blob: 9607d0976bde29ecda861f0e6a26b53c512a5624 [file] [log] [blame] [raw]
/* scp.c: simulator control program
Copyright (c) 1993-2000, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
22-Dec-00 RMS Fixed find_device for devices ending in numbers
08-Dec-00 RMS V2.5a changes
30-Oct-00 RMS Added output file option to examine
11-Jul-99 RMS V2.5 changes
13-Apr-99 RMS Fixed handling of 32b addresses
04-Oct-98 RMS V2.4 changes
20-Aug-98 RMS Added radix commands
05-Jun-98 RMS Fixed bug in ^D handling for UNIX
10-Apr-98 RMS Added switches to all commands
26-Oct-97 RMS Added search capability
25-Jan-97 RMS Revised data types
23-Jan-97 RMS Added bi-endian I/O
06-Sep-96 RMS Fixed bug in variable length IEXAMINE
16-Jun-96 RMS Changed interface to parse/print_sym
06-Apr-96 RMS Added error checking in reset all
07-Jan-96 RMS Added register buffers in save/restore
11-Dec-95 RMS Fixed ordering bug in save/restore
22-May-95 RMS Added symbolic input
13-Apr-95 RMS Added symbolic printouts
*/
#define SCP 1 /* defining module */
#include "sim_defs.h"
#include <limits.h>
#include <signal.h>
#include <ctype.h>
#define EX_D 0 /* deposit */
#define EX_E 1 /* examine */
#define EX_I 2 /* interactive */
#define SCH_OR 0 /* search logicals */
#define SCH_AND 1
#define SCH_XOR 2
#define SCH_E 0 /* search booleans */
#define SCH_N 1
#define SCH_G 2
#define SCH_L 3
#define SCH_EE 4
#define SCH_NE 5
#define SCH_GE 6
#define SCH_LE 7
#define SWHIDE (1u << 26) /* enable hiding */
#define SRBUFSIZ 1024 /* save/restore buffer */
#define RU_RUN 0 /* run */
#define RU_GO 1 /* go */
#define RU_STEP 2 /* step */
#define RU_CONT 3 /* continue */
#define RU_BOOT 4 /* boot */
#define UPDATE_SIM_TIME(x) sim_time = sim_time + (x - sim_interval); \
x = sim_interval
extern char sim_name[];
extern DEVICE *sim_devices[];
extern REG *sim_PC;
extern char *sim_stop_messages[];
extern t_stat sim_instr (void);
extern t_stat sim_load (FILE *ptr, char *cptr, int flag);
extern int32 sim_emax;
extern t_stat fprint_sym (FILE *ofile, t_addr addr, t_value *val,
UNIT *uptr, int32 sw);
extern t_stat parse_sym (char *cptr, t_addr addr, UNIT *uptr, t_value *val,
int32 sw);
extern t_stat ttinit (void);
extern t_stat ttrunstate (void);
extern t_stat ttcmdstate (void);
extern t_stat ttclose (void);
UNIT *sim_clock_queue = NULL;
int32 sim_interval = 0;
int32 sim_switches = 0;
static double sim_time;
static int32 noqueue_time;
volatile int32 stop_cpu = 0;
t_value *sim_eval = NULL;
int32 sim_end = 1; /* 1 = little, 0 = big */
unsigned char sim_flip[FLIP_SIZE];
#define print_val(a,b,c,d) fprint_val (stdout, (a), (b), (c), (d))
#define SZ_D(dp) (size_map[((dp) -> dwidth + CHAR_BIT - 1) / CHAR_BIT])
#define SZ_R(rp) \
(size_map[((rp) -> width + (rp) -> offset + CHAR_BIT - 1) / CHAR_BIT])
#if defined (int64)
#define SZ_LOAD(sz,v,mb,j) \
if (sz == sizeof (uint8)) v = *(((uint8 *) mb) + j); \
else if (sz == sizeof (uint16)) v = *(((uint16 *) mb) + j); \
else if (sz == sizeof (uint32)) v = *(((uint32 *) mb) + j); \
else v = *(((uint64 *) mb) + j);
#define SZ_STORE(sz,v,mb,j) \
if (sz == sizeof (uint8)) *(((uint8 *) mb) + j) = (uint8) v; \
else if (sz == sizeof (uint16)) *(((uint16 *) mb) + j) = (uint16) v; \
else if (sz == sizeof (uint32)) *(((uint32 *) mb) + j) = (uint32) v; \
else *(((uint64 *) mb) + j) = v;
#else
#define SZ_LOAD(sz,v,mb,j) \
if (sz == sizeof (uint8)) v = *(((uint8 *) mb) + j); \
else if (sz == sizeof (uint16)) v = *(((uint16 *) mb) + j); \
else v = *(((uint32 *) mb) + j);
#define SZ_STORE(sz,v,mb,j) \
if (sz == sizeof (uint8)) *(((uint8 *) mb) + j) = (uint8) v; \
else if (sz == sizeof (uint16)) *(((uint16 *) mb) + j) = (uint16) v; \
else *(((uint32 *) mb) + j) = v;
#endif
#define GET_SWITCHES(cp,gb) \
for (sim_switches = 0; *cp == '-'; ) { \
int32 lsw; \
cp = get_glyph (cp, gb, 0); \
if ((lsw = get_switches (gb)) <= 0) return SCPE_ARG; \
sim_switches = sim_switches | lsw; }
#define GET_RADIX(val,dft) \
if (sim_switches & SWMASK ('O')) val = 8; \
else if (sim_switches & SWMASK ('D')) val = 10; \
else if (sim_switches & SWMASK ('H')) val = 16; \
else val = dft;
int32 get_switches (char *cptr);
t_value get_rval (REG *rptr, int idx);
void put_rval (REG *rptr, int idx, t_value val, t_value mask);
t_stat get_aval (t_addr addr, DEVICE *dptr, UNIT *uptr);
t_value strtotv (char *inptr, char **endptr, int radix);
t_stat fprint_val (FILE *stream, t_value val, int rdx, int wid, int fmt);
char *read_line (char *ptr, int size, FILE *stream);
DEVICE *find_device (char *ptr, int32 *iptr);
DEVICE *find_dev_from_unit (UNIT *uptr);
REG *find_reg (char *ptr, char **optr, DEVICE *dptr);
t_stat detach_all (int start_device);
t_stat ex_reg (FILE *ofile, t_value val, int flag, REG *rptr);
t_stat dep_reg (int flag, char *cptr, REG *rptr);
t_stat ex_addr (FILE *ofile, int flag, t_addr addr, DEVICE *dptr, UNIT *uptr);
t_stat dep_addr (int flag, char *cptr, t_addr addr, DEVICE *dptr,
UNIT *uptr, int dfltinc);
SCHTAB *get_search (char *cptr, DEVICE *dptr, SCHTAB *schptr);
int test_search (t_value val, SCHTAB *schptr);
t_stat step_svc (UNIT *ptr);
UNIT step_unit = { UDATA (&step_svc, 0, 0) };
const char save_ver[] = "V2.5";
const char *scp_error_messages[] = {
"Address space exceeded",
"Unit not attached",
"I/O error",
"Checksum error",
"Format error",
"Unit not attachable",
"File open error",
"Memory exhausted",
"Invalid argument",
"Step expired",
"Unknown command",
"Read only argument",
"Command not completed",
"Simulation stopped",
"Goodbye",
"Console input I/O error",
"Console output I/O error",
"End of file",
"Relocation error",
"No settable parameters",
"Unit already attached" };
const size_t size_map[] = { sizeof (int8),
sizeof (int8), sizeof (int16), sizeof (int32), sizeof (int32)
#if defined (int64)
, sizeof (int64), sizeof (int64), sizeof (int64), sizeof (int64)
#endif
};
const t_value width_mask[] = { 0,
0x1, 0x3, 0x7, 0xF,
0x1F, 0x3F, 0x7F, 0xFF,
0x1FF, 0x3FF, 0x7FF, 0xFFF,
0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF,
