blob: 55ef6eb1ae205e987bea3c5c960c9b165010045a [file] [log] [blame] [raw]
/* ssem_sys.c: Manchester University SSEM (Small Scale Experimental Machine)
simulator interface
Based on the SIMH package written by Robert M Supnik
Copyright (c) 2006-2013 Gerardo Ospina
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of the author shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from the author.
This is not a supported product, but the author welcomes bug reports and fixes.
Mail to ngospina@gmail.com
*/
#include <ctype.h>
#include "ssem_defs.h"
extern uint32 S[];
extern uint32 C[];
extern int32 A[];
extern DEVICE cpu_dev;
extern REG cpu_reg[];
/* SCP data structures and interface routines
sim_name simulator name string
sim_PC pointer to saved PC register descriptor
sim_emax maximum number of words for examine/deposit
sim_devices array of pointers to simulated devices
sim_stop_messages array of pointers to stop messages
sim_load binary loader
fprint_sym memory examine
parser_sym memory deposit
*/
char sim_name[] = "SSEM";
REG *sim_PC = &cpu_reg[0];
int32 sim_emax = 1;
DEVICE *sim_devices[] = {
&cpu_dev,
NULL
};
const char *sim_stop_messages[] = {
"Unknown error",
"Stop",
"Breakpoint",
};
/* SSEM binary dump */
t_stat ssem_dump (FILE *fi)
{
if (sim_fwrite(A, sizeof(int32), 1, fi) != 1 ||
sim_fwrite(C, sizeof(uint32), 1, fi) != 1 ||
sim_fwrite(S, sizeof(uint32), MEMSIZE, fi) != MEMSIZE) {
return SCPE_IOERR;
}
return SCPE_OK;
}
/* SSEM binary loader */
t_stat ssem_load_dmp (FILE *fi)
{
C[1] = 0;
if (sim_fread(A, sizeof(int32), 1, fi) != 1 ||
sim_fread(C, sizeof(uint32), 1, fi) != 1 ||
sim_fread(S, sizeof(uint32), MEMSIZE, fi) != MEMSIZE) {
return SCPE_IOERR;
}
return SCPE_OK;
}
/* Loader
Inputs:
*fi = input stream
*cptr = VM-specific arguments
*fnam = file name
flag = 1 = dump, 0 = load
Outputs:
return = status code
*/
t_stat sim_load (FILE *fi, CONST char *cptr, CONST char *fnam, int flag)
{
size_t len;
len = strlen(fnam);
if (len <= 3 || strcmp(fnam + (len - 3), ".st") != 0) return SCPE_ARG;
if (flag == 1) return ssem_dump(fi);
return ssem_load_dmp(fi);
}
/* Use scp.c provided fprintf function */
#define fprintf Fprintf
#define fputs(_s,f) Fprintf(f,"%s",_s)
#define fputc(_c,f) Fprintf(f,"%c",_c)
/* Utility routine - prints number in decimal */
t_stat ssem_fprint_decimal (FILE *of, uint32 inst)
{
if (inst & SMASK)
fprintf (of, "%d [%u]", inst, inst);
else
fprintf (of, "%d", inst);
return SCPE_OK;
}
/* Utility routine - prints number in backward binary */
t_stat ssem_fprint_binary_number (FILE *of, uint32 inst, uint8 nbits)
{
int i;
uint32 n;
n = inst;
for (i = 0; i < nbits; i++) {
fprintf(of, "%d", n & 1 ? 1 : 0);
n >>= 1;
}
return SCPE_OK;
}
/* Utility routine - prints instruction in backward binary */
t_stat ssem_fprint_binary (FILE *of, uint32 inst, int flag)
{
uint32 op, ea;
if (!flag) return ssem_fprint_binary_number(of, inst, 32);
op = I_GETOP (inst);
if (op != OP_TEST && op != OP_STOP) {
ea = I_GETEA (inst);
ssem_fprint_binary_number(of, ea, 5);
fprintf (of, " ");
}
ssem_fprint_binary_number(of, op, 3);
return SCPE_OK;
}
/* Utility routine
prints instruction in the mnemomic style used in the 1998
competition reference manual:
"The Manchester University Small Scale Experimental Machine
Programmer's Reference manual"
http://www.computer50.org/mark1/prog98/ssemref.html
*/
t_stat ssem_fprint_competition_mnemonic (FILE *of, uint32 inst)
{
uint32 op, ea;
op = I_GETOP (inst);
switch (op) {
case OP_JUMP_INDIRECT: /* JMP */
ea = I_GETEA (inst);
fprintf (of, "JMP %d", ea);
break;
case OP_JUMP_INDIRECT_RELATIVE: /* JRP */
ea = I_GETEA (inst);
fprintf (of, "JRP %d", ea);
break;
case OP_LOAD_NEGATED: /* LDN */
ea = I_GETEA (inst);
fprintf (of, "LDN %d", ea);
break;
case OP_STORE: /* STO */
ea = I_GETEA (inst);
fprintf (of, "STO %d", ea);
break;
case OP_SUBSTRACT: /* SUB */
ea = I_GETEA (inst);
fprintf (of, "SUB %d", ea);
break;
case OP_UNDOCUMENTED: /* invalid instruction */
return SCPE_ARG;
