & 0x03FF; /* Does TDR get set on successful packets ?? */
write_failure[1] = TDR & 0x03FF; /* TSW2<09:00> */
xq->var->stats.xmit += 1;
/* update write status words */
if (status == 0) { /* success */
if (DBG_PCK & xq->dev->dctrl)
eth_packet_trace_ex(xq->var->etherface, xq->var->write_buffer.msg, xq->var->write_buffer.len, "xq-write", DBG_DAT & xq->dev->dctrl, DBG_PCK);
wstatus = Map_WriteW(xq->var->xbdl_ba + 8, 4, write_success);
} else { /* failure */
sim_debug(DBG_WRN, xq->dev, "Packet Write Error!\n");
xq->var->stats.fail += 1;
wstatus = Map_WriteW(xq->var->xbdl_ba + 8, 4, write_failure);
}
if (wstatus) {
xq_nxm_error(xq);
return;
}
/* update csr */
xq_csr_set_clr(xq, XQ_CSR_XI, 0);
/* reset sanity timer */
xq_reset_santmr(xq);
/* clear write buffer */
xq->var->write_buffer.len = 0;
}
void xqa_write_callback (int status)
{
xq_write_callback(&xq_ctrl[0], status);
}
void xqb_write_callback (int status)
{
xq_write_callback(&xq_ctrl[1], status);
}
/* read registers: */
t_stat xq_rd(int32* data, int32 PA, int32 access)
{
CTLR* xq = xq_pa2ctlr(PA);
int index = (PA >> 1) & 07; /* word index */
sim_debug(DBG_REG, xq->dev, "xq_rd(PA=0x%08X [%s], access=%d)\n", PA, ((xq->var->mode == XQ_T_DELQA_PLUS) ? xqt_recv_regnames[index] : xq_recv_regnames[index]), access);
switch (index) {
case 0:
case 1:
/* return checksum in external loopback mode */
if (xq->var->csr & XQ_CSR_EL)
*data = 0xFF00 | xq->var->mac_checksum[index];
else
*data = 0xFF00 | xq->var->mac[index];
sim_debug(DBG_REG, xq->dev, " data=0x%X\n", *data);
break;
case 2:
case 3:
case 4:
case 5:
*data = 0xFF00 | xq->var->mac[index];
sim_debug(DBG_REG, xq->dev, " data=0x%X\n", *data);
break;
case 6:
if (xq->var->mode != XQ_T_DELQA_PLUS) {
sim_debug_bits(DBG_VAR, xq->dev, xq_var_bits, xq->var->var, xq->var->var, 0);
sim_debug (DBG_VAR, xq->dev, ", vec = 0%o\n", (xq->var->var & XQ_VEC_IV));
*data = xq->var->var;
} else {
sim_debug_bits(DBG_VAR, xq->dev, xq_srr_bits, xq->var->srr, xq->var->srr, 1);
*data = xq->var->srr;
}
break;
case 7:
sim_debug_bits(DBG_CSR, xq->dev, xq_csr_bits, xq->var->csr, xq->var->csr, 1);
*data = xq->var->csr;
break;
}
return SCPE_OK;
}
/* dispatch ethernet read request
procedure documented in sec. 3.2.2 */
t_stat xq_process_rbdl(CTLR* xq)
{
int32 rstatus, wstatus;
uint16 b_length, w_length, rbl;
uint32 address, start_rbdl_ba;
int dcount;
ETH_ITEM* item;
uint8* rbuf;
if (xq->var->mode == XQ_T_DELQA_PLUS)
return xq_process_turbo_rbdl(xq);
sim_debug(DBG_TRC, xq->dev, "xq_process_rbdl\n");
if (xq->var->csr & XQ_CSR_RL)
return SCPE_OK;
start_rbdl_ba = xq->var->rbdl_ba;
dcount = 0;
/* process buffer descriptors */
while(1) {
/* get receive bdl flags and descriptor bits from memory */
rstatus = Map_ReadW (xq->var->rbdl_ba, 4, &xq->var->rbdl_buf[0]);
if (rstatus) return xq_nxm_error(xq);
/* DEQNA stops processing if nothing in read queue */
if ((xq->var->type == XQ_T_DEQNA) && (!xq->var->ReadQ.count)) break;
/* if all descriptors have been processed, avoid overrun and stop now */
/* this only happens if the receive descriptors are setup in a circular loop */
if (dcount && (xq->var->rbdl_ba == start_rbdl_ba)) {
++xq->var->stats.recv_overrun;
sim_debug(DBG_RBL, xq->dev, "RBDL Processed all %d descriptors, avoiding overrun\n", dcount);
break;
}
++dcount;
/* set descriptor processed flag */
xq->var->rbdl_buf[0] = 0xFFFF;
wstatus = Map_WriteW(xq->var->rbdl_ba, 2, &xq->var->rbdl_buf[0]);
if (wstatus) return xq_nxm_error(xq);
/* invalid buffer? */
if (~xq->var->rbdl_buf[1] & XQ_DSC_V) {
xq_csr_set_clr(xq, XQ_CSR_RL, 0);
return SCPE_OK;
}
/* explicit chain buffer? */
if (xq->var->rbdl_buf[1] & XQ_DSC_C) {
/* get low part of chain address */
rstatus = Map_ReadW (xq->var->rbdl_ba + 4, 2, &xq->var->rbdl_buf[2]);
if (rstatus) return xq_nxm_error(xq);
xq->var->rbdl_ba = ((xq->var->rbdl_buf[1] & 0x3F) << 16) | xq->var->rbdl_buf[2];
continue;
}
/* stop if nothing in read queue */
if (!xq->var->ReadQ.count) break;
/* get address, length and status words */
rstatus = Map_ReadW(xq->var->rbdl_ba + 4, 8, &xq->var->rbdl_buf[2]);
if (rstatus) return xq_nxm_error(xq);
/* get host memory address */
address = ((xq->var->rbdl_buf[1] & 0x3F) << 16) | xq->var->rbdl_buf[2];
/* decode buffer length - two's complement (in words) */
w_length = ~xq->var->rbdl_buf[3] + 1;
b_length = w_length * 2;
if (xq->var->rbdl_buf[1] & XQ_DSC_H) {
b_length -= 1;
address += 1;
}
if (xq->var->rbdl_buf[1] & XQ_DSC_L) b_length -= 1;
sim_debug(DBG_TRC, xq->dev, "Using receive descriptor=0x%X, flags=0x%04X, bits=0x%04X, addr=0x%X, len=0x%X, st1=0x%04X, st2=0x%04X\n",
xq->var->rbdl_ba, xq->var->rbdl_buf[0], xq->var->rbdl_buf[1] & 0xFFC0, address, b_length, xq->var->rbdl_buf[4], xq->var->rbdl_buf[5]);
/* Examine the descriptor to try and determine if any prior contents haven't been 'digested' yet */
if (((xq->var->rbdl_buf[4] & 0xC000) != 0x8000) ||
((xq->var->rbdl_buf[5] & 0xFF) == (((xq->var->rbdl_buf[5] >> 8) & 0xFF)))) {
sim_debug(DBG_TRC, xq->dev, "Undigested receive descriptor=0x%X, flags=0x%04X, bits=0x%04X, addr=0x%X, len=0x%X, st1=0x%04X, st2=0x%04X\n",
xq->var->rbdl_ba, xq->var->rbdl_buf[0], xq->var->rbdl_buf[1] & 0xFFC0, address, b_length, xq->var->rbdl_buf[4], xq->var->rbdl_buf[5]);
}
item = &xq->var->ReadQ.item[xq->var->ReadQ.head];
rbl = (uint16)item->packet.len;
rbuf = item->packet.msg;
if (item->packet.oversize)
rbuf = item->packet.oversize;
/* see if packet must be size-adjusted or is splitting */
if (item->packet.used) {
uint16 used = (uint16)item->packet.used;
rbl -= used;
rbuf = &rbuf[used];
} else {
/* there should be no need to adjust runt packets
the physical layer (sim_ether) won't deliver any short packets
via eth_read, so the only short packets which get here are loopback
packets sent by the host diagnostics (OR short setup packets) */
if ((item->type == ETH_ITM_NORMAL) && (rbl < ETH_MIN_PACKET)) {
xq->var->stats.runt += 1;
sim_debug(DBG_RBL, xq->dev, "Runt detected, size = %d\n", rbl);
/* pad runts with zeros up to minimum size - this allows "legal" (size - 60)
processing of those weird short ARP packets that seem to occur occasionally */
memset(&item->packet.msg[rbl], 0, ETH_MIN_PACKET-rbl);
rbl = ETH_MIN_PACKET;
}
/* adjust oversized non-loopback packets */
if ((item->type != ETH_ITM_LOOPBACK) && (rbl > ETH_FRAME_SIZE)) {
xq->var->stats.giant += 1;
sim_debug(DBG_RBL, xq->dev, "Giant detected, size=%d\n", rbl);
/* trim giants down to maximum size - no documentation on how to handle the data loss */
if (rbl > XQ_MAX_RCV_PACKET) {
item->packet.len = XQ_MAX_RCV_PACKET;
rbl = XQ_MAX_RCV_PACKET;
}
}
}
/* make sure entire packet fits in buffer - if not, will need to split into multiple buffers */
if (rbl > b_length)
rbl = b_length;
item->packet.used += rbl;
/* send data to host */
wstatus = Map_WriteB(address, rbl, rbuf);
if (wstatus) return xq_nxm_error(xq);
/* set receive size into RBL - RBL<10:8> maps into Status1<10:8>,
RBL<7:0> maps into Status2<7:0>, and Status2<15:8> (copy) */
xq->var->rbdl_buf[4] = 0;
switch (item->type) {
case ETH_ITM_SETUP: /* setup packet */
xq->var->stats.setup += 1;
xq->var->rbdl_buf[4] = 0x2700; /* set esetup and RBL 10:8 */
if (xq->var->type == XQ_T_DEQNA) { /* Strange DEQNA behavior */
uint16 qdtc_chip_extra = 0xC000;
if (b_length <= rbl + 2) {
wstatus = Map_WriteW(address + rbl, 2, &qdtc_chip_extra);
if (wstatus) return xq_nxm_error(xq);
}
}
break;
case ETH_ITM_LOOPBACK: /* loopback packet */
xq->var->stats.loop += 1;
xq->var->rbdl_buf[4] = XQ_RST_LASTNOERR;
if (xq->var->type == XQ_T_DEQNA)
xq->var->rbdl_buf[4] |= ((rbl < ETH_MIN_PACKET) ? ((xq->var->csr & XQ_CSR_RE) ? XQ_RST_RUNT : 0) : 0);
else
xq->var->rbdl_buf[4] |= ((rbl < ETH_MIN_PACKET) ? ((xq->var->csr & XQ_CSR_RE) ? ((0 != memcmp(&xq->var->setup.macs[0], rbuf, 6)) ? XQ_RST_RUNT : 0) : 0) : 0);
xq->var->rbdl_buf[4] |= (rbl & 0x0700); /* high bits of rbl */
if (xq->var->csr & XQ_CSR_EL)
xq->var->rbdl_buf[4] |= XQ_RST_ESETUP;/* loopback flag */
break;
case ETH_ITM_NORMAL: /* normal packet */
rbl = item->packet.len - 60; /* keeps max packet size in 11 bits */
xq->var->rbdl_buf[4] = (rbl & 0x0700); /* high bits of rbl */
xq->var->rbdl_buf[4] |= 0x00f8; /* set reserved bits to 1 */
break;
}
if (item->packet.used < item->packet.len)
xq->var->rbdl_buf[4] |= XQ_RST_LASTNOT; /* not last segment */
xq->var->rbdl_buf[5] = ((rbl & 0x00FF) << 8) | (rbl & 0x00FF);
if (xq->var->ReadQ.loss) {
sim_debug(DBG_RBL, xq->dev, "ReadQ overflow!\n");
xq->var->rbdl_buf[4] |= XQ_RST_OVERFLOW; /* set overflow bit */
xq->var->stats.dropped += xq->var->ReadQ.loss;
xq->var->ReadQ.loss = 0; /* reset loss counter */
}
if (((~xq->var->csr & XQ_CSR_EL) &&
(((uint16)((rbl + ((item->type == ETH_ITM_NORMAL) ? 60 : 0)))) > ETH_MAX_PACKET)) ||
((xq->var->csr & XQ_CSR_EL) && (item->type == ETH_ITM_LOOPBACK) &&
(rbl >= XQ_LONG_PACKET)))
xq->var->rbdl_buf[4] |= XQ_RST_LASTERR; /* set Error bit (LONG) */
/* update read status words*/
wstatus = Map_WriteW(xq->var->rbdl_ba + 8, 4, &xq->var->rbdl_buf[4]);
if (wstatus) return xq_nxm_error(xq);
sim_debug(DBG_TRC, xq->dev, "xq_process_rbdl(bd=0x%X, addr=0x%X, size=0x%X, len=0x%X, st1=0x%04X, st2=0x%04X)\n",
xq->var->rbdl_ba, address, b_length, (int)((uint16)(rbl + ((item->type == ETH_ITM_NORMAL) ? 60 : 0))), xq->var->rbdl_buf[4], xq->var->rbdl_buf[5]);
/* remove packet from queue */
if (item->packet.used >= item->packet.len) {
ethq_remove(&xq->var->ReadQ);
/* signal reception complete */
xq_csr_set_clr(xq, XQ_CSR_RI, 0);
}
/* set to next bdl (implicit chain) */
xq->var->rbdl_ba += 12;
} /* while */
return SCPE_OK;
}
t_stat xq_process_mop(CTLR* xq)
{
uint32 address;
int32 wstatus;
struct xq_meb* meb = (struct xq_meb*) &xq->var->write_buffer.msg[0200];
const struct xq_meb* limit = (struct xq_meb*) &xq->var->write_buffer.msg[0400];
sim_debug(DBG_TRC, xq->dev, "xq_process_mop()\n");
if (xq->var->type == XQ_T_DEQNA) /* DEQNA's don't MOP */
return SCPE_NOFNC;
while ((meb->type != 0) && (meb < limit)) {