0x1FFFF, 0x3FFFF, 0x7FFFF, 0xFFFFF,
0x1FFFFF, 0x3FFFFF, 0x7FFFFF, 0xFFFFFF,
0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF,
0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF, 0xFFFFFFFF
#if defined (int64)
, 0x1FFFFFFFF, 0x3FFFFFFFF, 0x7FFFFFFFF, 0xFFFFFFFFF,
0x1FFFFFFFFF, 0x3FFFFFFFFF, 0x7FFFFFFFFF, 0xFFFFFFFFFF,
0x1FFFFFFFFFF, 0x3FFFFFFFFFF, 0x7FFFFFFFFFF, 0xFFFFFFFFFFF,
0x1FFFFFFFFFFF, 0x3FFFFFFFFFFF, 0x7FFFFFFFFFFF, 0xFFFFFFFFFFFF,
0x1FFFFFFFFFFFF, 0x3FFFFFFFFFFFF, 0x7FFFFFFFFFFFF, 0xFFFFFFFFFFFFF,
0x1FFFFFFFFFFFFF, 0x3FFFFFFFFFFFFF, 0x7FFFFFFFFFFFFF, 0xFFFFFFFFFFFFFF,
0x1FFFFFFFFFFFFFF, 0x3FFFFFFFFFFFFFF,
0x7FFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFF,
0x1FFFFFFFFFFFFFFF, 0x3FFFFFFFFFFFFFFF,
0x7FFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF
#endif
};
int main (int argc, char *argv[])
{
char cbuf[CBUFSIZE], gbuf[CBUFSIZE], *cptr;
int32 i, stat;
FILE *fpin;
union {int32 i; char c[sizeof (int32)]; } end_test;
t_stat reset_cmd (int flag, char *ptr);
t_stat exdep_cmd (int flag, char *ptr);
t_stat load_cmd (int flag, char *ptr);
t_stat run_cmd (int flag, char *ptr);
t_stat attach_cmd (int flag, char *ptr);
t_stat detach_cmd (int flag, char *ptr);
t_stat save_cmd (int flag, char *ptr);
t_stat restore_cmd (int flag, char *ptr);
t_stat exit_cmd (int flag, char *ptr);
t_stat set_cmd (int flag, char *ptr);
t_stat show_cmd (int flag, char *ptr);
t_stat add_cmd (int flag, char *ptr);
t_stat remove_cmd (int flag, char *ptr);
t_stat help_cmd (int flag, char *ptr);
static CTAB cmd_table[] = {
{ "RESET", &reset_cmd, 0 },
{ "EXAMINE", &exdep_cmd, EX_E },
{ "IEXAMINE", &exdep_cmd, EX_E+EX_I },
{ "DEPOSIT", &exdep_cmd, EX_D },
{ "IDEPOSIT", &exdep_cmd, EX_D+EX_I },
{ "RUN", &run_cmd, RU_RUN },
{ "GO", &run_cmd, RU_GO },
{ "STEP", &run_cmd, RU_STEP },
{ "CONT", &run_cmd, RU_CONT },
{ "BOOT", &run_cmd, RU_BOOT },
{ "ATTACH", &attach_cmd, 0 },
{ "DETACH", &detach_cmd, 0 },
{ "SAVE", &save_cmd, 0 },
{ "RESTORE", &restore_cmd, 0 },
{ "GET", &restore_cmd, 0 },
{ "LOAD", &load_cmd, 0 },
{ "DUMP", &load_cmd, 1 },
{ "EXIT", &exit_cmd, 0 },
{ "QUIT", &exit_cmd, 0 },
{ "BYE", &exit_cmd, 0 },
{ "SET", &set_cmd, 0 },
{ "SHOW", &show_cmd, 0 },
{ "ADD", &add_cmd, 0 },
{ "REMOVE", &remove_cmd, 0 },
{ "HELP", &help_cmd, 0 },
{ NULL, NULL, 0 } };
/* Main command loop */
printf ("\n%s simulator V2.5a\n", sim_name);
end_test.i = 1; /* test endian-ness */
sim_end = end_test.c[0];
if (sim_emax <= 0) sim_emax = 1;
if ((sim_eval = calloc (sim_emax, sizeof (t_value))) == NULL) {
printf ("Unable to allocate examine buffer\n");
return 0; };
if ((stat = ttinit ()) != SCPE_OK) {
printf ("Fatal terminal initialization error\n%s\n",
scp_error_messages[stat - SCPE_BASE]);
return 0; }
stop_cpu = 0;
sim_interval = 0;
sim_time = 0;
noqueue_time = 0;
sim_clock_queue = NULL;
if ((stat = reset_all (0)) != SCPE_OK) {
printf ("Fatal simulator initialization error\n%s\n",
scp_error_messages[stat - SCPE_BASE]);
return 0; }
if ((argc > 1) && (argv[1] != NULL) &&
((fpin = fopen (argv[1], "r")) != NULL)) { /* command file? */
do { cptr = read_line (cbuf, CBUFSIZE, fpin);
if (cptr == NULL) break; /* exit on eof */
if (*cptr == 0) continue; /* ignore blank */
cptr = get_glyph (cptr, gbuf, 0); /* get command glyph */
for (i = 0; cmd_table[i].name != NULL; i++) {
if (MATCH_CMD (gbuf, cmd_table[i].name) == 0) {
stat = cmd_table[i].action (cmd_table[i].arg, cptr);
break; } }
if (stat >= SCPE_BASE)
printf ("%s\n", scp_error_messages[stat - SCPE_BASE]);
} while (stat != SCPE_EXIT); } /* end if cmd file */
do { printf ("sim> "); /* prompt */
cptr = read_line (cbuf, CBUFSIZE, stdin); /* read command line */
stat = SCPE_UNK;
if (cptr == NULL) continue; /* ignore EOF */
if (*cptr == 0) continue; /* ignore blank */
cptr = get_glyph (cptr, gbuf, 0); /* get command glyph */
for (i = 0; cmd_table[i].name != NULL; i++) {
if (MATCH_CMD (gbuf, cmd_table[i].name) == 0) {
stat = cmd_table[i].action (cmd_table[i].arg, cptr);
break; } }
if (stat >= SCPE_BASE)
printf ("%s\n", scp_error_messages[stat - SCPE_BASE]);
} while (stat != SCPE_EXIT);
detach_all (0);
ttclose ();
return 0;
}
/* Exit command */
t_stat exit_cmd (int flag, char *cptr)
{
return SCPE_EXIT;
}
/* Help command */
t_stat help_cmd (int flag, char *cptr)
{
printf ("r{eset} {ALL|<device>} reset simulator\n");
printf ("e{xamine} <list> examine memory or registers\n");
printf ("ie{xamine} <list> interactive examine memory or registers\n");
printf ("d{eposit} <list> <val> deposit in memory or registers\n");
printf ("id{eposit} <list> interactive deposit in memory or registers\n");
printf ("l{oad} <file> {<args>} load binary file\n");
printf ("du(mp) <file> {<args>} dump binary file\n");
printf ("ru{n} {new PC} reset and start simulation\n");
printf ("go {new PC} start simulation\n");
printf ("c{ont} continue simulation\n");
printf ("s{tep} {n} simulate n instructions\n");
printf ("b{oot} <device>|<unit> bootstrap device\n");
printf ("at{tach} <unit> <file> attach file to simulated unit\n");
printf ("det{ach} <unit> detach file from simulated unit\n");
printf ("sa{ve} <file> save simulator to file\n");
printf ("rest{ore}|ge{t} <file> restore simulator from file\n");
printf ("exi{t}|q{uit}|by{e} exit from simulation\n");
printf ("set <unit> <val> set unit parameter\n");
printf ("show <device> show device parameters\n");
printf ("sh{ow} c{onfiguration} show configuration\n");
printf ("sh{ow} m{odifiers} show modifiers\n");
printf ("sh{ow} q{ueue} show event queue\n");
printf ("sh{ow} t{ime} show simulated time\n");
printf ("ad{d} <unit> add unit to configuration\n");
printf ("rem{ove} <unit> remove unit from configuration\n");
printf ("h{elp} type this message\n");
return SCPE_OK;
}
/* Set command */
t_stat set_cmd (int flag, char *cptr)
{
int32 i, unitno;
t_stat r;
char gbuf[CBUFSIZE];
DEVICE *dptr;
UNIT *uptr;
MTAB *mptr;
t_stat set_radix (DEVICE *dptr, int flag);
static CTAB set_table[] = {