case OP_TEST: /* CMP */
fprintf (of, "CMP");
break;
case OP_STOP: /* STOP */
fprintf (of, "STOP");
break; /* end switch */
}
return SCPE_OK;
}
/* Symbolic decode
Inputs:
*of = output stream
addr = current PC
*val = pointer to data
*uptr = pointer to unit
sw = switches
Outputs:
return = status code
*/
t_stat fprint_sym (FILE *of, t_addr addr, t_value *val,
UNIT *uptr, int32 sw)
{
uint32 inst;
if (sw & SWMASK ('H')) return SCPE_ARG; /* hexadecimal? */
inst = val[0];
if (sw & SWMASK ('D')) /* decimal? */
return ssem_fprint_decimal(of, inst);
if (sw & SWMASK ('M')) { /* mnemomic? */
return ssem_fprint_competition_mnemonic(of, inst);
}
return ssem_fprint_binary(of, inst, sw & SWMASK ('I') || sw & SWMASK ('M'));
}
static const char *opcode[] = {
"JMP", "JRP", "LDN",
"STO", "SUB", "",
"CMP", "STOP",
NULL
};
/* Utility function - parses decimal number. */
t_stat parse_sym_d (const char *cptr, t_value *val)
{
const char *start;
int n;
start = cptr;
if (*cptr == '-') cptr++; /* skip sign */
n = 0;
while (*cptr >= '0' && *cptr <= '9') {
n = (n * 10) + (*cptr - '0');
cptr++;
}
if (*start == '-') n = -n;
if (*cptr) return SCPE_ARG; /* junk at end? */
*val = n;
return SCPE_OK;
}
/* Utility function
Parses mnemonic instruction.
It accepts the mnemonics used in the 1998 competition reference
manual:
"The Manchester University Small Scale Experimental Machine
Programmer's Reference manual"
http://www.computer50.org/mark1/prog98/ssemref.html
*/
t_stat parse_sym_m (const char *cptr, t_value *val)
{
uint32 n,a;
char gbuf[CBUFSIZE];
cptr = get_glyph(cptr, gbuf, 0);
for (n = 0; opcode[n] != NULL && strcmp(opcode[n], gbuf) != 0; n++) ;
if (opcode[n] == NULL) return SCPE_ARG; /* invalid mnemonic? */
if (!(*cptr) && n > OP_UNDOCUMENTED && n <= OP_STOP) {
*val = n << I_V_OP; return SCPE_OK;
}
while (isspace (*cptr)) cptr++; /* absorb spaces */
if (*cptr < '0' || *cptr > '9') return SCPE_ARG; /* address expected */
a = 0;
while (*cptr >= '0' && *cptr <= '9') {
a = (a * 10) + (*cptr - '0');
cptr++;
}
if (a >= MEMSIZE) return SCPE_ARG; /* invalid address? */
if (*cptr) return SCPE_ARG; /* junk at end? */
*val = (n << I_V_OP) + a;
return SCPE_OK;
}
/* Utility function - parses binary backward number. */
t_stat parse_sym_b (const char *cptr, t_value *val)
{
int count;
t_value n;
count = 0;
n = 0;
while (*cptr == '0' || *cptr == '1') {
n = n + ((*cptr - '0') << count);
count++;
cptr++;
}
if (*cptr) return SCPE_ARG; /* junk at end? */
*val = n;
return SCPE_OK;
}
/* Utility function - parses binary backward instruccion. */
t_stat parse_sym_i (const char *cptr, t_value *val)
{
int count;
t_value a,n;
count = 0;
n = 0;
while (*cptr == '0' || *cptr == '1') {
n = n + ((*cptr - '0') << count);
count++;
cptr++;
}
if (!(*cptr) && n > OP_UNDOCUMENTED && n <= OP_STOP) {
*val = n << I_V_OP; return SCPE_OK;
}
a = n;
if (a >= MEMSIZE) return SCPE_ARG; /* invalid addresss */
while (isspace (*cptr)) cptr++; /* absorb spaces */
if (*cptr != '0' && *cptr != '1') return SCPE_ARG; /* instruction expected */
count = 0;
n = 0;
while (*cptr == '0' || *cptr == '1') {
n = n + ((*cptr - '0') << count);
count++;
cptr++;
}
if (n >= OP_UNDOCUMENTED) return SCPE_ARG; /* invalid instruction? */
if (*cptr) return SCPE_ARG; /* junk at end? */
*val = (n << I_V_OP) + a;
return SCPE_OK;
}
/* Symbolic input
Inputs:
*cptr = pointer to input string
addr = current PC
*uptr = pointer to unit
*val = pointer to output values
sw = switches
Outputs:
status = error status
*/
t_stat parse_sym (CONST char *cptr, t_addr addr, UNIT *uptr, t_value *val, int32 sw)
{
if (sw & SWMASK ('H')) return SCPE_ARG; /* hexadecimal? */
while (isspace (*cptr)) cptr++; /* absorb spaces */
if (sw & SWMASK ('D')) { /* decimal? */
return parse_sym_d (cptr, val);
}
if (sw & SWMASK ('I')) { /* backward binary instruction? */
return parse_sym_i (cptr, val);
}
if (sw & SWMASK ('M')) { /* mnemonic? */
return parse_sym_m (cptr, val);
}
return parse_sym_b(cptr, val); /* backward binary number */
}