address = (meb->add_hi << 16) || (meb->add_mi << 8) || meb->add_lo;
/* MOP stuff here - NOT YET FULLY IMPLEMENTED */
sim_debug (DBG_WRN, xq->dev, "Processing MEB type: %d\n", meb->type);
switch (meb->type) {
case 0: /* MOP Termination */
break;
case 1: /* MOP Read Ethernet Address */
wstatus = Map_WriteB(address, sizeof(ETH_MAC), (uint8*) &xq->var->setup.macs[0]);
if (wstatus) return xq_nxm_error(xq);
break;
case 2: /* MOP Reset System ID */
break;
case 3: /* MOP Read Last MOP Boot */
break;
case 4: /* MOP Read Boot Password */
break;
case 5: /* MOP Write Boot Password */
break;
case 6: /* MOP Read System ID */
break;
case 7: /* MOP Write System ID */
break;
case 8: /* MOP Read Counters */
break;
case 9: /* Mop Read/Clear Counters */
break;
case 10: /* DELQA-PLUS Board ROM Version */
if (xq->var->type == XQ_T_DELQA_PLUS) {
uint16 Delqa_Plus_ROM_Version[3] = {2, 0, 0}; /* 2.0.0 */
wstatus = Map_WriteB(address, sizeof(Delqa_Plus_ROM_Version), (uint8*) Delqa_Plus_ROM_Version);
if (wstatus) return xq_nxm_error(xq);
}
break;
} /* switch */
/* process next meb */
meb += 1;
} /* while */
return SCPE_OK;
}
t_stat xq_process_setup(CTLR* xq)
{
int i,j;
int count = 0;
float secs = 0;
uint32 saved_debug = xq->dev->dctrl;
ETH_MAC zeros = {0, 0, 0, 0, 0, 0};
ETH_MAC filters[XQ_FILTER_MAX + 1];
sim_debug(DBG_TRC, xq->dev, "xq_process_setup()\n");
/* temporarily turn on Ethernet debugging if setup debugging is enabled */
if (xq->dev->dctrl & DBG_SET)
xq->dev->dctrl |= DBG_ETH;
/* extract filter addresses from setup packet */
memset(xq->var->setup.macs, '\0', sizeof(xq->var->setup.macs));
for (i = 0; i < 7; i++)
for (j = 0; j < 6; j++) {
if ((uint32)((i + 01) + (j * 8)) >= xq->var->write_buffer.len)
continue;
xq->var->setup.macs[i] [j] = xq->var->write_buffer.msg[(i + 01) + (j * 8)];
if ((uint32)((i + 0101) + (j * 8)) >= xq->var->write_buffer.len)
continue;
xq->var->setup.macs[i+7][j] = xq->var->write_buffer.msg[(i + 0101) + (j * 8)];
}
/*
Under VMS the setup packet that is passed to turn promiscuous
off after it has been on doesn't seem to follow the rules documented
in both the DEQNA and DELQA manuals.
These rules seem to say that setup packets less than 128 should only
modify the address filter set and probably not the All-Multicast and
Promiscuous modes, however, VMS V5-5 and V7.3 seem to send a 127 byte
packet to turn this functionality off. I'm not sure how real hardware
behaves in this case, since the only consequence is extra interrupt
load. To realize and retain the benefits of the newly added BPF
functionality in sim_ether, I've modified the logic implemented here
to disable Promiscuous mode when a "small" setup packet is processed.
I'm deliberately not modifying the All-Multicast mode the same way
since I don't have an observable case of its behavior. These two
different modes come from very different usage situations:
1) Promiscuous mode is usually entered for relatively short periods
of time due to the needs of a specific application program which
is doing some sort of management/monitoring function (i.e. tcpdump)
2) All-Multicast mode is only entered by the OS Kernel Port Driver
when it happens to have clients (usually network stacks or service
programs) which as a group need to listen to more multicast ethernet
addresses than the 12 (or so) which the hardware supports directly.
so, I believe that the All-Multicast mode, is first rarely used, and if
it ever is used, once set, it will probably be set either forever or for
long periods of time, and the additional interrupt processing load to
deal with the distinctly lower multicast traffic set is clearly lower than
that of the promiscuous mode.
*/
xq->var->setup.promiscuous = 0;
/* process high byte count */
if (xq->var->write_buffer.len > 128) {
uint16 len = (uint16)xq->var->write_buffer.len;
uint16 led, san;
xq->var->setup.multicast = (0 != (len & XQ_SETUP_MC));
xq->var->setup.promiscuous = (0 != (len & XQ_SETUP_PM));
if ((led = (len & XQ_SETUP_LD) >> 2)) {
switch (led) {
case 1: xq->var->setup.l1 = 0; break;
case 2: xq->var->setup.l2 = 0; break;
case 3: xq->var->setup.l3 = 0; break;
} /* switch */
} /* if led */
/* set sanity timer timeout */
san = (len & XQ_SETUP_ST) >> 4;
switch(san) {
case 0: secs = 0.25; break; /* 1/4 second */
case 1: secs = 1; break; /* 1 second */
case 2: secs = 4; break; /* 4 seconds */
case 3: secs = 16; break; /* 16 seconds */
case 4: secs = 1 * 60; break; /* 1 minute */
case 5: secs = 4 * 60; break; /* 4 minutes */
case 6: secs = 16 * 60; break; /* 16 minutes */
case 7: secs = 64 * 60; break; /* 64 minutes */
}
xq->var->sanity.quarter_secs = (int) (secs * 4);
}
/* finalize sanity timer state */
if (xq->var->sanity.enabled & XQ_SAN_HW_SW) {
if (xq->var->csr & XQ_CSR_SE)
xq->var->sanity.enabled |= XQ_SAN_ENABLE;
else
xq->var->sanity.enabled &= ~XQ_SAN_ENABLE;
}
xq_reset_santmr(xq);
/* set ethernet filter */
/* memcpy (filters[count++], xq->mac, sizeof(ETH_MAC)); */
for (i = 0; i < XQ_FILTER_MAX; i++)
if (memcmp(zeros, &xq->var->setup.macs[i], sizeof(ETH_MAC)))
memcpy (filters[count++], xq->var->setup.macs[i], sizeof(ETH_MAC));
eth_filter (xq->var->etherface, count, filters, xq->var->setup.multicast, xq->var->setup.promiscuous);
/* process MOP information */
if (xq->var->write_buffer.msg[0])
xq_process_mop(xq);
/* mark setup block valid */
xq->var->setup.valid = 1;
xq_debug_setup(xq);
xq->dev->dctrl = saved_debug; /* restore original debugging */
return SCPE_OK;
}
/*
Dispatch Write Operation
The DELQA manual does not explicitly state whether or not multiple packets
can be written in one transmit operation, so a maximum of 1 packet is assumed.
MP: Hmmm... Figure 3-1 on page 3-3 step 6 says that descriptors will be processed
until the end of the list is found.
*/
t_stat xq_process_xbdl(CTLR* xq)
{
const uint16 implicit_chain_status[2] = {XQ_DSC_V | XQ_DSC_C, 1};
uint16 write_success[2] = {0x2000 /* Bit 13 Always Set */, 1 /*Non-Zero TDR*/};
uint16 b_length, w_length;
int32 rstatus, wstatus;
uint32 address;
t_stat status;
sim_debug(DBG_TRC, xq->dev, "xq_process_xbdl()\n");
/* clear write buffer */
xq->var->write_buffer.len = 0;
free (xq->var->write_buffer.oversize);
xq->var->write_buffer.oversize = NULL;
/* process buffer descriptors until not valid */
while (1) {
/* Get transmit bdl from memory */
rstatus = Map_ReadW (xq->var->xbdl_ba, 12, &xq->var->xbdl_buf[0]);
xq->var->xbdl_buf[0] = 0xFFFF;
wstatus = Map_WriteW(xq->var->xbdl_ba, 2, &xq->var->xbdl_buf[0]);
if (rstatus || wstatus) return xq_nxm_error(xq);
/* compute host memory address */
address = ((xq->var->xbdl_buf[1] & 0x3F) << 16) | xq->var->xbdl_buf[2];
/* explicit chain buffer? */
if (xq->var->xbdl_buf[1] & XQ_DSC_C) {
xq->var->xbdl_ba = address;
sim_debug(DBG_XBL, xq->dev, "Chaining to buffer descriptor at: 0x%X\n", address);
continue;
}
/* invalid buffer? */
if (~xq->var->xbdl_buf[1] & XQ_DSC_V) {
xq_csr_set_clr(xq, XQ_CSR_XL, 0);
sim_debug(DBG_XBL, xq->dev, "List empty\n");
return SCPE_OK;
}
/* decode buffer length - two's complement (in words) */
w_length = ~xq->var->xbdl_buf[3] + 1;
b_length = w_length * 2;
if (xq->var->xbdl_buf[1] & XQ_DSC_H) {
b_length -= 1;
address += 1;
}
if (xq->var->xbdl_buf[1] & XQ_DSC_L) b_length -= 1;
/* add to transmit buffer, making sure it's not too big */
if ((xq->var->write_buffer.len + b_length) > sizeof(xq->var->write_buffer.msg)) {
xq->var->write_buffer.oversize = (uint8*)realloc (xq->var->write_buffer.oversize, xq->var->write_buffer.len + b_length);
if (xq->var->write_buffer.len <= sizeof(xq->var->write_buffer.msg))
memcpy (xq->var->write_buffer.oversize, xq->var->write_buffer.msg, xq->var->write_buffer.len);
}
rstatus = Map_ReadB(address, b_length, xq->var->write_buffer.oversize ? &xq->var->write_buffer.oversize[xq->var->write_buffer.len] : &xq->var->write_buffer.msg[xq->var->write_buffer.len]);
if (rstatus) return xq_nxm_error(xq);
xq->var->write_buffer.len += b_length;
/* end of message? */
if (xq->var->xbdl_buf[1] & XQ_DSC_E) {
if (((~xq->var->csr & XQ_CSR_IL) || (xq->var->csr & XQ_CSR_EL)) || /* loopback */
(xq->var->xbdl_buf[1] & XQ_DSC_S)) { /* or setup packet (forces loopback regardless of state) */
if (xq->var->xbdl_buf[1] & XQ_DSC_S) { /* setup packet */
status = xq_process_setup(xq);
ethq_insert (&xq->var->ReadQ, 0, &xq->var->write_buffer, status);/* put packet in read buffer */
write_success[0] = 0x200C; /* DELQA Setup Packet Transmit Status Word 1 */
write_success[1] = 0x0860; /* DELQA Setup Packet Transmit Status Word 2 */
} else { /* loopback */
if ((DBG_PCK & xq->dev->dctrl) && xq->var->etherface) {
static const char *loopback_modes[] = {"xq-write-loopback-Internal", "", "xq-write-loopback-Internal Extended", "xq-write-loopback-External"};
eth_packet_trace_ex(xq->var->etherface, xq->var->write_buffer.msg, xq->var->write_buffer.len, loopback_modes[(xq->var->csr >> 8) & 3], DBG_DAT & xq->dev->dctrl, DBG_PCK);
}
if (((~xq->var->csr & XQ_CSR_RL) && /* If a buffer descriptor list is good */
(xq->var->rbdl_buf[1] & XQ_DSC_V)) || /* AND the descriptor is valid */
(xq->var->csr & XQ_CSR_EL)) /* OR External Loopback */
ethq_insert (&xq->var->ReadQ, 1, &xq->var->write_buffer, 0);
else
sim_debug(DBG_XBL, xq->dev, "Dropping Loopback packet: No Receive Buffer\n");
write_success[0] |= XQ_XMT_FAIL;
}
/* update write status */
wstatus = Map_WriteW(xq->var->xbdl_ba + 8, 4, (uint16*) write_success);
if (wstatus) return xq_nxm_error(xq);
/* clear write buffer */
xq->var->write_buffer.len = 0;
free (xq->var->write_buffer.oversize);
xq->var->write_buffer.oversize = NULL;
/* reset sanity timer */
xq_reset_santmr(xq);
/* signal transmission complete */
xq_csr_set_clr(xq, XQ_CSR_XI, 0);
/* now schedule "reading" of setup or loopback packet */
if (~xq->var->csr & XQ_CSR_RL)
sim_activate_after_abs(xq->unit+3, 400); /* 400usecs on real hardware */
} else { /* not loopback */
status = eth_write(xq->var->etherface, &xq->var->write_buffer, xq->var->wcallback);