{ "OCTAL", &set_radix, 8 },
{ "DECIMAL", &set_radix, 10 },
{ "HEX", &set_radix, 16 },
{ NULL, NULL, 0 } };
GET_SWITCHES (cptr, gbuf); /* test for switches */
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
dptr = find_device (gbuf, &unitno); /* find device */
if ((dptr == NULL) || (dptr -> units == NULL) ||
(*cptr == 0)) return SCPE_ARG; /* argument? */
cptr = get_glyph (cptr, gbuf, 0); /* get glyph */
if (*cptr != 0) return SCPE_ARG; /* now eol? */
uptr = dptr -> units + unitno;
if (uptr -> flags & UNIT_DIS) return SCPE_ARG; /* disabled? */
for (i = 0; set_table[i].name != NULL; i++) { /* check globals */
if (MATCH_CMD (gbuf, set_table[i].name) == 0)
return set_table[i].action (dptr, set_table[i].arg); }
if (dptr -> modifiers == NULL) return SCPE_NOPARAM; /* any modifiers? */
for (mptr = dptr -> modifiers; mptr -> mask != 0; mptr++) {
if ((mptr -> mstring != NULL) &&
(MATCH_CMD (gbuf, mptr -> mstring) == 0)) {
if ((mptr -> valid != NULL) &&
((r = mptr -> valid (uptr, mptr -> match)) != SCPE_OK))
return r; /* invalid? */
uptr -> flags = (uptr -> flags & ~(mptr -> mask)) |
(mptr -> match & mptr -> mask); /* set new value */
return SCPE_OK; } }
return SCPE_ARG; /* no match */
}
/* Set radix routine */
t_stat set_radix (DEVICE *dptr, int flag)
{
dptr -> dradix = flag & 017;
return SCPE_OK;
}
/* Show command */
t_stat show_cmd (int flag, char *cptr)
{
int32 i;
char gbuf[CBUFSIZE];
DEVICE *dptr;
t_stat show_config (int flag);
t_stat show_queue (int flag);
t_stat show_time (int flag);
t_stat show_modifiers (int flag);
t_stat show_device (DEVICE *dptr);
static CTAB show_table[] = {
{ "CONFIGURATION", &show_config, 0 },
{ "QUEUE", &show_queue, 0 },
{ "TIME", &show_time, 0 },
{ "MODIFIERS", &show_modifiers, 0 },
{ NULL, NULL, 0 } };
GET_SWITCHES (cptr, gbuf); /* test for switches */
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
if (*cptr != 0) return SCPE_ARG; /* now eol? */
for (i = 0; show_table[i].name != NULL; i++) { /* find command */
if (MATCH_CMD (gbuf, show_table[i].name) == 0)
return show_table[i].action (show_table[i].arg); }
dptr = find_device (gbuf, NULL); /* find device */
if (dptr == NULL) return SCPE_ARG;
return show_device (dptr);
}
/* Show processors */
t_stat show_device (DEVICE *dptr)
{
int32 j, ucnt;
t_addr kval;
UNIT *uptr;
MTAB *mptr;
printf ("%s", dptr -> name); /* print dev name */
for (j = ucnt = 0; j < dptr -> numunits; j++) {
uptr = (dptr -> units) + j;
if (!(uptr -> flags & UNIT_DIS)) ucnt++; }
if (dptr -> numunits == 0) printf ("\n");
else { if (ucnt == 0) printf (", all units disabled\n");
else if (ucnt > 1) printf (", %d units\n", ucnt); }
for (j = 0; j < dptr -> numunits; j++) {
uptr = (dptr -> units) + j;
kval = (uptr -> flags & UNIT_BINK)? 1024: 1000;
if (uptr -> flags & UNIT_DIS) continue;
if (ucnt > 1) printf (" unit %d", j);
if (uptr -> flags & UNIT_FIX) {
if (uptr -> capac < kval)
printf (", %d%s", uptr -> capac,
((dptr -> dwidth / dptr -> aincr) > 8)? "W": "B");
else printf (", %dK%s", uptr -> capac / kval,
((dptr -> dwidth / dptr -> aincr) > 8)? "W": "B"); }
if (uptr -> flags & UNIT_ATT)
printf (", attached to %s", uptr -> filename);
else if (uptr -> flags & UNIT_ATTABLE) printf (", not attached");
if (dptr -> modifiers != NULL) {
for (mptr = dptr -> modifiers; mptr -> mask != 0; mptr++) {
if ((mptr -> pstring != NULL) &&
((uptr -> flags & mptr -> mask) == mptr -> match))
printf (", %s", mptr -> pstring); } }
printf ("\n"); }
return SCPE_OK;
}
t_stat show_config (int flag)
{
int32 i;
DEVICE *dptr;
printf ("%s simulator configuration\n\n", sim_name);
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) show_device (dptr);
return SCPE_OK;
}
t_stat show_queue (int flag)
{
DEVICE *dptr;
UNIT *uptr;
int32 accum;
if (sim_clock_queue == NULL) {
printf ("%s event queue empty, time = %-16.0f\n", sim_name, sim_time);
return SCPE_OK; }
printf ("%s event queue status, time = %-16.0f\n", sim_name, sim_time);
accum = 0;
for (uptr = sim_clock_queue; uptr != NULL; uptr = uptr -> next) {
if (uptr == &step_unit) printf (" Step timer");
else if ((dptr = find_dev_from_unit (uptr)) != NULL) {
printf (" %s", dptr -> name);
if (dptr -> numunits > 1) printf (" unit %d",
uptr - dptr -> units); }
else printf (" Unknown");
printf (" at %d\n", accum + uptr -> time);
accum = accum + uptr -> time; }
return SCPE_OK;
}
t_stat show_time (int flag)
{
printf ("Time: %-16.0f\n", sim_time);
return SCPE_OK;
}
t_stat show_modifiers (int flag)
{
int i, any;
DEVICE *dptr;
MTAB *mptr;
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) {
any = 0;
for (mptr = dptr -> modifiers; mptr && (mptr -> mask != 0); mptr++) {
if (mptr -> mstring) {
if (any++) printf (", %s", mptr -> mstring);
else printf ("%s %s", dptr -> name, mptr -> mstring); } }
if (any) printf ("\n"); }
return SCPE_OK;
}
/* Add and remove commands and routines
ad[d] add unit to configuration
rem[ove] remove unit from configuration
*/
t_stat add_cmd (int flag, char *cptr)
{
int32 unitno;
char gbuf[CBUFSIZE];
DEVICE *dptr;
UNIT *uptr;
GET_SWITCHES (cptr, gbuf); /* test for switches */
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
dptr = find_device (gbuf, &unitno); /* locate device */
if ((dptr == NULL) || (dptr -> units == NULL) ||
(*cptr != 0)) return SCPE_ARG; /* found it? */
uptr = dptr -> units + unitno; /* locate unit */
if ((uptr -> flags & UNIT_DISABLE) && (uptr -> flags & UNIT_DIS)) {
uptr -> flags = uptr -> flags & ~UNIT_DIS; /* enable it */
return SCPE_OK; }
return SCPE_ARG; /* not valid */
}
t_stat remove_cmd (int flag, char *cptr)
{
int32 unitno;
char gbuf[CBUFSIZE];
DEVICE *dptr;
UNIT *uptr;
GET_SWITCHES (cptr, gbuf); /* test for switches */
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
dptr = find_device (gbuf, &unitno); /* locate device */
if ((dptr == NULL) || (dptr -> units == NULL) ||
(*cptr != 0)) return SCPE_ARG; /* found it? */
uptr = dptr -> units + unitno; /* locate unit */
if ((uptr -> flags & UNIT_DISABLE) && !(uptr -> flags & UNIT_DIS) &&