if (status != SCPE_OK) /* not implemented or unattached */
xq_write_callback(xq, 1); /* fake failure */
else {
if (xq->var->coalesce_latency == 0)
xq_svc(&xq->unit[0]); /* service any received data */
}
sim_debug(DBG_XBL, xq->dev, "completed processing write\n");
} /* loopback/non-loopback */
} else { /* not at end-of-message */
sim_debug(DBG_XBL, xq->dev, "implicitly chaining to buffer descriptor at: 0x%X\n", xq->var->xbdl_ba+12);
/* update bdl status words */
wstatus = Map_WriteW(xq->var->xbdl_ba + 8, 4, implicit_chain_status);
if(wstatus) return xq_nxm_error(xq);
}
/* set to next bdl (implicit chain) */
xq->var->xbdl_ba += 12;
} /* while */
}
void xq_show_debug_bdl(CTLR* xq, uint32 bdl_ba)
{
uint16 bdl_buf[6];
uint16 b_length, w_length;
uint32 address, initial_bdl_ba = bdl_ba;
int32 rstatus;
if ((!sim_deb) || (!(xq->dev->dctrl & DBG_TRC)))/* Do nothing if not debugging */
return;
sim_debug(DBG_TRC, xq->dev, " Descriptor list at: 0x%X\n", bdl_ba);
while (1) {
/* get the beginning of the buffer descriptor */
rstatus = Map_ReadW (bdl_ba, 6, &bdl_buf[0]);
if (rstatus) return;
/* explicit chain buffer? */
if (bdl_buf[1] & XQ_DSC_C) {
sim_debug(DBG_TRC, xq->dev, " descriptor=0x%X, flags=0x%04X, bits=0x%04X, chain=0x%X\n", bdl_ba, bdl_buf[0], bdl_buf[1] & 0xFFC0, ((bdl_buf[1] & 0x3F) << 16) | bdl_buf[2]);
bdl_ba = ((bdl_buf[1] & 0x3F) << 16) | bdl_buf[2];
if (initial_bdl_ba == bdl_ba)
break;
continue;
}
/* invalid buffer? */
if (~bdl_buf[1] & XQ_DSC_V)
break;
/* get the rest of the buffer descriptor */
rstatus = Map_ReadW (bdl_ba + 6, 6, &bdl_buf[3]);
if (rstatus) return;
/* get host memory address */
address = ((bdl_buf[1] & 0x3F) << 16) | bdl_buf[2];
/* decode buffer length - two's complement (in words) */
w_length = ~bdl_buf[3] + 1;
b_length = w_length * 2;
if (bdl_buf[1] & XQ_DSC_H) {
b_length -= 1;
address += 1;
}
if (bdl_buf[1] & XQ_DSC_L) b_length -= 1;
sim_debug(DBG_TRC, xq->dev, " descriptor=0x%X, flags=0x%04X, bits=0x%04X, addr=0x%X, len=0x%X, st1=0x%04X, st2=0x%04X\n",
bdl_ba, bdl_buf[0], bdl_buf[1] & 0xFFC0, address, b_length, bdl_buf[4], bdl_buf[5]);
bdl_ba += 12;
}
sim_debug(DBG_TRC, xq->dev, " descriptor=0x%X, flags=0x%04X, bits=0x%04X\n", bdl_ba, bdl_buf[0], bdl_buf[1] & 0xFFC0);
}
t_stat xq_dispatch_rbdl(CTLR* xq)
{
sim_debug(DBG_TRC, xq->dev, "xq_dispatch_rbdl()\n");
/* mark receive bdl valid */
xq_csr_set_clr(xq, 0, XQ_CSR_RL);
/* get address of first receive buffer */
xq->var->rbdl_ba = ((xq->var->rbdl[1] & 0x3F) << 16) | (xq->var->rbdl[0] & ~01);
/* When debugging, walk and display the buffer descriptor list */
xq_show_debug_bdl(xq, xq->var->rbdl_ba);
/* get receive bdl flags and descriptor bits from memory */
if (Map_ReadW (xq->var->rbdl_ba, 4, &xq->var->rbdl_buf[0]))
return xq_nxm_error(xq);
/* process any waiting packets in receive queue */
if (xq->var->ReadQ.count)
xq_process_rbdl(xq);
return SCPE_OK;
}
t_stat xq_dispatch_xbdl(CTLR* xq)
{
int i;
t_stat status;
sim_debug(DBG_TRC, xq->dev, "xq_dispatch_xbdl()\n");
/* mark transmit bdl valid */
xq_csr_set_clr(xq, 0, XQ_CSR_XL);
/* initialize transmit bdl buffers */
for (i=0; i<6; i++)
xq->var->xbdl_buf[i] = 0;
/* clear transmit buffer */
xq->var->write_buffer.len = 0;
free (xq->var->write_buffer.oversize);
xq->var->write_buffer.oversize = NULL;
/* get base address of first transmit descriptor */
xq->var->xbdl_ba = ((xq->var->xbdl[1] & 0x3F) << 16) | (xq->var->xbdl[0] & ~01);
/* When debugging, walk and display the buffer descriptor list */
xq_show_debug_bdl(xq, xq->var->xbdl_ba);
/* process xbdl */
status = xq_process_xbdl(xq);
return status;
}
t_stat xq_process_turbo_rbdl(CTLR* xq)
{
int i;
t_stat status;
int descriptors_consumed = 0;
uint32 rdra = (xq->var->init.rdra_h << 16) | xq->var->init.rdra_l;
sim_debug(DBG_TRC, xq->dev, "xq_process_turbo_rbdl()\n");
if ((xq->var->srr & XQ_SRR_RESP) != XQ_SRR_STRT)
return SCPE_OK;
/* Process descriptors in the receive ring while the're available and we have packets */
do {
uint32 address;
uint16 b_length, rbl;
ETH_ITEM* item;
uint8* rbuf;
/* stop processing when nothing in read queue */
if (!xq->var->ReadQ.count)
break;
i = xq->var->rbindx;
/* Get receive descriptor from memory */
status = Map_ReadW (rdra+i*sizeof(xq->var->rring[i]), sizeof(xq->var->rring[i]), (uint16 *)&xq->var->rring[i]);
if (status != SCPE_OK)
return xq_nxm_error(xq);
/* Done if Buffer not Owned */
if (xq->var->rring[i].rmd3 & XQ_TMD3_OWN)
break;
++descriptors_consumed;
/* Update ring index */
xq->var->rbindx = (xq->var->rbindx + 1) % XQ_TURBO_RC_BCNT;
address = ((xq->var->rring[i].hadr & 0x3F ) << 16) | xq->var->rring[i].ladr;
b_length = ETH_FRAME_SIZE;
item = &xq->var->ReadQ.item[xq->var->ReadQ.head];
rbl = (uint16)(item->packet.len + ETH_CRC_SIZE);
rbuf = item->packet.msg;
/* see if packet must be size-adjusted or is splitting */
if (item->packet.used) {
uint16 used = (uint16)item->packet.used;
rbl -= used;
rbuf = &item->packet.msg[used];
} else {
/* adjust non loopback runt packets */
if ((item->type != ETH_ITM_LOOPBACK) && (rbl < ETH_MIN_PACKET)) {
xq->var->stats.runt += 1;
sim_debug(DBG_RBL, xq->dev, "Runt detected, size = %d\n", rbl);
/* pad runts with zeros up to minimum size - this allows "legal" (size - 60)
processing of those weird short ARP packets that seem to occur occasionally */
memset(&item->packet.msg[rbl], 0, ETH_MIN_PACKET-rbl);
rbl = ETH_MIN_PACKET;
};
/* adjust oversized non-loopback packets */
if ((item->type != ETH_ITM_LOOPBACK) && (rbl > ETH_FRAME_SIZE)) {
xq->var->stats.giant += 1;
sim_debug(DBG_RBL, xq->dev, "Giant detected, size=%d\n", rbl);
/* trim giants down to maximum size - no documentation on how to handle the data loss */
item->packet.len = ETH_MAX_PACKET;
rbl = ETH_FRAME_SIZE;
};
};
/* make sure entire packet fits in buffer - if not, will need to split into multiple buffers */
if (rbl > b_length)
rbl = b_length;
item->packet.used += rbl;
/* send data to host */
status = Map_WriteB(address, rbl, rbuf);
if (status != SCPE_OK)
return xq_nxm_error(xq);
/* set receive size into RBL - RBL<10:8> maps into Status1<10:8>,
RBL<7:0> maps into Status2<7:0>, and Status2<15:8> (copy) */
xq->var->rring[i].rmd0 = 0;
xq->var->rring[i].rmd1 = rbl;
xq->var->rring[i].rmd2 = XQ_RMD2_RON | XQ_RMD2_TON;
if (0 == (item->packet.used - rbl))
xq->var->rring[i].rmd0 |= XQ_RMD0_STP; /* Start of Packet */
if (item->packet.used == (item->packet.len + ETH_CRC_SIZE))
xq->var->rring[i].rmd0 |= XQ_RMD0_ENP; /* End of Packet */
if (xq->var->ReadQ.loss) {
xq->var->rring[i].rmd2 |= XQ_RMD2_MIS;
sim_debug(DBG_RBL, xq->dev, "ReadQ overflow!\n");
xq->var->stats.dropped += xq->var->ReadQ.loss;
xq->var->ReadQ.loss = 0; /* reset loss counter */
}
Map_ReadW (rdra+(uint32)(((char *)(&xq->var->rring[xq->var->rbindx].rmd3))-((char *)&xq->var->rring)), sizeof(xq->var->rring[xq->var->rbindx].rmd3), (uint16 *)&xq->var->rring[xq->var->rbindx].rmd3);
if (xq->var->rring[xq->var->rbindx].rmd3 & XQ_RMD3_OWN)
xq->var->rring[i].rmd2 |= XQ_RMD2_EOR;
/* Update receive descriptor in memory (only done after we've processed the contents) */
/* Note: We're updating all but the end of the descriptor (which we never change) */
/* AND the driver will be allowed to change once the changed tmd3 (ownership) */
/* is noted so we avoid walking on its changes */
xq->var->rring[i].rmd3 |= XQ_TMD3_OWN; /* Return Descriptor to Driver */
status = Map_WriteW (rdra+i*sizeof(xq->var->rring[i]), sizeof(xq->var->rring[i])-8, (uint16 *)&xq->var->rring[i]);
if (status != SCPE_OK)
return xq_nxm_error(xq);
/* remove packet from queue */
if (item->packet.used >= item->packet.len)
ethq_remove(&xq->var->ReadQ);
} while (0 == (xq->var->rring[xq->var->rbindx].rmd3 & XQ_RMD3_OWN));
if (xq->var->rring[xq->var->rbindx].rmd3 & XQ_RMD3_OWN) {
sim_debug(DBG_RBL, xq->dev, "xq_process_turbo_rbdl() - receive ring full\n");
}
if (descriptors_consumed)
/* Interrupt for Packet Reception Completion */
xq_setint(xq);
return SCPE_OK;
}
t_stat xq_process_turbo_xbdl(CTLR* xq)
{
int i;
t_stat status;
int descriptors_consumed = 0;
uint32 tdra = (xq->var->init.tdra_h << 16) | xq->var->init.tdra_l;
sim_debug(DBG_TRC, xq->dev, "xq_process_turbo_xbdl()\n");
if ((xq->var->srr & XQ_SRR_RESP) != XQ_SRR_STRT)
return SCPE_OK;
/* clear transmit buffer */
xq->var->write_buffer.len = 0;
free (xq->var->write_buffer.oversize);
xq->var->write_buffer.oversize = NULL;
/* Process each descriptor in the transmit ring */
do {
uint32 address;
uint16 b_length;
i = xq->var->tbindx;
/* Get transmit descriptor from memory */
status = Map_ReadW (tdra+i*sizeof(xq->var->xring[i]), sizeof(xq->var->xring[i]), (uint16 *)&xq->var->xring[i]);
if (status != SCPE_OK)
return xq_nxm_error(xq);
if (xq->var->xring[i].tmd3 & XQ_TMD3_OWN)
break;
/* Update ring index */
xq->var->tbindx = (xq->var->tbindx + 1) % XQ_TURBO_XM_BCNT;
++descriptors_consumed;
address = ((xq->var->xring[i].hadr & 0x3F ) << 16) | xq->var->xring[i].ladr;
b_length = (xq->var->xring[i].tmd3 & XQ_TMD3_BCT);
/* add to transmit buffer, accomodating it if it is too big */
if ((xq->var->write_buffer.len + b_length) > sizeof(xq->var->write_buffer.msg)) {
xq->var->write_buffer.oversize = (uint8*)realloc (xq->var->write_buffer.oversize, xq->var->write_buffer.len + b_length);
if (xq->var->write_buffer.len <= sizeof(xq->var->write_buffer.msg))
memcpy (xq->var->write_buffer.oversize, xq->var->write_buffer.msg, xq->var->write_buffer.len);
}
status = Map_ReadB(address, b_length, xq->var->write_buffer.oversize ? &xq->var->write_buffer.oversize[xq->var->write_buffer.len] : &xq->var->write_buffer.msg[xq->var->write_buffer.len]);
if (status != SCPE_OK)
return xq_nxm_error(xq);
xq->var->write_buffer.len += b_length;
if (!(xq->var->xring[i].tmd3 & XQ_TMD3_FOT)) {
/* Process Loopback if in Loopback mode */
if (xq->var->init.mode & XQ_IN_MO_LOP) {
if ((xq->var->init.mode & XQ_IN_MO_INT) || (xq->var->etherface)) {
/* put packet in read buffer */
ethq_insert (&xq->var->ReadQ, 1, &xq->var->write_buffer, 0);