!(uptr -> flags & UNIT_ATT) && !sim_is_active (uptr)) {
uptr -> flags = uptr -> flags | UNIT_DIS; /* disable it */
return SCPE_OK; }
return SCPE_ARG; /* not valid */
}
/* Reset command and routines
re[set] reset all devices
re[set] all reset all devices
re[set] device reset specific device
*/
t_stat reset_cmd (int flag, char *cptr)
{
char gbuf[CBUFSIZE];
DEVICE *dptr;
GET_SWITCHES (cptr, gbuf); /* test for switches */
if (*cptr == 0) return (reset_all (0)); /* reset(cr) */
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
if (*cptr != 0) return SCPE_ARG; /* now (cr)? */
if (strcmp (gbuf, "ALL") == 0) return (reset_all (0));
if ((dptr = find_device (gbuf, NULL)) == NULL) return SCPE_ARG;
if (dptr -> reset != NULL) return dptr -> reset (dptr);
else return SCPE_OK;
}
/* Reset devices start..end
Inputs:
start = number of starting device
Outputs:
status = error status
*/
t_stat reset_all (int start)
{
DEVICE *dptr;
int32 i;
t_stat reason;
if (start < 0) return SCPE_ARG;
for (i = 0; i < start; i++) {
if (sim_devices[i] == NULL) return SCPE_ARG; }
for (i = start; (dptr = sim_devices[i]) != NULL; i++) {
if (dptr -> reset != NULL) {
reason = dptr -> reset (dptr);
if (reason != SCPE_OK) return reason; } }
return SCPE_OK;
}
/* Load and dump commands
lo[ad] filename {arg} load specified file
du[mp] filename {arg} dump to specified file
*/
t_stat load_cmd (int flag, char *cptr)
{
char gbuf[CBUFSIZE];
FILE *loadfile;
t_stat reason;
GET_SWITCHES (cptr, gbuf); /* test for switches */
if (*cptr == 0) return SCPE_ARG; /* must be more */
cptr = get_glyph_nc (cptr, gbuf, 0); /* get file name */
loadfile = fopen (gbuf, flag? "wb": "rb"); /* open for wr/rd */
if (loadfile == NULL) return SCPE_OPENERR;
reason = sim_load (loadfile, cptr, flag); /* load or dump */
fclose (loadfile);
return reason;
}
/* Attach command
at[tach] unit file attach specified unit to file
*/
t_stat attach_cmd (int flag, char *cptr)
{
char gbuf[CBUFSIZE];
int32 unitno;
DEVICE *dptr;
UNIT *uptr;
GET_SWITCHES (cptr, gbuf); /* test for switches */
if (*cptr == 0) return SCPE_ARG;
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
if (*cptr == 0) return SCPE_ARG;
dptr = find_device (gbuf, &unitno);
if ((dptr == NULL) || (dptr -> units == NULL)) return SCPE_ARG;
uptr = (dptr -> units) + unitno;
if (dptr -> attach != NULL) return dptr -> attach (uptr, cptr);
return attach_unit (uptr, cptr);
}
t_stat attach_unit (UNIT *uptr, char *cptr)
{
DEVICE *dptr;
t_stat reason;
if (uptr -> flags & UNIT_DIS) return SCPE_ARG; /* disabled? */
if (!(uptr -> flags & UNIT_ATTABLE)) return SCPE_NOATT; /* not attachable? */
if ((dptr = find_dev_from_unit (uptr)) == NULL) return SCPE_NOATT;
if (uptr -> flags & UNIT_ATT) { /* already attached? */
reason = detach_unit (uptr);
if (reason != SCPE_OK) return reason; }
uptr -> filename = calloc (CBUFSIZE, sizeof (char));
if (uptr -> filename == NULL) return SCPE_MEM;
strncpy (uptr -> filename, cptr, CBUFSIZE);
uptr -> fileref = fopen (cptr, "rb+");
if (uptr -> fileref == NULL) {
uptr -> fileref = fopen (cptr, "wb+");
if (uptr -> fileref == NULL) return SCPE_OPENERR;
printf ("%s: creating new file\n", dptr -> name); }
if (uptr -> flags & UNIT_BUFABLE) {
if ((uptr -> filebuf = calloc (uptr -> capac, SZ_D (dptr))) != NULL) {
printf ("%s: buffering file in memory\n", dptr -> name);
uptr -> hwmark = fxread (uptr -> filebuf, SZ_D (dptr),
uptr -> capac, uptr -> fileref);
uptr -> flags = uptr -> flags | UNIT_BUF; }
else if (uptr -> flags & UNIT_MUSTBUF) return SCPE_MEM; }
uptr -> flags = uptr -> flags | UNIT_ATT;
uptr -> pos = 0;
return SCPE_OK;
}
/* Detach command
det[ach] all detach all units
det[ach] unit detach specified unit
*/
t_stat detach_cmd (int flag, char *cptr)
{
char gbuf[CBUFSIZE];
int32 unitno;
DEVICE *dptr;
UNIT *uptr;
GET_SWITCHES (cptr, gbuf); /* test for switches */
if (*cptr == 0) return SCPE_ARG;
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
if (*cptr != 0) return SCPE_ARG;
if (strcmp (gbuf, "ALL") == 0) return (detach_all (0));
dptr = find_device (gbuf, &unitno);
if ((dptr == NULL) || (dptr -> units == NULL)) return SCPE_ARG;
uptr = (dptr -> units) + unitno;
if (!(uptr -> flags & UNIT_ATTABLE)) return SCPE_NOATT;
if (dptr -> detach != NULL) return dptr -> detach (uptr);
return detach_unit (uptr);
}
/* Detach devices start..end
Inputs:
start = number of starting device
Outputs:
status = error status
*/
t_stat detach_all (int start)
{
int32 i, j;
t_stat reason;
DEVICE *dptr;
UNIT *uptr;
if ((start < 0) || (start > 1)) return SCPE_ARG;
for (i = start; (dptr = sim_devices[i]) != NULL; i++) {
for (j = 0; j < dptr -> numunits; j++) {
uptr = (dptr -> units) + j;
if (dptr -> detach != NULL) reason = dptr -> detach (uptr);
else reason = detach_unit (uptr);
if (reason != SCPE_OK) return reason; } }
return SCPE_OK;
}
t_stat detach_unit (UNIT *uptr)
{
DEVICE *dptr;
if (uptr == NULL) return SCPE_ARG;
if (!(uptr -> flags & UNIT_ATT)) return SCPE_OK;
if ((dptr = find_dev_from_unit (uptr)) == NULL) return SCPE_OK;
uptr -> flags = uptr -> flags & ~UNIT_ATT;
if (uptr -> flags & UNIT_BUF) {
printf ("%s: writing buffer to file\n", dptr -> name);
uptr -> flags = uptr -> flags & ~UNIT_BUF;
rewind (uptr -> fileref);
fxwrite (uptr -> filebuf, SZ_D (dptr), uptr -> hwmark, uptr -> fileref);
if (ferror (uptr -> fileref)) perror ("I/O error");
free (uptr -> filebuf);
uptr -> filebuf = NULL; }
free (uptr -> filename);
uptr -> filename = NULL;
return (fclose (uptr -> fileref) == EOF)? SCPE_IOERR: SCPE_OK;
}
/* Save command
sa[ve] filename save state to specified file
*/
t_stat save_cmd (int flag, char *cptr)
{
char gbuf[CBUFSIZE];
void *mbuf;
FILE *sfile;
int32 i, j, l, t;
t_addr k, high;
t_value val;
t_stat r;
t_bool zeroflg;
size_t sz;
DEVICE *dptr;
UNIT *uptr;
REG *rptr;
#define WRITE_I(xx) fxwrite (&(xx), sizeof (xx), 1, sfile)
GET_SWITCHES (cptr, gbuf); /* test for switches */
if (*cptr == 0) return SCPE_ARG;
if ((sfile = fopen (cptr, "wb")) == NULL) return SCPE_OPENERR;
fputs (save_ver, sfile); /* save format version */
fputc ('\n', sfile);
fputs (sim_name, sfile); /* sim name */
fputc ('\n', sfile);
WRITE_I (sim_time); /* sim time */
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru devices */
fputs (dptr -> name, sfile); /* device name */
fputc ('\n', sfile);
for (j = 0; j < dptr -> numunits; j++) {
uptr = (dptr -> units) + j;
t = sim_is_active (uptr);
WRITE_I (j); /* unit number */
WRITE_I (t); /* activation time */
WRITE_I (uptr -> u3); /* unit specific */
WRITE_I (uptr -> u4);
if (uptr -> flags & UNIT_ATT) fputs (uptr -> filename, sfile);
fputc ('\n', sfile);
if (((uptr -> flags & (UNIT_FIX + UNIT_ATTABLE)) == UNIT_FIX) &&
(dptr -> examine != NULL) &&
((high = uptr -> capac) != 0)) { /* memory-like unit? */
WRITE_I (high); /* write size */
sz = SZ_D (dptr);
if ((mbuf = calloc (SRBUFSIZ, sz)) == NULL) {
fclose (sfile);
return SCPE_MEM; }
for (k = 0; k < high; ) {
zeroflg = TRUE;
for (l = 0; (l < SRBUFSIZ) && (k < high);
l++, k = k + (dptr -> aincr)) {
r = dptr -> examine (&val, k, uptr, 0);
if (r != SCPE_OK) return r;
if (val) zeroflg = FALSE;
SZ_STORE (sz, val, mbuf, l);
} /* end for l */
if (zeroflg) { /* all zero's? */
l = -l; /* invert block count */
WRITE_I (l); } /* write only count */
else {
WRITE_I (l); /* block count */
fxwrite (mbuf, l, sz, sfile); }
} /* end for k */
free (mbuf); /* dealloc buffer */
} /* end if mem */
else { high = 0;
WRITE_I (high); } /* no memory */
} /* end unit loop */
j = -1; /* write marker */
WRITE_I (j);
for (rptr = dptr -> registers; /* loop thru regs */
(rptr != NULL) && (rptr -> name != NULL); rptr++) {
fputs (rptr -> name, sfile); /* name */
fputc ('\n', sfile);
for (j = 0; j < rptr -> depth; j++) { /* loop thru values */
val = get_rval (rptr, j); /* get value */
WRITE_I (val); } } /* store */
fputc ('\n', sfile); } /* end registers */
fputc ('\n', sfile); /* end devices */
r = (ferror (sfile))? SCPE_IOERR: SCPE_OK; /* error during save? */
fclose (sfile);
return r;
}
/* Restore command
re[store] filename restore state from specified file
*/
t_stat restore_cmd (int flag, char *cptr)
{
char buf[CBUFSIZE];
void *mbuf;
FILE *rfile;
int32 i, j, blkcnt, limit, unitno, time;
t_addr k, high;
t_value val, mask, vzro = 0;
t_stat r;
size_t sz;
t_bool v25 = FALSE;
DEVICE *dptr;
UNIT *uptr;
REG *rptr;
#define READ_S(xx) if (read_line ((xx), CBUFSIZE, rfile) == NULL) \
{ fclose (rfile); return SCPE_IOERR; }
#define READ_I(xx) if (fxread (&xx, sizeof (xx), 1, rfile) <= 0) \
{ fclose (rfile); return SCPE_IOERR; }
GET_SWITCHES (cptr, buf); /* test for switches */
if (*cptr == 0) return SCPE_ARG;
if ((rfile = fopen (cptr, "rb")) == NULL) return SCPE_OPENERR;
READ_S (buf); /* save ver or sim name */
if (strcmp (buf, save_ver) == 0) { /* version? */
v25 = TRUE; /* set flag */
READ_S (buf); } /* read name */
if (strcmp (buf, sim_name)) { /* name match? */
printf ("Wrong system type: %s\n", buf);
fclose (rfile);
return SCPE_OK; }
READ_I (sim_time); /* sim time */
for ( ;; ) { /* device loop */
READ_S (buf); /* read device name */
if (buf[0] == 0) break; /* last? */
if ((dptr = find_device (buf, NULL)) == NULL) {
printf ("Invalid device name: %s\n", buf);
fclose (rfile);
return SCPE_INCOMP; }
for ( ;; ) { /* unit loop */
READ_I (unitno); /* unit number */
if (unitno < 0) break;
if (unitno >= dptr -> numunits) {
printf ("Invalid unit number %s%d\n", dptr -> name,
unitno);
fclose (rfile);
return SCPE_INCOMP; }
READ_I (time); /* event time */
uptr = (dptr -> units) + unitno;
sim_cancel (uptr);
if (time > 0) sim_activate (uptr, time - 1);
READ_I (uptr -> u3); /* device specific */
READ_I (uptr -> u4);
READ_S (buf); /* attached file */
if (buf[0] != 0) {
uptr -> flags = uptr -> flags & ~UNIT_DIS;
r = attach_unit (uptr, buf);
if (r != SCPE_OK) return r; }
READ_I (high); /* memory capacity */
if (high > 0) { /* any memory? */
if (((uptr -> flags & (UNIT_FIX + UNIT_ATTABLE)) != UNIT_FIX) ||
(high > uptr -> capac) || (dptr -> deposit == NULL)) {
printf ("Invalid memory bound: %u\n", high);
fclose (rfile);
return SCPE_INCOMP; }
if (v25) {
sz = SZ_D (dptr);
if ((mbuf = calloc (SRBUFSIZ, sz)) == NULL) {
fclose (rfile);
return SCPE_MEM; }
for (k = 0; k < high; ) {
READ_I (blkcnt);
if (blkcnt < 0) limit = -blkcnt;
else limit = fxread (mbuf, sz, blkcnt, rfile);
if (limit <= 0) {
fclose (rfile);
return SCPE_IOERR; }
for (j = 0; j < limit; j++, k = k + (dptr -> aincr)) {
if (blkcnt < 0) val = 0;
else SZ_LOAD (sz, val, mbuf, j);
r = dptr -> deposit (val, k, uptr, 0);
if (r != SCPE_OK) return r;
} /* end for j */
} /* end for k */
free (mbuf); /* dealloc buffer */
} /* end if v25 */
else { for (k = 0; k < high; k = k + (dptr -> aincr)) {
READ_I (val);
if (((t_svalue) val) < 0) {
for (j = (int32) val + 1; j < 0; j++) {
r = dptr -> deposit (vzro, k, uptr, 0);
if (r != SCPE_OK) return r;
k = k + (dptr -> aincr); }
val = 0; }
r = dptr -> deposit (val, k, uptr, 0);
if (r != SCPE_OK) return r; }
} /* end else v25 */
} /* end if high */
} /* end unit loop */
for ( ;; ) { /* register loop */
READ_S (buf); /* read reg name */
if (buf[0] == 0) break; /* last? */
if ((rptr = find_reg (buf, NULL, dptr)) == NULL) {
printf ("Invalid register name: %s\n", buf);
fclose (rfile);
return SCPE_INCOMP; }
mask = width_mask[rptr -> width];
for (i = 0; i < rptr -> depth; i++) { /* loop thru values */
READ_I (val); /* read value */
if (val > mask)
printf ("Invalid register value: %s\n", buf);
else put_rval (rptr, i, val, mask); } }
} /* end device loop */
fclose (rfile);
return SCPE_OK;
}
/* Run, go, cont, step commands
ru[n] [new PC] reset and start simulation
go [new PC] start simulation
co[nt] start simulation
s[tep] [step limit] start simulation for 'limit' instructions
b[oot] device bootstrap from device and start simulation
*/
t_stat run_cmd (int flag, char *cptr)
{
char gbuf[CBUFSIZE];
int32 i, j, step, unitno;
t_stat r;
t_addr k;
t_value pcval;
DEVICE *dptr;
UNIT *uptr;