status = SCPE_OK;
} else {
/* External loopback fails when not connected */
status = SCPE_NOFNC;
}
} else
status = eth_write(xq->var->etherface, &xq->var->write_buffer, NULL);
xq->var->stats.xmit += 1;
if (status != SCPE_OK) { /* not implemented or unattached */
sim_debug(DBG_WRN, xq->dev, "Packet Write Error!\n");
xq->var->stats.fail += 1;
xq->var->xring[i].tmd0 = XQ_TMD0_ERR1;
xq->var->xring[i].tmd1 = (uint16)(100 + xq->var->write_buffer.len * 8); /* arbitrary value */
xq->var->xring[i].tmd1 |= XQ_TMD1_LCA;
} else {
if (DBG_PCK & xq->dev->dctrl)
eth_packet_trace_ex(xq->var->etherface, xq->var->write_buffer.msg, xq->var->write_buffer.len, "xq-write", DBG_DAT & xq->dev->dctrl, DBG_PCK);
xq->var->xring[i].tmd0 = 0;
xq->var->xring[i].tmd1 = (uint16)(100 + xq->var->write_buffer.len * 8); /* arbitrary value */
}
sim_debug(DBG_XBL, xq->dev, "completed processing write\n");
/* clear transmit buffer */
xq->var->write_buffer.len = 0;
xq->var->xring[i].tmd2 = XQ_TMD2_RON | XQ_TMD2_TON;
}
Map_ReadW (tdra+(uint32)(((char *)(&xq->var->xring[xq->var->tbindx].tmd3))-((char *)&xq->var->xring)), sizeof(xq->var->xring[xq->var->tbindx].tmd3), (uint16 *)&xq->var->xring[xq->var->tbindx].tmd3);
if (xq->var->xring[xq->var->tbindx].tmd3 & XQ_TMD3_OWN)
xq->var->xring[i].tmd2 |= XQ_TMD2_EOR;
/* Update transmit descriptor in memory (only done after we've processed the contents) */
/* Note: We're updating all but the end of the descriptor (which we never change) */
/* AND the driver will be allowed to change once the changed tmd3 (ownership) */
/* is noted so we avoid walking on its changes */
xq->var->xring[i].tmd3 |= XQ_TMD3_OWN; /* Return Descriptor to Driver */
status = Map_WriteW (tdra+i*sizeof(xq->var->xring[i]), sizeof(xq->var->xring[i])-8, (uint16 *)&xq->var->xring[i]);
if (status != SCPE_OK)
return xq_nxm_error(xq);
} while (0 == (xq->var->xring[xq->var->tbindx].tmd3 & XQ_TMD3_OWN));
if (descriptors_consumed) {
/* Interrupt for Packet Transmission Completion */
xq_setint(xq);
if (xq->var->coalesce_latency == 0)
xq_svc(&xq->unit[0]); /* service any received data */
} else {
/* There appears to be a bug in the VMS SCS/XQ driver when it uses chained
buffers to transmit a packet. It updates the transmit buffer ring in the
correct order (i.e. clearing the ownership on the last packet segment
first), but it writes a transmit request to the ARQR register after adjusting
the ownership of EACH buffer piece. This results in us being awakened once
and finding nothing to do. We ignore this and the next write the ARQR will
properly cause the packet transmission.
*/
sim_debug(DBG_XBL, xq->dev, "xq_process_turbo_xbdl() - Nothing to Transmit\n");
}
return status;
}
t_stat xq_process_loopback(CTLR* xq, ETH_PACK* pack)
{
ETH_PACK response;
ETH_MAC *physical_address;
t_stat status;
int offset = 16 + (pack->msg[14] | (pack->msg[15] << 8));
int function;
if (offset > ETH_MAX_PACKET - 8)
return SCPE_NOFNC;
function = pack->msg[offset] | (pack->msg[offset+1] << 8);
sim_debug(DBG_TRC, xq->dev, "xq_process_loopback(function=%d)\n", function);
if (function != 2 /*forward*/)
return SCPE_NOFNC;
/* create forward response packet */
memcpy (&response, pack, sizeof(ETH_PACK));
if (xq->var->mode == XQ_T_DELQA_PLUS)
physical_address = &xq->var->init.phys;
else
if (xq->var->setup.valid)
physical_address = &xq->var->setup.macs[0];
else
physical_address = &xq->var->mac;
/* The only packets we should be responding to are ones which
we received due to them being directed to our physical MAC address,
OR the Broadcast address OR to a Multicast address we're listening to
(we may receive others if we're in promiscuous mode, but shouldn't
respond to them) */
if ((0 == (pack->msg[0]&1)) && /* Multicast or Broadcast */
(0 != memcmp(physical_address, pack->msg, sizeof(ETH_MAC))))
return SCPE_NOFNC;
memcpy (&response.msg[0], &response.msg[offset+2], sizeof(ETH_MAC));
memcpy (&response.msg[6], physical_address, sizeof(ETH_MAC));
offset += 8 - 16; /* Account for the Ethernet Header and Offset value in this number */
response.msg[14] = offset & 0xFF;
response.msg[15] = (offset >> 8) & 0xFF;
/* send response packet */
status = eth_write(xq->var->etherface, &response, NULL);
++xq->var->stats.loop;
if (DBG_PCK & xq->dev->dctrl)
eth_packet_trace_ex(xq->var->etherface, response.msg, response.len, ((function == 1) ? "xq-loopbackreply" : "xq-loopbackforward"), DBG_DAT & xq->dev->dctrl, DBG_PCK);
return status;
}
t_stat xq_process_remote_console (CTLR* xq, ETH_PACK* pack)
{
t_stat status;
ETH_MAC source;
uint16 receipt;
int code = pack->msg[16];
sim_debug(DBG_TRC, xq->dev, "xq_process_remote_console()\n");
switch (code) {
case 0x05: /* request id */
receipt = pack->msg[18] | (pack->msg[19] << 8);
memcpy(source, &pack->msg[6], sizeof(ETH_MAC));
/* send system id to requestor */
status = xq_system_id (xq, source, receipt);
return status;
break;
case 0x06: /* boot */
/*
NOTE: the verification field should be checked here against the
verification value established in the setup packet. If they match the
reboot should occur, otherwise nothing happens, and the packet
is passed on to the host.
Verification is not implemented, since the setup packet processing code
isn't complete yet.
Various values are also passed: processor, control, and software id.
These control the various boot parameters, however SIMH does not
have a mechanism to pass these to the host, so just reboot.
*/
status = xq_boot_host(xq);
return status;
break;
} /* switch */
return SCPE_NOFNC;
}
t_stat xq_process_local (CTLR* xq, ETH_PACK* pack)
{
/* returns SCPE_OK if local processing occurred,
otherwise returns SCPE_NOFNC or some other code */
int protocol;
sim_debug(DBG_TRC, xq->dev, "xq_process_local()\n");
/* DEQNA's have no local processing capability */
if (xq->var->type == XQ_T_DEQNA)
return SCPE_NOFNC;
protocol = pack->msg[12] | (pack->msg[13] << 8);
switch (protocol) {
case 0x0090: /* ethernet loopback */
return xq_process_loopback(xq, pack);
break;
case 0x0260: /* MOP remote console */
return xq_process_remote_console(xq, pack);
break;
}
return SCPE_NOFNC;
}
void xq_read_callback(CTLR* xq, int status)
{
xq->var->stats.recv += 1;
if (DBG_PCK & xq->dev->dctrl)
eth_packet_trace_ex(xq->var->etherface, xq->var->read_buffer.msg, xq->var->read_buffer.len, "xq-recvd", DBG_DAT & xq->dev->dctrl, DBG_PCK);
xq->var->read_buffer.used = 0; /* none processed yet */
if ((xq->var->csr & XQ_CSR_RE) || (xq->var->mode == XQ_T_DELQA_PLUS)) { /* receiver enabled */
/* process any packets locally that can be */
t_stat status = xq_process_local (xq, &xq->var->read_buffer);
/* add packet to read queue */
if (status != SCPE_OK)
ethq_insert(&xq->var->ReadQ, 2, &xq->var->read_buffer, status);
} else {
xq->var->stats.dropped += 1;
sim_debug(DBG_WRN, xq->dev, "packet received with receiver disabled\n");
}
}
void xqa_read_callback(int status)
{
xq_read_callback(&xq_ctrl[0], status);
}
void xqb_read_callback(int status)
{
xq_read_callback(&xq_ctrl[1], status);
}
void xq_sw_reset(CTLR* xq)
{
uint16 set_bits = XQ_CSR_XL | XQ_CSR_RL;
int i;
sim_debug(DBG_TRC, xq->dev, "xq_sw_reset()\n");
++xq->var->stats.reset;
/* Return DELQA-T in DELQA-T mode to DELQA Normal mode */
if ((xq->var->type == XQ_T_DELQA_PLUS) && (xq->var->mode == XQ_T_DELQA_PLUS)){
xq->var->var |= XQ_VEC_MS;
xq->var->mode = XQ_T_DELQA;
xq->var->iba = xq->var->srr = 0;
}
/* Old DEQNA firmware also enabled interrupts and */
/* the Ultrix 1.X driver counts on that behavior */
if ((xq->var->type == XQ_T_DEQNA) && xq->dib->vec && (ULTRIX1X))
set_bits |= XQ_CSR_IE;
/* reset csr bits */
xq_csr_set_clr(xq, set_bits, (uint16) ~set_bits);
if (xq->var->etherface)
xq_csr_set_clr(xq, XQ_CSR_OK, 0);
/* clear interrupt unconditionally */
xq_clrint(xq);
/* flush read queue */
ethq_clear(&xq->var->ReadQ);
/* clear setup info */
xq->var->setup.multicast = 0;
xq->var->setup.promiscuous = 0;
if (xq->var->etherface) {
int count = 0;
ETH_MAC zeros = {0, 0, 0, 0, 0, 0};
ETH_MAC filters[XQ_FILTER_MAX + 1];
/* set ethernet filter */
/* memcpy (filters[count++], xq->mac, sizeof(ETH_MAC)); */
for (i = 0; i < XQ_FILTER_MAX; i++)
if (memcmp(zeros, &xq->var->setup.macs[i], sizeof(ETH_MAC)))
memcpy (filters[count++], xq->var->setup.macs[i], sizeof(ETH_MAC));
eth_filter (xq->var->etherface, count, filters, xq->var->setup.multicast, xq->var->setup.promiscuous);
}
/* Stop receive polling until the receiver is reenabled */
xq_stop_receiver(xq);
}
/* write registers: */
t_stat xq_wr_var(CTLR* xq, int32 data)
{
uint16 save_var = xq->var->var;
sim_debug(DBG_REG, xq->dev, "xq_wr_var(data=0x%04X)\n", data);
switch (xq->var->type) {
case XQ_T_DEQNA:
xq->var->var = (data & XQ_VEC_IV);
break;
case XQ_T_DELQA:
case XQ_T_DELQA_PLUS:
if (xq->var->lockmode)
xq->var->var = data & (XQ_VEC_IV | XQ_VEC_ID);
else
xq->var->var = (data & XQ_VEC_RW);
if ((save_var ^ xq->var->var) & XQ_VEC_MS) { /* DEQNA-Lock mode changing? */
if (~xq->var->var & XQ_VEC_MS) {
/* if switching to DEQNA-LOCK mode clear VAR<14:10> */
sim_debug(DBG_REG, xq->dev, "xq_wr_var(DELQA switching to DEQNA-Lock mode\n");
xq->var->mode = XQ_T_DEQNA;
xq->var->var &= ~(XQ_VEC_OS | XQ_VEC_RS | XQ_VEC_ST);
} else {
sim_debug(DBG_REG, xq->dev, "xq_wr_var(DELQA switching to DEQNA Normal mode\n");
xq->var->mode = XQ_T_DELQA;
}
}
/* if Self Test is on, turn it off to signal completion */
if (xq->var->var & XQ_VEC_RS) {
xq->var->var &= ~XQ_VEC_RS;
if (!xq->var->etherface)
xq->var->var |= XQ_VEC_S1; /* Indicate No Network Connection */
else
xq->var->var &= ~XQ_VEC_ST; /* Set success Status */
sim_debug(DBG_REG, xq->dev, "xq_wr_var(DELQA self test performed. Result: %d\n", xq->var->var & XQ_VEC_ST);
}
break;
}
/* set vector of SIMH device */
xq->dib->vec = (data & XQ_VEC_IV);
sim_debug_bits(DBG_VAR, xq->dev, xq_var_bits, save_var, xq->var->var, 1);
return SCPE_OK;
}
t_stat xq_process_bootrom (CTLR* xq)
{
/*
NOTE: BOOT ROMs are a PDP-11ism, since they contain PDP-11 binary code.