void int_handler (int signal);
GET_SWITCHES (cptr, gbuf); /* test for switches */
step = 0;
if (((flag == RU_RUN) || (flag == RU_GO)) && (*cptr != 0)) { /* run or go */
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
if ((r = dep_reg (0, gbuf, sim_PC)) != SCPE_OK) return r; }
if (flag == RU_STEP) { /* step */
if (*cptr == 0) step = 1;
else { cptr = get_glyph (cptr, gbuf, 0);
step = (int32) get_uint (gbuf, 10, INT_MAX, &r);
if ((r != SCPE_OK) || (step == 0)) return SCPE_ARG; } }
if (flag == RU_BOOT) { /* boot */
if (*cptr == 0) return SCPE_ARG;
cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */
dptr = find_device (gbuf, &unitno);
if ((dptr == NULL) || (dptr -> units == NULL) ||
(dptr -> boot == NULL)) return SCPE_ARG;
uptr = dptr -> units + unitno;
if (uptr -> flags & UNIT_DIS) return SCPE_ARG; /* disabled? */
if (!(uptr -> flags & UNIT_ATTABLE)) return SCPE_NOATT;
if (!(uptr -> flags & UNIT_ATT)) return SCPE_UNATT;
if ((r = dptr -> boot (unitno)) != SCPE_OK) return r; }
if (*cptr != 0) return SCPE_ARG;
if ((flag == RU_RUN) || (flag == RU_BOOT)) { /* run or boot */
sim_interval = 0; /* reset queue */
sim_time = 0;
noqueue_time = 0;
sim_clock_queue = NULL;
if ((r = reset_all (0)) != SCPE_OK) return r; }
for (i = 1; (dptr = sim_devices[i]) != NULL; i++) {
for (j = 0; j < dptr -> numunits; j++) {
uptr = (dptr -> units) + j;
if ((uptr -> flags & (UNIT_ATT + UNIT_SEQ)) ==
(UNIT_ATT + UNIT_SEQ))
fseek (uptr -> fileref, uptr -> pos, SEEK_SET); } }
stop_cpu = 0;
if ((int) signal (SIGINT, int_handler) == -1) { /* set WRU */
printf ("Simulator interrupt handler setup failed\n");
return SCPE_OK; }
if (ttrunstate () != SCPE_OK) { /* set console */
ttcmdstate ();
printf ("Simulator terminal setup failed\n");
return SCPE_OK; }
if (step) sim_activate (&step_unit, step); /* set step timer */
r = sim_instr();
ttcmdstate (); /* restore console */
signal (SIGINT, SIG_DFL); /* cancel WRU */
sim_cancel (&step_unit); /* cancel step timer */
if (sim_clock_queue != NULL) { /* update sim time */
UPDATE_SIM_TIME (sim_clock_queue -> time); }
else { UPDATE_SIM_TIME (noqueue_time); }
#ifdef VMS
printf ("\n");
#endif
if (r >= SCPE_BASE) printf ("\n%s, %s: ", scp_error_messages[r - SCPE_BASE],
sim_PC -> name);
else printf ("\n%s, %s: ", sim_stop_messages[r], sim_PC -> name);
pcval = get_rval (sim_PC, 0);
print_val (pcval, sim_PC -> radix, sim_PC -> width,
sim_PC -> flags & REG_FMT);
if (((dptr = sim_devices[0]) != NULL) && (dptr -> examine != NULL)) {
for (i = 0; i < sim_emax; i++) sim_eval[i] = 0;
for (i = 0, k = (t_addr) pcval; i < sim_emax; i++, k = k + dptr -> aincr) {
if (r = dptr -> examine (&sim_eval[i], k, dptr -> units,
SWMASK ('V')) != SCPE_OK) break; }
if ((r == SCPE_OK) || (i > 0)) {
printf (" (");
if (fprint_sym (stdout, (t_addr) pcval, sim_eval, NULL, SWMASK('M')) > 0)
fprint_val (stdout, sim_eval[0], dptr -> dradix,
dptr -> dwidth, PV_RZRO);
printf (")"); } }
printf ("\n");
return SCPE_OK;
}
/* Run time routines */
/* Unit service for step timeout, originally scheduled by STEP n command
Return step timeout SCP code, will cause simulation to stop
*/
t_stat step_svc (UNIT *uptr)
{
return SCPE_STEP;
}
/* Signal handler for ^C signal
Set stop simulation flag
*/
void int_handler (int sig)
{
stop_cpu = 1;
return;
}
/* Examine/deposit commands
ex[amine] [modifiers] list examine
de[posit] [modifiers] list val deposit
ie[xamine] [modifiers] list interactive examine
id[eposit] [modifiers] list interactive deposit
modifiers
@filename output file
-letter(s) switches
devname'n device name and unit number
[{&|^}value]{=|==|!|!=|>|>=|<|<=} value search specification
list list of addresses and registers
addr[:addr|-addr] address range
ALL all addresses
register[:register|-register] register range
STATE all registers
*/
t_stat exdep_cmd (int flag, char *cptr)
{
char gbuf[CBUFSIZE], *gptr, *tptr;
int32 unitno, t;
t_bool log;
t_addr low, high;
t_stat reason;
DEVICE *dptr, *tdptr;
UNIT *uptr;
REG *lowr, *highr;
SCHTAB stab, *schptr;
FILE *ofile;
t_stat exdep_addr_loop (FILE *ofile, SCHTAB *schptr, int flag, char *ptr,
t_addr low, t_addr high, DEVICE *dptr, UNIT *uptr);
t_stat exdep_reg_loop (FILE *ofile, SCHTAB *schptr, int flag, char *ptr,
REG *lptr, REG *hptr);
if (*cptr == 0) return SCPE_ARG; /* err if no args */
ofile = NULL; /* no output file */
log = FALSE;
sim_switches = 0; /* no switches */
schptr = NULL; /* no search */
stab.logic = SCH_OR; /* default search params */
stab.bool = SCH_GE;
stab.mask = stab.comp = 0;
dptr = sim_devices[0]; /* default device, unit */
unitno = 0;
for (;;) { /* loop through modifiers */
if (*cptr == 0) return SCPE_ARG; /* error if no arguments */
if (*cptr == '@') { /* output file spec? */
if (flag != EX_E) return SCPE_ARG; /* examine only */
if (log) { /* already got one? */
fclose (ofile); /* one per customer */
return SCPE_ARG; }
cptr = get_glyph_nc (cptr + 1, gbuf, 0);
ofile = fopen (gbuf, "a"); /* open for append */
if (ofile == NULL) return SCPE_OPENERR;
log = TRUE;
continue; } /* look for more */
cptr = get_glyph (cptr, gbuf, 0);
if ((t = get_switches (gbuf)) != 0) { /* try for switches */
if (t < 0) return SCPE_ARG; /* err if bad switch */
sim_switches = sim_switches | t; } /* or in new switches */
else if (get_search (gbuf, dptr, &stab) != NULL) { /* try for search */
schptr = &stab; } /* set search */
else if ((tdptr = find_device (gbuf, &t)) != NULL) { /* try for unit */
dptr = tdptr; /* set as default */
unitno = t; }
else break; } /* not recognized, break out */
if ((*cptr == 0) == (flag == 0)) return SCPE_ARG; /* eol if needed? */
if (dptr -> units == NULL) return SCPE_ARG; /* got a unit? */
if (ofile == NULL) ofile = stdout; /* no file? stdout */
uptr = (dptr -> units) + unitno;
for (gptr = gbuf, reason = SCPE_OK;
(*gptr != 0) && (reason == SCPE_OK); gptr = tptr) {
if (strncmp (gptr, "ALL", strlen ("ALL")) == 0) {
tptr = gptr + strlen ("ALL");
if ((*tptr == 0) || (*tptr == ',' && tptr++)) {