the host is responsible for creating two *2KB* receive buffers.
RSTS/E v10.1 source (INIONE.MAC/XHLOOK:) indicates that both the DEQNA and
DELQA will set receive status word 1 bits 15 & 14 on both packets. It also
states that a hardware bug in the DEQNA will set receive status word 1 bit 15
(only) in the *third* receive buffer (oops!).
RSTS/E v10.1 will run the Citizenship test from the bootrom after loading it.
Documentation on the Boot ROM can be found in INIQNA.MAC.
*/
ETH_PACK pack;
uint8* bootrom_b = NULL;
size_t bootrom_size = 0;
sim_debug(DBG_TRC, xq->dev, "xq_process_bootrom()\n");
/* Turn on all 3 DEQNA Leds */
xq->var->setup.l1 = 1;
xq->var->setup.l2 = 1;
xq->var->setup.l3 = 1;
/* reset sanity timer */
xq_reset_santmr(xq);
if (xq->var->type == XQ_T_DEQNA) {
bootrom_b = (uint8*)xq_bootrom_deqna;
bootrom_size = sizeof(xq_bootrom_deqna);
} else {
if (xq->var->type == XQ_T_DELQA) {
bootrom_b = (uint8*)xq_bootrom_delqa;
bootrom_size = sizeof(xq_bootrom_delqa);
} else {
if (xq->var->type == XQ_T_DELQA_PLUS) {
bootrom_b = (uint8*)xq_bootrom_delqat;
bootrom_size = sizeof(xq_bootrom_delqat);
}
}
}
memset (&pack, 0, sizeof(pack));
pack.len = bootrom_size;
pack.used = 0;
if (bootrom_size <= sizeof(pack.msg))
memcpy (pack.msg, bootrom_b, bootrom_size);
else
pack.oversize = bootrom_b;
ethq_insert (&xq->var->ReadQ, 1, &pack, 0);
/* pump the FIFO into memory */
xq_process_rbdl (xq);
return SCPE_OK;
}
t_stat xq_wr_csr(CTLR* xq, int32 data)
{
uint16 set_bits = data & XQ_CSR_RW; /* set RW set bits */
uint16 clr_bits = ((data ^ XQ_CSR_RW) & XQ_CSR_RW) /* clear RW cleared bits */
| (data & XQ_CSR_W1) /* write 1 to clear bits */
| ((data & XQ_CSR_XI) ? XQ_CSR_NI : 0); /* clearing XI clears NI */
sim_debug(DBG_REG, xq->dev, "xq_wr_csr(data=0x%04X)\n", data);
/* reset controller when SR transitions to cleared */
if (xq->var->csr & XQ_CSR_SR & ~data) {
xq_sw_reset(xq);
return SCPE_OK;
}
/* start receiver when RE transitions to set */
if ((~xq->var->csr) & XQ_CSR_RE & data) {
sim_debug(DBG_REG, xq->dev, "xq_wr_csr(data=0x%04X) - receiver starting soon\n", data);
/* start the read service timer or enable asynch reading as appropriate */
sim_activate(&xq->unit[2], xq->var->startup_delay);
}
/* stop receiver when RE transitions to clear */
if (xq->var->csr & XQ_CSR_RE & ~data) {
sim_debug(DBG_REG, xq->dev, "xq_wr_csr(data=0x%04X) - receiver stopped\n", data);
/* stop the read service timer or disable asynch reading as appropriate */
xq_stop_receiver(xq);
}
if (xq->var->csr & XQ_CSR_EL & ~data)
sim_debug(DBG_REG, xq->dev, "xq_wr_csr(data=0x%04X) - External Loopback %s\n", data, (data & XQ_CSR_EL) ? "enabled" : "disabled");
if (xq->var->csr & XQ_CSR_IL & ~data)
sim_debug(DBG_REG, xq->dev, "xq_wr_csr(data=0x%04X) - Internal Loopback %s\n", data, (data & XQ_CSR_IL) ? "disabled" : "enabled");
/* update CSR bits */
xq_csr_set_clr (xq, set_bits, clr_bits);
/* request boot/diagnostic rom? [PDP-11 only] */
if ((xq->var->csr & XQ_CSR_BP) == XQ_CSR_BP) /* all bits must be on */
xq_process_bootrom(xq);
return SCPE_OK;
}
void xq_start_receiver(CTLR* xq)
{
if (!xq->var->etherface)
return;
/* start the read service timer or enable asynch reading as appropriate */
if (xq->var->must_poll) {
if (sim_idle_enab)
sim_clock_coschedule(xq->unit, tmxr_poll);
else
sim_activate(xq->unit, (tmr_poll*clk_tps)/xq->var->poll);
}
else
if ((xq->var->poll == 0) || (xq->var->mode == XQ_T_DELQA_PLUS))
eth_set_async(xq->var->etherface, xq->var->coalesce_latency_ticks);
else
if (sim_idle_enab)
sim_clock_coschedule(xq->unit, tmxr_poll);
else
sim_activate(xq->unit, (tmr_poll*clk_tps)/xq->var->poll);
}
void xq_stop_receiver(CTLR* xq)
{
sim_cancel(&xq->unit[0]); /* Stop Receiving */
sim_cancel(&xq->unit[2]);
if (xq->var->etherface)
eth_clr_async(xq->var->etherface);
}
t_stat xq_wr_srqr_set(CTLR* xq, int32 data)
{
uint16 set_bits = data & XQ_SRQR_RW; /* set RW set bits */
sim_debug(DBG_REG, xq->dev, "xq_wr_srqr(data=0x%04X)\n", data);
xq->var->srr = set_bits;
return sim_activate (&xq->unit[4], xq->var->startup_delay);
}
t_stat xq_wr_srqr_action(CTLR* xq)
{
sim_debug(DBG_REG, xq->dev, "xq_wr_srqr_action(data=0x%04X)\n", xq->var->srr);
switch (xq->var->srr) {
case XQ_SRQR_STRT: {
t_stat status;
xq->var->stats.setup += 1;
/* Get init block from memory */
status = Map_ReadW (xq->var->iba, sizeof(xq->var->init), (uint16 *)&xq->var->init);
if (SCPE_OK != status) {
xq_nxm_error (xq);
} else {
uint32 saved_debug = xq->dev->dctrl;
/* Correct byte ordering of non word fields for Big Endian platforms */
sim_buf_swap_data (xq->var->init.phys, sizeof(uint16), sizeof(xq->var->init.phys)/sizeof(uint16));
sim_buf_swap_data (xq->var->init.hash_filter, sizeof(uint16), sizeof(xq->var->init.hash_filter)/sizeof(uint16));
sim_buf_swap_data (xq->var->init.bootpassword, sizeof(uint16), sizeof(xq->var->init.bootpassword)/sizeof(uint16));
/* temporarily turn on Ethernet debugging if setup debugging is enabled */
if (xq->dev->dctrl & DBG_SET)
xq->dev->dctrl |= DBG_ETH;
xq_debug_turbo_setup(xq);
xq->dib->vec = xq->var->init.vector;
xq->var->tbindx = xq->var->rbindx = 0;
if ((xq->var->sanity.enabled & XQ_SAN_HW_SW) && (xq->var->init.options & XQ_IN_OP_HIT)) {
xq->var->sanity.quarter_secs = 4*xq->var->init.hit_timeout;
}
xq->var->icr = xq->var->init.options & XQ_IN_OP_INT;
status = eth_filter_hash (xq->var->etherface, 1, &xq->var->init.phys, 0, xq->var->init.mode & XQ_IN_MO_PRO, &xq->var->init.hash_filter);
xq->dev->dctrl = saved_debug; /* restore original debugging */
}
/* start the read service timer or enable asynch reading as appropriate */
xq_start_receiver(xq);
break;
}
case XQ_SRQR_STOP:
xq_stop_receiver(xq);
break;
default:
break;
}
/* All Writes to SRQR reset the Host Inactivity Timer */
xq_reset_santmr(xq);
/* Interrupt after this synchronous request completion */
xq_setint(xq);
return SCPE_OK;
}
t_stat xq_wr_arqr(CTLR* xq, int32 data)
{
sim_debug(DBG_REG, xq->dev, "xq_wr_arqr(data=0x%04X)\n", data);
/* initiate transmit activity when requested */
if (XQ_ARQR_TRQ & data) {
xq_process_turbo_xbdl (xq);
}
/* initiate transmit activity when requested */
if (XQ_ARQR_RRQ & data) {
xq_process_turbo_rbdl (xq);
}
/* reset controller when requested */
if (XQ_ARQR_SR & data) {
xq_sw_reset(xq);
}
/* All Writes to ARQR reset the Host Inactivity Timer */
xq_reset_santmr(xq);
return SCPE_OK;
}
t_stat xq_wr_icr(CTLR* xq, int32 data)
{
uint16 old_icr = xq->var->icr;
sim_debug(DBG_REG, xq->dev, "xq_wr_icr(data=0x%04X)\n", data);
xq->var->icr = data & XQ_ICR_ENA;
if (xq->var->icr && !old_icr && xq->var->pending_interrupt)
xq_setint(xq);
return SCPE_OK;
}
t_stat xq_wr(int32 ldata, int32 PA, int32 access)
{
CTLR* xq = xq_pa2ctlr(PA);
int index = (PA >> 1) & 07; /* word index */
uint16 data = (uint16)ldata;
sim_debug(DBG_REG, xq->dev, "xq_wr(data=0x%04X, PA=0x%08X[%s], access=%d)\n", data, PA, ((xq->var->mode == XQ_T_DELQA_PLUS) ? xqt_xmit_regnames[index] : xq_xmit_regnames[index]), access);
switch (xq->var->mode) {
case XQ_T_DELQA_PLUS:
switch (index) {
case 0: /* IBAL */
xq->var->iba = (xq->var->iba & 0xFFFF0000) | (data & 0xFFFF);
break;
case 1: /* IBAH */
xq->var->iba = (xq->var->iba & 0xFFFF) | ((data & 0xFFFF) << 16);
break;
case 2: /* ICR */
xq_wr_icr(xq, data);
break;
case 3:
break;
case 4: /* SRQR */
xq_wr_srqr_set (xq, data);
break;
case 5:
break;
case 6:
break;
case 7: /* ARQR */
xq_wr_arqr(xq, data);
break;
}
break;
default: /* DEQNA, DELQA Normal */
switch (index) {
case 0: /* IBAL/XCR0 */ /* these should only be written on a DELQA-T */
if (xq->var->type == XQ_T_DELQA_PLUS)
xq->var->iba = (xq->var->iba & 0xFFFF0000) | (data & 0xFFFF);
break;
case 1: /* IBAH/XCR1 */
if (xq->var->type == XQ_T_DELQA_PLUS) {
if (((xq->var->iba & 0xFFFF) == 0x0BAF) && (data == 0xFF00)) {
xq->var->mode = XQ_T_DELQA_PLUS;
xq->var->srr = XQ_SRR_TRBO;
sim_cancel(xq->unit); /* Turn off receive processing until explicitly enabled */
eth_clr_async(xq->var->etherface);
}
xq->var->iba = (xq->var->iba & 0xFFFF) | ((data & 0xFFFF) << 16);
}
break;
case 2: /* receive bdl low bits */
xq->var->rbdl[0] = data;
break;
case 3: /* receive bdl high bits */
xq->var->rbdl[1] = data;
xq_dispatch_rbdl(xq); /* start receive operation */
break;
case 4: /* transmit bdl low bits */
xq->var->xbdl[0] = data;
break;
case 5: /* transmit bdl high bits */
xq->var->xbdl[1] = data;
xq_csr_set_clr(xq, 0, XQ_CSR_XL);
xq_dispatch_xbdl(xq); /* start transmit operation */
break;
case 6: /* vector address register */
xq_wr_var(xq, data);
break;
case 7: /* control and status register */
xq_wr_csr(xq, data);
break;
}
break;
}
return SCPE_OK;
}
/* reset device */
t_stat xq_reset(DEVICE* dptr)
{
t_stat status;
CTLR* xq = xq_dev2ctlr(dptr);
const uint16 set_bits = XQ_CSR_RL | XQ_CSR_XL;
sim_debug(DBG_TRC, xq->dev, "xq_reset()\n");
/* One time only initializations */
if (!xq->var->initialized) {
char uname[16];
xq->var->initialized = TRUE;
sprintf (uname, "%s-SVC", dptr->name);
sim_set_uname (&dptr->units[0], uname);
sprintf (uname, "%s-TMRSVC", dptr->name);
sim_set_uname (&dptr->units[1], uname);
sprintf (uname, "%s-STARTSVC", dptr->name);
sim_set_uname (&dptr->units[2], uname);
sprintf (uname, "%s-RCVSVC", dptr->name);
sim_set_uname (&dptr->units[3], uname);
sprintf (uname, "%s-SRQRSVC", dptr->name);
sim_set_uname (&dptr->units[4], uname);