if ((uptr -> capac == 0) | (flag == EX_E)) return SCPE_ARG;
high = (uptr -> capac) - (dptr -> aincr);
reason = exdep_addr_loop (ofile, schptr, flag, cptr,
0, high, dptr, uptr);
continue; } }
if (strncmp (gptr, "STATE", strlen ("STATE")) == 0) {
tptr = gptr + strlen ("STATE");
if ((*tptr == 0) || (*tptr == ',' && tptr++)) {
if ((lowr = dptr -> registers) == NULL) return SCPE_ARG;
for (highr = lowr; highr -> name != NULL; highr++) ;
sim_switches = sim_switches | SWHIDE;
reason = exdep_reg_loop (ofile, schptr, flag, cptr,
lowr, --highr);
continue; } }
if (lowr = find_reg (gptr, &tptr, dptr)) {
highr = lowr;
if ((*tptr == '-') || (*tptr == ':')) {
highr = find_reg (tptr + 1, &tptr, dptr);
if (highr == NULL) return SCPE_ARG; }
if ((*tptr == 0) || (*tptr == ',' && tptr++)) {
reason = exdep_reg_loop (ofile, schptr, flag, cptr,
lowr, highr);
continue; } }
errno = 0;
low = strtoul (gptr, &tptr, dptr -> aradix);
if ((errno == 0) && (gptr != tptr)) {
high = low;
if ((*tptr == '-') || (*tptr == ':')) {
gptr = tptr + 1;
errno = 0;
high = strtoul (gptr, &tptr, dptr -> aradix);
if (errno || (gptr == tptr)) return SCPE_ARG; }
if ((*tptr == 0) || (*tptr == ',' && tptr++)) {
reason = exdep_addr_loop (ofile, schptr, flag, cptr,
low, high, dptr, uptr);
continue; } }
reason = SCPE_ARG; /* unrecognized */
} /* end for */
if (log) fclose (ofile); /* close output file */
return reason;
}
/* Loop controllers for examine/deposit
exdep_reg_loop examine/deposit range of registers
exdep_addr_loop examine/deposit range of addresses
*/
t_stat exdep_reg_loop (FILE *ofile, SCHTAB *schptr, int flag, char *cptr,
REG *lowr, REG *highr)
{
t_stat reason;
t_value val;
REG *rptr;
if ((lowr == NULL) || (highr == NULL)) return SCPE_ARG;
if (lowr > highr) return SCPE_ARG;
for (rptr = lowr; rptr <= highr; rptr++) {
if ((sim_switches & SWHIDE) && (rptr -> flags & REG_HIDDEN)) continue;
val = get_rval (rptr, 0);
if (schptr && !test_search (val, schptr)) continue;
if (flag != EX_D) {
reason = ex_reg (ofile, val, flag, rptr);
if (reason != SCPE_OK) return reason; }
if (flag != EX_E) {
reason = dep_reg (flag, cptr, rptr);
if (reason != SCPE_OK) return reason; } }
return SCPE_OK;
}
t_stat exdep_addr_loop (FILE *ofile, SCHTAB *schptr, int flag, char *cptr,
t_addr low, t_addr high, DEVICE *dptr, UNIT *uptr)
{
t_addr i, mask;
t_stat reason;
if (uptr -> flags & UNIT_DIS) return SCPE_ARG; /* disabled? */
reason = 0;
mask = (t_addr) width_mask[dptr -> awidth];
if ((low > mask) || (high > mask) || (low > high)) return SCPE_ARG;
for (i = low; i <= high; i = i + (dptr -> aincr)) {
reason = get_aval (i, dptr, uptr); /* get data */
if (reason != SCPE_OK) return reason; /* return if error */
if (schptr && !test_search (sim_eval[0], schptr)) continue;
if (flag != EX_D) {
reason = ex_addr (ofile, flag, i, dptr, uptr);
if (reason > SCPE_OK) return reason; }
if (flag != EX_E) {
reason = dep_addr (flag, cptr, i, dptr, uptr, reason);
if (reason > SCPE_OK) return reason; }
if (reason < SCPE_OK) i = i - (reason * dptr -> aincr); }
return SCPE_OK;
}
/* Examine register routine
Inputs:
ofile = output stream
val = current register value
flag = type of ex/mod command (ex, iex, idep)
rptr = pointer to register descriptor
Outputs:
return = error status
*/
t_stat ex_reg (FILE *ofile, t_value val, int flag, REG *rptr)
{
int32 rdx;
if (rptr == NULL) return SCPE_ARG;
fprintf (ofile, "%s: ", rptr -> name);
if (!(flag & EX_E)) return SCPE_OK;
GET_RADIX (rdx, rptr -> radix);
fprint_val (ofile, val, rdx, rptr -> width, rptr -> flags & REG_FMT);
if (flag & EX_I) fprintf (ofile, " ");
else fprintf (ofile, "\n");
return SCPE_OK;
}
/* Get register value
Inputs:
rptr = pointer to register descriptor
idx = index (SAVE register buffers only)
Outputs:
return = register value
*/
t_value get_rval (REG *rptr, int idx)
{
size_t sz;
t_value val;
sz = SZ_R (rptr);
if ((rptr -> depth > 1) && (sz == sizeof (uint8)))
val = *(((uint8 *) rptr -> loc) + idx);
else if ((rptr -> depth > 1) && (sz == sizeof (uint16)))
val = *(((uint16 *) rptr -> loc) + idx);
#if !defined (int64)
else val = *(((uint32 *) rptr -> loc) + idx);
#else
else if (sz <= sizeof (uint32))
val = *(((uint32 *) rptr -> loc) + idx);
else val = *(((uint64 *) rptr -> loc) + idx);
#endif
val = (val >> rptr -> offset) & width_mask[rptr -> width];
return val;
}
/* Deposit register routine
Inputs:
flag = type of deposit (normal/interactive)
cptr = pointer to input string
rptr = pointer to register descriptor
Outputs:
return = error status
*/
t_stat dep_reg (int flag, char *cptr, REG *rptr)
{
t_stat r;
t_value val, mask;
int32 rdx;
char gbuf[CBUFSIZE];
if ((cptr == NULL) || (rptr == NULL)) return SCPE_ARG;
if (rptr -> flags & REG_RO) return SCPE_RO;
if (flag & EX_I) {
cptr = read_line (gbuf, CBUFSIZE, stdin);
if (cptr == NULL) return 1; /* force exit */
if (*cptr == 0) return SCPE_OK; } /* success */
errno = 0;
mask = width_mask[rptr -> width];
GET_RADIX (rdx, rptr -> radix);
val = get_uint (cptr, rdx, mask, &r);
if (r != SCPE_OK) return SCPE_ARG;
if ((rptr -> flags & REG_NZ) && (val == 0)) return SCPE_ARG;
put_rval (rptr, 0, val, mask);
return SCPE_OK;
}
/* Put register value
Inputs:
rptr = pointer to register descriptor
idx = index (RESTORE reg buffers only)
val = new value
mask = mask
Outputs:
none
*/
void put_rval (REG *rptr, int idx, t_value val, t_value mask)
{
size_t sz;
#define PUT_RVAL(sz,rp,id,val,msk) \
*(((sz *) rp -> loc) + id) = \
(*(((sz *) rp -> loc) + id) & \
~((msk) << (rp) -> offset)) | ((val) << (rp) -> offset)
sz = SZ_R (rptr);
if ((rptr -> depth > 1) && (sz == sizeof (uint8)))
PUT_RVAL (uint8, rptr, idx, (uint32) val, (uint32) mask);
else if ((rptr -> depth > 1) && (sz == sizeof (uint16)))
PUT_RVAL (uint16, rptr, idx, (uint32) val, (uint32) mask);
#if !defined (int64)
else PUT_RVAL (uint32, rptr, idx, val, mask);
#else
else if (sz <= sizeof (uint32))
PUT_RVAL (uint32, rptr, idx, (int32) val, (uint32) mask);
else PUT_RVAL (uint64, rptr, idx, val, mask);
#endif
return;
}