/* Set an initial MAC address in the DEC range */
xq_setmac (dptr->units, 0, "08:00:2B:00:00:00/24", NULL);
}
/* calculate MAC checksum */
xq_make_checksum(xq);
/* init vector address register */
switch (xq->var->type) {
case XQ_T_DEQNA:
xq->var->var = 0;
xq->var->mode = XQ_T_DEQNA;
break;
case XQ_T_DELQA:
case XQ_T_DELQA_PLUS:
xq->var->var = (xq->var->lockmode ? 0 : XQ_VEC_MS) | ((xq->var->sanity.enabled & XQ_SAN_HW_SW) ? XQ_VEC_OS : 0);
xq->var->mode = (xq->var->lockmode ? XQ_T_DEQNA : XQ_T_DELQA);
break;
}
xq->dib->vec = 0;
/* init control status register */
xq_csr_set_clr(xq, set_bits, (uint16) ~set_bits);
/* clear interrupts unconditionally */
xq_clrint(xq);
/* init read queue (first time only) */
status = ethq_init(&xq->var->ReadQ, XQ_QUE_MAX);
if (status != SCPE_OK)
return status;
/* clear read queue */
ethq_clear(&xq->var->ReadQ);
/* reset ethernet interface */
if (xq->var->etherface) {
/* restore filter on ROM mac address */
status = eth_filter (xq->var->etherface, 1, &xq->var->mac, 0, 0);
xq_csr_set_clr(xq, XQ_CSR_OK, 0);
/* start service timer */
sim_activate_after(&xq->unit[1], 250000);
/* stop the receiver */
eth_clr_async(xq->var->etherface);
}
/* stop the receiver */
sim_cancel(xq->unit);
sim_cancel(&xq->unit[2]);
/* set hardware sanity controls */
if (xq->var->sanity.enabled & XQ_SAN_HW_SW)
xq->var->sanity.quarter_secs = XQ_HW_SANITY_SECS * 4/*qsec*/;
if (sim_switches & SWMASK ('P')) { /* Powerup? */
memset (&xq->var->setup, 0, sizeof(xq->var->setup));
/* Turn on all 3 DEQNA Leds */
xq->var->setup.l1 = 1;
xq->var->setup.l2 = 1;
xq->var->setup.l3 = 1;
}
return auto_config (0, 0); /* run autoconfig */
}
void xq_reset_santmr(CTLR* xq)
{
sim_debug(DBG_TRC, xq->dev, "xq_reset_santmr(enable=%d, qsecs=%d)\n", ((xq->var->sanity.enabled & XQ_SAN_ENABLE) ? 1 : 0), xq->var->sanity.quarter_secs);
if (xq->var->sanity.enabled & XQ_SAN_ENABLE) {
sim_debug(DBG_SAN, xq->dev, "SANITY TIMER RESETTING, qsecs: %d\n", xq->var->sanity.quarter_secs);
/* reset sanity countdown timer to max count */
xq->var->sanity.timer = xq->var->sanity.quarter_secs;
}
}
t_stat xq_boot_host(CTLR* xq)
{
sim_debug(DBG_TRC, xq->dev, "xq_boot_host()\n");
/*
The manual says the hardware should force the Qbus BDCOK low for
3.6 microseconds, which will cause the host to reboot.
Since the SIMH Qbus emulator does not have this functionality, we return
a special STOP_ code, and let the CPU stop dispatch routine decide
what the appropriate cpu-specific behavior should be.
*/
return STOP_SANITY;
}
t_stat xq_system_id (CTLR* xq, const ETH_MAC dest, uint16 receipt_id)
{
static uint16 receipt = 0;
ETH_PACK system_id;
uint8* const msg = &system_id.msg[0];
t_stat status;
sim_debug(DBG_TRC, xq->dev, "xq_system_id()\n");
/* reset system ID counter for next event */
xq->var->idtmr = XQ_SYSTEM_ID_SECS * 4;
if (xq->var->coalesce_latency) {
/* Adjust latency ticks based on calibrated timer values */
xq->var->coalesce_latency_ticks = (tmr_poll * clk_tps * xq->var->coalesce_latency) / 1000000;
}
if (xq->var->type == XQ_T_DEQNA) /* DELQA-only function */
return SCPE_NOFNC;
memset (&system_id, 0, sizeof(system_id));
memcpy (&msg[0], dest, sizeof(ETH_MAC));
memcpy (&msg[6], xq->var->setup.valid ? xq->var->setup.macs[0] : xq->var->mac, sizeof(ETH_MAC));
msg[12] = 0x60; /* type */
msg[13] = 0x02; /* type */
msg[14] = 0x1C; /* character count */
msg[15] = 0x00; /* character count */
msg[16] = 0x07; /* code */
msg[17] = 0x00; /* zero pad */
if (receipt_id) {
msg[18] = receipt_id & 0xFF; /* receipt number */
msg[19] = (receipt_id >> 8) & 0xFF; /* receipt number */
} else {
msg[18] = receipt & 0xFF; /* receipt number */
msg[19] = (receipt++ >> 8) & 0xFF; /* receipt number */
}
/* MOP VERSION */
msg[20] = 0x01; /* type */
msg[21] = 0x00; /* type */
msg[22] = 0x03; /* length */
msg[23] = 0x03; /* version */
msg[24] = 0x01; /* eco */
msg[25] = 0x00; /* user eco */
/* FUNCTION */
msg[26] = 0x02; /* type */
msg[27] = 0x00; /* type */
msg[28] = 0x02; /* length */
msg[29] = 0x00; /* value 1 ??? */
msg[30] = 0x00; /* value 2 */
/* HARDWARE ADDRESS */
msg[31] = 0x07; /* type */
msg[32] = 0x00; /* type */
msg[33] = 0x06; /* length */
memcpy (&msg[34], xq->var->mac, sizeof(ETH_MAC)); /* ROM address */
/* DEVICE TYPE */
msg[40] = 37; /* type */
msg[41] = 0x00; /* type */
msg[42] = 0x01; /* length */
msg[43] = 0x11; /* value (0x11=DELQA) */
if (xq->var->type == XQ_T_DELQA_PLUS) /* DELQA-T has different Device ID */
msg[43] = 0x4B; /* value (0x4B(75)=DELQA-T) */
/* write system id */
system_id.len = 60;
status = eth_write(xq->var->etherface, &system_id, NULL);
if (DBG_PCK & xq->dev->dctrl)
eth_packet_trace_ex(xq->var->etherface, system_id.msg, system_id.len, "xq-systemid", DBG_DAT & xq->dev->dctrl, DBG_PCK);
return status;
}
/*
** service routine - used for ethernet reading loop
*/
t_stat xq_svc(UNIT* uptr)
{
CTLR* xq = xq_unit2ctlr(uptr);
/* if the receiver is enabled */
if ((xq->var->mode == XQ_T_DELQA_PLUS) || (xq->var->csr & XQ_CSR_RE)) {
t_stat status;
/* First pump any queued packets into the system */
if ((xq->var->ReadQ.count > 0) && ((xq->var->mode == XQ_T_DELQA_PLUS) || (~xq->var->csr & XQ_CSR_RL)))
xq_process_rbdl(xq);
/* Now read and queue packets that have arrived */
/* This is repeated as long as they are available */
do {
/* read a packet from the ethernet - processing is via the callback */
status = eth_read (xq->var->etherface, &xq->var->read_buffer, xq->var->rcallback);
} while (status);
/* Now pump any still queued packets into the system */
if ((xq->var->ReadQ.count > 0) && ((xq->var->mode == XQ_T_DELQA_PLUS) || (~xq->var->csr & XQ_CSR_RL)))
xq_process_rbdl(xq);
}
/* resubmit service timer */
if ((xq->var->must_poll) || (xq->var->poll && (xq->var->mode != XQ_T_DELQA_PLUS))) {
if (sim_idle_enab)
sim_clock_coschedule(uptr, tmxr_poll);
else
sim_activate(uptr, (tmr_poll*clk_tps)/xq->var->poll);
}
return SCPE_OK;
}
/*
** service routine - used for timer based activities
*/
t_stat xq_tmrsvc(UNIT* uptr)
{
CTLR* xq = xq_unit2ctlr(uptr);
/* is sanity timer running and has it expired? if so, reboot */
if (xq->var->sanity.enabled & XQ_SAN_ENABLE) {
sim_debug(DBG_SAN, xq->dev, "SANITY TIMER TICK, %d qsecs remaining out of %d qsecs\n", xq->var->sanity.timer-1, xq->var->sanity.quarter_secs);
if (--xq->var->sanity.timer <= 0) {
sim_debug(DBG_SAN, xq->dev, "SANITY TIMER EXPIRED, after %d qsecs\n", xq->var->sanity.quarter_secs);
if (xq->var->mode != XQ_T_DELQA_PLUS)
return xq_boot_host(xq);
else { /* DELQA-T Host Inactivity Timer expiration means switch out of DELQA-T mode */
sim_debug(DBG_TRC, xq->dev, "xq_tmrsvc(DELQA-PLUS Host Inactivity Expired\n");
xq->var->mode = XQ_T_DELQA;
xq->var->iba = xq->var->srr = 0;
xq->var->var = XQ_VEC_MS | ((xq->var->sanity.enabled & XQ_SAN_HW_SW) ? XQ_VEC_OS : 0);
}
}
}
/* has system id timer expired? if so, do system id */
if (--xq->var->idtmr <= 0) {
const ETH_MAC mop_multicast = {0xAB, 0x00, 0x00, 0x02, 0x00, 0x00};
xq_system_id(xq, mop_multicast, 0);
}
/* resubmit service timer */
sim_activate_after(uptr, 250000);
return SCPE_OK;
}
/*
** service routine - used to delay receiver start by a few simulated
** instructions
*/
t_stat xq_startsvc(UNIT* uptr)
{
CTLR* xq = xq_unit2ctlr(uptr);
sim_debug(DBG_TRC, xq->dev, "xq_startsvc()\n");
/* start the read service timer or enable asynch reading as appropriate */
xq_start_receiver(xq);
return SCPE_OK;
}
/*
** service routine - used to delay receiption of loopback and setup packets by
** 400 useconds like the real hardware
*/
t_stat xq_receivesvc(UNIT* uptr)
{
CTLR* xq = xq_unit2ctlr(uptr);
sim_debug(DBG_TRC, xq->dev, "xq_receivesvc()\n");
/* read setup or loopback packet */
xq_process_rbdl(xq);
return SCPE_OK;
}
t_stat xq_srqrsvc(UNIT * uptr)
{
CTLR* xq = xq_unit2ctlr(uptr);
sim_debug(DBG_TRC, xq->dev, "xq_srqrsvc()\n");
xq_wr_srqr_action(xq);
return SCPE_OK;
}
/* attach device: */
t_stat xq_attach(UNIT* uptr, CONST char* cptr)
{
t_stat status;
char* tptr;
CTLR* xq = xq_unit2ctlr(uptr);
char buffer[80]; /* buffer for runtime input */
sim_debug(DBG_TRC, xq->dev, "xq_attach(cptr=%s)\n", cptr);
/* runtime selection of ethernet port? */
if (*cptr == '?') { /* I/O style derived from main() */
memset (buffer, 0, sizeof(buffer)); /* clear read buffer */
eth_show (stdout, uptr, 0, NULL); /* show ETH devices */
printf ("Select device (ethX or <device_name>)? "); /* prompt for device */
cptr = read_line (buffer, sizeof(buffer), stdin); /* read command line */
if (cptr == NULL) return SCPE_ARG; /* ignore EOF */
if (*cptr == 0) return SCPE_ARG; /* ignore blank */
} /* resume attaching */
tptr = (char *) malloc(strlen(cptr) + 1);
if (tptr == NULL) return SCPE_MEM;
strcpy(tptr, cptr);
xq->var->etherface = (ETH_DEV *) malloc(sizeof(ETH_DEV));
if (!xq->var->etherface) {
free(tptr);
return SCPE_MEM;
}
status = eth_open(xq->var->etherface, cptr, xq->dev, DBG_ETH);
if (status != SCPE_OK) {
free(tptr);
free(xq->var->etherface);
xq->var->etherface = NULL;
return status;
}
eth_set_throttle (xq->var->etherface, xq->var->throttle_time, xq->var->throttle_burst, xq->var->throttle_delay);
if (xq->var->poll == 0) {
status = eth_set_async(xq->var->etherface, xq->var->coalesce_latency_ticks);
if (status != SCPE_OK) {
eth_close(xq->var->etherface);
free(tptr);
free(xq->var->etherface);
xq->var->etherface = NULL;
return status;
}
xq->var->must_poll = 0;
} else {
xq->var->must_poll = (SCPE_OK != eth_clr_async(xq->var->etherface));
}
if (SCPE_OK != eth_check_address_conflict (xq->var->etherface, &xq->var->mac)) {
char buf[32];
eth_mac_fmt(&xq->var->mac, buf); /* format ethernet mac address */
sim_printf("%s: MAC Address Conflict on LAN for address %s, change the MAC address to a unique value\n", xq->dev->name, buf);
eth_close(xq->var->etherface);
free(tptr);
free(xq->var->etherface);
xq->var->etherface = NULL;
return SCPE_NOATT;
}
uptr->filename = tptr;
uptr->flags |= UNIT_ATT;
/* turn on transceiver power indicator */
xq_csr_set_clr(xq, XQ_CSR_OK, 0);
/* init read queue (first time only) */
status = ethq_init(&xq->var->ReadQ, XQ_QUE_MAX);
if (status != SCPE_OK) {
eth_close(xq->var->etherface);
free(tptr);
free(xq->var->etherface);
xq->var->etherface = NULL;
return status;
}
if (xq->var->mode == XQ_T_DELQA_PLUS)
eth_filter_hash (xq->var->etherface, 1, &xq->var->init.phys, 0, xq->var->init.mode & XQ_IN_MO_PRO, &xq->var->init.hash_filter);
else
if (xq->var->setup.valid) {
int i, count = 0;
ETH_MAC zeros = {0, 0, 0, 0, 0, 0};
ETH_MAC filters[XQ_FILTER_MAX + 1];
for (i = 0; i < XQ_FILTER_MAX; i++)
if (memcmp(zeros, &xq->var->setup.macs[i], sizeof(ETH_MAC)))
memcpy (filters[count++], xq->var->setup.macs[i], sizeof(ETH_MAC));
eth_filter (xq->var->etherface, count, filters, xq->var->setup.multicast, xq->var->setup.promiscuous);
}
else
/* reset the device with the new attach info */
xq_reset(xq->dev);
return SCPE_OK;
}
/* detach device: */
t_stat xq_detach(UNIT* uptr)
{
CTLR* xq = xq_unit2ctlr(uptr);
sim_debug(DBG_TRC, xq->dev, "xq_detach()\n");
if (uptr->flags & UNIT_ATT) {
eth_close (xq->var->etherface);
free(xq->var->etherface);
xq->var->etherface = NULL;
free(uptr->filename);
uptr->filename = NULL;
uptr->flags &= ~UNIT_ATT;
/* cancel service timers */
sim_cancel(&xq->unit[0]);
sim_cancel(&xq->unit[1]);
}
/* turn off transceiver power indicator */
xq_csr_set_clr(xq, 0, XQ_CSR_OK);
return SCPE_OK;
}
void xq_setint(CTLR* xq)
{
if (xq->var->mode == XQ_T_DELQA_PLUS) {
if (!xq->var->icr) {
xq->var->pending_interrupt = 1;
return;
}
xq->var->pending_interrupt = 0;
}
sim_debug(DBG_TRC, xq->dev, "xq_setint() - Generate Interrupt\n");
xq->var->irq = 1;
SET_INT(XQ);
return;
}
void xq_clrint(CTLR* xq)
{
int i;
xq->var->irq = 0; /* set controller irq off */
/* clear master interrupt? */
for (i=0; i<XQ_MAX_CONTROLLERS; i++) /* check all controllers.. */
if (xq_ctrl[i].var->irq) { /* if any irqs enabled */
SET_INT(XQ); /* set master interrupt on */
return;
}
CLR_INT(XQ); /* clear master interrupt */
return;
}
int32 xq_int (void)
{
int i;
for (i=0; i<XQ_MAX_CONTROLLERS; i++) {
CTLR* xq = &xq_ctrl[i];
if (xq->var->irq) { /* if interrupt pending */
xq_clrint(xq); /* clear interrupt */
return xq->dib->vec; /* return vector */
}
}
return 0; /* no interrupt request active */
}
void xq_csr_set_clr (CTLR* xq, uint16 set_bits, uint16 clear_bits)
{
uint16 saved_csr = xq->var->csr;
/* set the bits in the csr */
xq->var->csr = (xq->var->csr | set_bits) & ~clear_bits;
sim_debug_bits(DBG_CSR, xq->dev, xq_csr_bits, saved_csr, xq->var->csr, 1);
/* check and correct the state of controller interrupt */
/* if IE is transitioning, process it */
if ((saved_csr ^ xq->var->csr) & XQ_CSR_IE) {
/* if IE transitioning low and interrupt set, clear interrupt */
if ((clear_bits & XQ_CSR_IE) && xq->var->irq)
xq_clrint(xq);
/* if IE transitioning high, and XI or RI is high,
set interrupt if interrupt is off */
if ((set_bits & XQ_CSR_IE) && (xq->var->csr & XQ_CSR_XIRI) && !xq->var->irq)
xq_setint(xq);
} else { /* IE is not transitioning */
/* if interrupts are enabled */
if (xq->var->csr & XQ_CSR_IE) {
/* if XI or RI transitioning high and interrupt off, set interrupt */
if (((saved_csr ^ xq->var->csr) & (set_bits & XQ_CSR_XIRI)) && !xq->var->irq) {
xq_setint(xq);
} else {
/* if XI or RI transitioning low, and both XI and RI are now low,
clear interrupt if interrupt is on */
if (((saved_csr ^ xq->var->csr) & (clear_bits & XQ_CSR_XIRI))
&& !(xq->var->csr & XQ_CSR_XIRI)
&& xq->var->irq)
xq_clrint(xq);
}
} /* IE enabled */
} /* IE transitioning */
}
/*==============================================================================
/ debugging routines
/=============================================================================*/
void xq_debug_setup(CTLR* xq)
{
int i;
char buffer[20];
if (!(sim_deb && (xq->dev->dctrl & DBG_SET)))
return;
if (xq->var->write_buffer.msg[0]) {
sim_debug(DBG_SET, xq->dev, "%s: setup> MOP info present!\n", xq->dev->name);
}
for (i = 0; i < XQ_FILTER_MAX; i++) {
eth_mac_fmt(&xq->var->setup.macs[i], buffer);
sim_debug(DBG_SET, xq->dev, "%s: setup> set addr[%d]: %s\n", xq->dev->name, i, buffer);
}
if (xq->var->write_buffer.len > 128) {
char buffer[20] = {0};
uint16 len = (uint16)xq->var->write_buffer.len;
if (len & XQ_SETUP_MC) strcat(buffer, "MC ");
if (len & XQ_SETUP_PM) strcat(buffer, "PM ");
if (len & XQ_SETUP_LD) strcat(buffer, "LD ");
if (len & XQ_SETUP_ST) strcat(buffer, "ST ");
sim_debug(DBG_SET, xq->dev, "%s: setup> Length [%d =0x%X, LD:%d, ST:%d] info: %s\n",
xq->dev->name, len, len, (len & XQ_SETUP_LD) >> 2, (len & XQ_SETUP_ST) >> 4, buffer);
}
}
void xq_debug_turbo_setup(CTLR* xq)
{
size_t i;
char buffer[64] = "";
if (!(sim_deb && (xq->dev->dctrl & DBG_SET)))
return;
sim_debug(DBG_SET, xq->dev, "%s: setup> Turbo Initialization Block!\n", xq->dev->name);
if (xq->var->init.mode & XQ_IN_MO_PRO) strcat(buffer, "PRO ");
if (xq->var->init.mode & XQ_IN_MO_INT) strcat(buffer, "INT ");
if (xq->var->init.mode & XQ_IN_MO_DRT) strcat(buffer, "DRC ");
if (xq->var->init.mode & XQ_IN_MO_DTC) strcat(buffer, "DTC ");
if (xq->var->init.mode & XQ_IN_MO_LOP) strcat(buffer, "LOP ");
sim_debug(DBG_SET, xq->dev, "%s: setup> set Mode: %s\n", xq->dev->name, buffer);
eth_mac_fmt(&xq->var->init.phys, buffer);
sim_debug(DBG_SET, xq->dev, "%s: setup> set Physical MAC Address: %s\n", xq->dev->name, buffer);
buffer[0] = '\0';
for (i = 0; i < sizeof(xq->var->init.hash_filter); i++)
sprintf(&buffer[strlen(buffer)], "%02X ", xq->var->init.hash_filter[i]);
sim_debug(DBG_SET, xq->dev, "%s: setup> set Multicast Hash: %s\n", xq->dev->name, buffer);
buffer[0] = '\0';
if (xq->var->init.options & XQ_IN_OP_HIT) strcat(buffer, "HIT ");
if (xq->var->init.options & XQ_IN_OP_INT) strcat(buffer, "INT ");
sim_debug(DBG_SET, xq->dev, "%s: setup> set Options: %s\n", xq->dev->name, buffer);
sim_debug(DBG_SET, xq->dev, "%s: setup> set Vector: %d =0x%X\n",
xq->dev->name, xq->var->init.vector, xq->var->init.vector);
sim_debug(DBG_SET, xq->dev, "%s: setup> set Host Inactivity Timeout: %d seconds\n",
xq->dev->name, xq->var->init.hit_timeout);
buffer[0] = '\0';
for (i = 0; i < sizeof(xq->var->init.bootpassword); i++)
sprintf(&buffer[strlen(buffer)], "%02X ", xq->var->init.bootpassword[i]);
sim_debug(DBG_SET, xq->dev, "%s: setup> set Boot Password: %s\n", xq->dev->name, buffer);
sim_debug(DBG_SET, xq->dev, "%s: setup> set Receive Ring Buffer Address: %02X%04X\n",
xq->dev->name, xq->var->init.rdra_h, xq->var->init.rdra_l);
sim_debug(DBG_SET, xq->dev, "%s: setup> set Transmit Ring Buffer Address: %02X%04X\n",
xq->dev->name, xq->var->init.tdra_h, xq->var->init.tdra_l);
}
t_stat xq_boot (int32 unitno, DEVICE *dptr)
{
#ifdef VM_PDP11
size_t i;
DIB *dib = (DIB *)dptr->ctxt;
extern int32 REGFILE[6][2]; /* R0-R5, two sets */
for (i = 0; i < BOOT_LEN; i++)
M[(BOOT_START >> 1) + i] = boot_rom[i];
cpu_set_boot (BOOT_ENTRY);
REGFILE[0][0] = ((dptr == &xq_dev) ? 4 : 5);
return SCPE_OK;
#else
return SCPE_NOFNC;
#endif
}
t_stat xq_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr)
{
const char helpString[] =
/* The '*'s in the next line represent the standard text width of a help line */
/****************************************************************************/
// " The %1s is a communication subsystem which consists of a microprocessor\n"
" The DELQA-T/DELQA/DEQNA Qbus devices interface the %S processors\n"
" to an Ethernet Local Area Network (LAN).\n"
"\n"
#ifdef VM_PDP11
" The controllers are compatible with both 18- and 22-bit Qbus backplanes.\n"
"\n"
#endif
" The simulator implements two DELQA-T/DELQA/DEQNA Qbus Ethernet controllers\n"
" (XQ, XQB). Initially, XQ is enabled, and XQB is disabled.\n"
"1 Hardware Description\n"
" The %D conforms to the Ethernet 2.0 specification performing the\n"
" data link layer functions, and part of the physical layer functions.\n"
"2 Models\n"
"3 DEQNA\n"
" A M7504 Qbus Module. The DELQA module is a dual-height module which\n"
" plugs directly into the Qbus backplane.\n"
"3 DELQA\n"
" A M7516 Qbus Module. The DELQA module is a dual-height module which\n"
" plugs directly into the Qbus backplane.\n"
"3 DELQA-T\n"
" A M7516-YM Qbus Module. The DELQA-T, also known as the DELQA-PLUS,\n"
" is a dual-height module which plugs directly into the Qbus backplane.\n"
"\n"
" The DELQA-T device has an extended register programming interface\n"
" which is more efficient than the initial DEQNA and DELQA model.\n"
"2 $Registers\n"
"\n"
" These registers contain the emulated state of the device. These values\n"
" don't necessarily relate to any detail of the original device being\n"
" emulated but are merely internal details of the emulation.\n"
"1 Configuration\n"
" A %D device is configured with various SET and ATTACH commands\n"
/****************************************************************************/
"2 $Set commands\n"
"3 MAC\n"
" The MAC address of the controller is the Hardware MAC address which on\n"
" real hardware is uniquely assigned by the factory. Each LAN device on a\n"
" network must have unique MAC addresses for proper operation.\n"
"\n"
"+sim> SET %D MAC=<mac-address>\n"
"\n"
" A Valid MAC address is comprised of 6 pairs of hex digits delimited by\n"
" dashes, colons or period characters.\n"
"\n"
" The default MAC address for the %D device is set to a value in the range\n"
" from 08-00-2B-00-00-00 thru 08-00-2B-FF-FF-FF.\n"
"\n"
" The SET MAC command must be done before the %D device is attached to a\n"
" network.\n"
"4 Generated MAC\n"
" Support exists to provide a way to dynamically generate relatively\n"
" unique MAC addresses and to provide a way to save generated addresses\n"
" for subsequent reuse in later simulator invocations.\n"
"\n"
"+sim> SET XQ MAC=AA:BB:CC:DD:EE:FF{/bits}{>filespec}\n"
"\n"
" where:\n"
"+1. All of the AA:BB:CC:DD:EE:FF values must be hex digits\n"
"+2. bits is the number of bits which are to be taken from the\n"
"++ supplied MAC aa:bb:cc:dd:ee:ff with legal values from 16\n"
"++ to 48 and a default of 48 bits.\n"
"+3. filespec specifies a file which contains the MAC address\n"
"++ to be used and if it doesn't exist an appropriate generated\n"
"++ address will be stored in this file and a subsequent SET MAC\n"
"++ invocation specifying the same file will use the value stored\n"
"++ in the file rather than generating a new MAC.\n"
"3 Type\n"
" The type of device being emulated can be changed with the following\n"
" command:\n"
"\n"
"+sim> SET %D TYPE={DEQNA|DELQA|DELQA-T}\n"
"\n"
" A SET TYPE command should be entered before the device is attached.\n"
/****************************************************************************/
"3 SANITY\n"
" The sanity timer exists to make sure that the simulated operating system\n"
" software is up and running. The sanity timer is also known as the host\n"
" inactivity timer.\n"
" The timer is reset by the operating system device driver interacting with\n"
" the device. If the timer expires, the device negates the Qbus DCOK signal\n"
" which causes the system to reboot.\n"
"\n"
" The initial state of the sanity timer on real DEQNA hardware is configured\n"
" with the switch W4 and is switch S4 on DELQA boards. The SET %D SANITY\n"
" command exists to reflect the setting of this switch.\n"
"3 DEQNALOCK\n"
" Setting DEQNALock mode causes a DELQA or DELQA-T device to behaves exactly\n"
" like a DEQNA, except for the operation of the VAR and MOP processing.\n"
"3 POLL\n"
#if defined(USE_READER_THREAD) && defined(SIM_ASYNCH_IO)
" The SET %D POLL command changes the service polling timer. Scheduled\n"
" service polling is unnecessary and inefficient when asynchronous I/O is\n"
" available, therefore the default setting is disabled.\n"
#else /* !(defined(USE_READER_THREAD) && defined(SIM_ASYNCH_IO)) */
" The SET %D POLL command changes the service polling timer. The polling\n"
" timer is calibrated to run the service thread on each simulated system clock\n"
" tick. This should be sufficient for most situations, however if desired more\n"
" frequent polling can be specified. Polling too frequent can seriously impact\n"
" the simulator's ability to execute instructions efficiently.\n"
#endif /* defined(USE_READER_THREAD) && defined(SIM_ASYNCH_IO) */
/****************************************************************************/
"3 THROTTLE\n"
" The faster network operation of a simulated DELQA-T/DELQA/DEQNA device\n"
" might be too fast to interact with real PDP11 or VAX systems running on\n"
" the same LAN.\n"
" Traffic from the simulated device can easily push the real hardware\n"
" harder than it ever would have seen historically. The net result can\n"
" be excessive packet loss due to various over-run conditions. To support\n"
" interoperation of simulated systems with legacy hardware, the simulated\n"
" system can explictly be configured to throttle back the traffic it puts\n"
" on the wire.\n"
"\n"
" Throttling is configured with the SET XQ THROTTLE commands:\n"
"\n"
"+sim> SET XQ THROTTLE=DISABLE\n"
"+sim> SET XQ THROTTLE=ON\n"
"+sim> SET XQ THROTTLE=TIME=n;BURST=p;DELAY=t\n"
"\n"
" TIME specifies the number of milliseconds between successive packet\n"
" transmissions which will trigger throttling.\n"
" BURST specifies the number of successive packets which each are less than\n"
" the TIME gap that will cause a delay in sending subsequent packets.\n"
" DELAY specifies the number of milliseconds which a throttled packet will\n"
" be delayed prior to its transmission.\n"
"\n"
/****************************************************************************/
"2 Attach\n"
" The device must be attached to a LAN device to communicate with systems\n"
" on that LAN\n"
"\n"
"+sim> SHOW %D ETH\n"
"+ETH devices:\n"
#if defined(_WIN32)
"+ eth0 \\Device\\NPF_{A6F81789-B849-4220-B09B-19760D401A38} (Local Area Connection)\n"
"+ eth1 udp:sourceport:remotehost:remoteport (Integrated UDP bridge support)\n"
"+sim> ATTACH %D eth0\n"
#else
"+ eth0 en0 (No description available)\n"
"+ eth1 tap:tapN (Integrated Tun/Tap support)\n"
"+ eth2 udp:sourceport:remotehost:remoteport (Integrated UDP bridge support)\n"
"+sim> ATTACH %D eth0\n"
"+sim> ATTACH %D en0\n"
#endif
"+sim> ATTACH %D udp:1234:remote.host.com:1234\n"
"\n"
"2 Examples\n"
" To configure two simulators to talk to each other use the following\n"
" example:\n"
" \n"
" Machine 1\n"
"+sim> SET %D ENABLE\n"
"+sim> SET %D PEER=LOCALHOST:2222\n"
"+sim> ATTACH %D 1111\n"
" \n"
" Machine 2\n"
"+sim> SET %D ENABLE\n"
"+sim> SET %U PEER=LOCALHOST:1111\n"
"+sim> ATTACH %U 2222\n"
"\n"
"1 Monitoring\n"
" The %D device configuration and state can be displayed with one of the\n"
" available show commands.\n"
"2 $Show commands\n"
"3 LEDs\n"
" The %D devices have on-board LEDS which are used by the operating system,\n"
" boot code, and diagnostics to indicate the state of the device. The LED\n"
" state is visible with the SHOW %D LEDS command.\n"
"1 Boot Support\n"
#ifdef VM_PDP11
" The %D device is bootable using the on-board ROM code in the PDP-11\n"
" simulator.\n"
#else
" The %D device is bootable via the processor boot ROM on all MicroVAX\n"
" systems.\n"
#endif
"1 Debugging\n"
" The simulator has a number of debug options, these are:\n"
"\n"
"++TRACE Shows detailed routine calls.\n"
"++CSR Shows activities affecting the CSR.\n"
"++VAR Shows activities affecting the VAR.\n"
"++RBL Shows receive list warnings.\n"
"++XBL Shows transmit list warnings.\n"
"++WARN Shows warnings.\n"
"++SETUP Shows setup info.\n"
"++SANITY Shows sanity timer info.\n"
"++REG Shows all device register programatic read/write activity\n"
"++PACKET Shows packet headers.\n"
"++DATA Shows packet data.\n"
"++ETH Shows ethernet device details.\n"
"\n"
" To get a full trace use\n"
"\n"
"+sim> SET %D DEBUG\n"
"\n"
/****************************************************************************/
"1 Dependencies\n"
#if defined(_WIN32)
" The WinPcap package must be installed in order to enable\n"
" communication with other computers on the local LAN.\n"
"\n"
" The WinPcap package is available from http://www.winpcap.org/\n"
#else
" To build simulators with the ability to communicate to other computers\n"
" on the local LAN, the libpcap development package must be installed on\n"
" the system which builds the simulator.\n"
"\n"
#if defined(__APPLE__)
#else
#if defined(__linux__)
#else
#endif
#endif
#endif
"1 Privileges Required\n"
#if defined(_WIN32)
" Windows systems can attach the simulated %D device to the local LAN\n"
" network interface without any special privileges as long as the\n"
" WinPcap package has been previously installed on the host system.\n"
#else
#endif
"1 Host Computer Communications\n"
#if defined(_WIN32)
" On Windows using the WinPcap interface, the simulated %D device\n"
" can be used to communicate with the host computer on the same LAN\n"
" which it is attached to.\n"
#else
#endif
/****************************************************************************/
"1 Performance\n"
" On modern host systems and networks, the simulated DEQNA/DELQA/DELQA-T\n"
" device can easily move data at more than 20Mbits per second.\n"
" Real DEQNA/DELQA hardware rarely exceeded more than 1.5Mbits/second\n"
"\n"
" Due to this significant speed mismatch, there can be issues when\n"
" simulated systems attempt to communicate with real PDP11 and VAX systems\n"
" on the LAN. See SET %D THROTTLE to help accommodate such communications\n"
" HELP %D CONF SET THROTTLE\n"
"1 Related Devices\n"
" The %D can facilitate communication with other simh simulators which\n"
" have emulated Ethernet devices available as well as real systems that\n"
" are directly connected to the LAN.\n"
"\n"
" The other simulated Ethernet devices include:\n"
"\n"
"++DEUNA/DELUA Unibus PDP11 and VAX simulators\n"
"\n"
;
return scp_help (st, dptr, uptr, flag, helpString, cptr);
}
const char *xq_description (DEVICE *dptr)
{
return (dptr == &xq_dev) ? "DELQA/DEQNA Ethernet controller"
: "Second DELQA/DEQNA Ethernet controller";
}