/* Examine address routine
Inputs: (sim_eval is an implicit argument)
ofile = output stream
flag = type of ex/mod command (ex, iex, idep)
addr = address to examine
dptr = pointer to device
uptr = pointer to unit
Outputs:
return = if >= 0, error status
if < 0, number of extra words retired
*/
t_stat ex_addr (FILE *ofile, int flag, t_addr addr, DEVICE *dptr, UNIT *uptr)
{
t_stat reason;
int32 rdx;
fprint_val (ofile, addr, dptr -> aradix, dptr -> awidth, PV_LEFT);
fprintf (ofile, ": ");
if (!(flag & EX_E)) return SCPE_OK;
GET_RADIX (rdx, dptr -> dradix);
if ((reason = fprint_sym (ofile, addr, sim_eval, uptr, sim_switches)) > 0)
reason = fprint_val (ofile, sim_eval[0], rdx, dptr -> dwidth, PV_RZRO);
if (flag & EX_I) fprintf (ofile, " ");
else fprintf (ofile, "\n");
return reason;
}
/* Get address routine
Inputs:
flag = type of ex/mod command (ex, iex, idep)
addr = address to examine
dptr = pointer to device
uptr = pointer to unit
Outputs: (sim_eval is an implicit output)
return = error status
*/
t_stat get_aval (t_addr addr, DEVICE *dptr, UNIT *uptr)
{
int32 i;
t_value mask;
t_addr j, loc;
t_stat reason;
size_t sz;
if ((dptr == NULL) || (uptr == NULL)) return SCPE_ARG;
mask = width_mask[dptr -> dwidth];
for (i = 0; i < sim_emax; i++) sim_eval[i] = 0;
for (i = 0, j = addr; i < sim_emax; i++, j = j + dptr -> aincr) {
if (dptr -> examine != NULL) {
reason = dptr -> examine (&sim_eval[i], j, uptr, sim_switches);
if (reason != SCPE_OK) break; }
else { if (!(uptr -> flags & UNIT_ATT)) return SCPE_UNATT;
if ((uptr -> flags & UNIT_FIX) && (j >= uptr -> capac)) {
reason = SCPE_NXM;
break; }
sz = SZ_D (dptr);
loc = j / dptr -> aincr;
if (uptr -> flags & UNIT_BUF) {
SZ_LOAD (sz, sim_eval[i], uptr -> filebuf, loc); }
else { fseek (uptr -> fileref, sz * loc, SEEK_SET);
fxread (&sim_eval[i], sz, 1, uptr -> fileref);
if ((feof (uptr -> fileref)) &&
!(uptr -> flags & UNIT_FIX)) {
reason = SCPE_EOF;
break; }
else if (ferror (uptr -> fileref)) {
clearerr (uptr -> fileref);
reason = SCPE_IOERR;
break; } } }
sim_eval[i] = sim_eval[i] & mask; }
if ((reason != SCPE_OK) && (i == 0)) return reason;
return SCPE_OK;
}
/* Deposit address routine
Inputs:
flag = type of deposit (normal/interactive)
cptr = pointer to input string
addr = address to examine
dptr = pointer to device
uptr = pointer to unit
dfltinc = value to return on cr input
Outputs:
return = if >= 0, error status
if < 0, number of extra words retired
*/
t_stat dep_addr (int flag, char *cptr, t_addr addr, DEVICE *dptr,
UNIT *uptr, int dfltinc)
{
int32 i, count, rdx;
t_addr j, loc;
t_stat r, reason;
t_value mask;
size_t sz;
char gbuf[CBUFSIZE];
if (dptr == NULL) return SCPE_ARG;
if (flag & EX_I) {
cptr = read_line (gbuf, CBUFSIZE, stdin);
if (cptr == NULL) return 1; /* force exit */
if (*cptr == 0) return dfltinc; } /* success */
mask = width_mask[dptr -> dwidth];
GET_RADIX (rdx, dptr -> dradix);
if ((reason = parse_sym (cptr, addr, uptr, sim_eval, sim_switches)) > 0) {
sim_eval[0] = get_uint (cptr, rdx, mask, &reason);
if (reason != SCPE_OK) return reason; }
count = 1 - reason;
for (i = 0, j = addr; i < count; i++, j = j + dptr -> aincr) {
sim_eval[i] = sim_eval[i] & mask;
if (dptr -> deposit != NULL) {
r = dptr -> deposit (sim_eval[i], j, uptr, sim_switches);
if (r != SCPE_OK) return r; }
else { if (!(uptr -> flags & UNIT_ATT)) return SCPE_UNATT;
if ((uptr -> flags & UNIT_FIX) && (j >= uptr -> capac))
return SCPE_NXM;
sz = SZ_D (dptr);
loc = j / dptr -> aincr;
if (uptr -> flags & UNIT_BUF) {
SZ_STORE (sz, sim_eval[i], uptr -> filebuf, loc);
if (loc >= uptr -> hwmark) uptr -> hwmark = loc + 1; }
else { fseek (uptr -> fileref, sz * loc, SEEK_SET);
fxwrite (sim_eval, sz, 1, uptr -> fileref);
if (ferror (uptr -> fileref)) {
clearerr (uptr -> fileref);
return SCPE_IOERR; } } } }
return reason;
}
/* String processing routines
read_line read line
Inputs:
cptr = pointer to buffer
size = maximum size
stream = pointer to input stream
Outputs:
optr = pointer to first non-blank character
NULL if EOF
*/
char *read_line (char *cptr, int size, FILE *stream)
{
char *tptr;
cptr = fgets (cptr, size, stream); /* get cmd line */
if (cptr == NULL) {
clearerr (stream); /* clear error */
return NULL; } /* ignore EOF */
for (tptr = cptr; tptr < (cptr + size); tptr++) /* remove cr */
if (*tptr == '\n') *tptr = 0;
while (isspace (*cptr)) cptr++; /* absorb spaces */
return cptr;
}
/* get_glyph get next glyph (force upper case)
get_glyph_nc get next glyph (no conversion)
get_glyph_gen get next glyph (general case)
Inputs:
iptr = pointer to input string
optr = pointer to output string
mchar = optional end of glyph character
flag = TRUE for convert to upper case (_gen only)
Outputs
result = pointer to next character in input string
*/
char *get_glyph_gen (char *iptr, char *optr, char mchar, t_bool uc)
{
while ((isspace (*iptr) == 0) && (*iptr != 0) && (*iptr != mchar)) {
if (islower (*iptr) && uc) *optr = toupper (*iptr);
else *optr = *iptr;
iptr++; optr++; }
*optr = 0;
if (mchar && (*iptr == mchar)) iptr++; /* skip terminator */
while (isspace (*iptr)) iptr++; /* absorb spaces */
return iptr;
}
char *get_glyph (char *iptr, char *optr, char mchar)
{
return get_glyph_gen (iptr, optr, mchar, TRUE);
}
char *get_glyph_nc (char *iptr, char *optr, char mchar)
{
return get_glyph_gen (iptr, optr, mchar, FALSE);
}
/* get_yn yes/no question
Inputs:
cptr = pointer to question
deflt = default answer
Outputs:
result = true if yes, false if no
*/
t_stat get_yn (char *ques, t_stat deflt)
{
char cbuf[CBUFSIZE], *cptr;
printf ("%s ", ques);
cptr = read_line (cbuf, CBUFSIZE, stdin);
if ((cptr == NULL) || (*cptr == 0)) return deflt;
if ((*cptr == 'Y') || (*cptr == 'y')) return TRUE;
return FALSE;
}
/* get_uint unsigned number
Inputs:
cptr = pointer to input string
radix = input radix
max = maximum acceptable value
*status = pointer to error status
Outputs:
val = value
*/
t_value get_uint (char *cptr, int radix, t_value max, t_stat *status)
{
t_value val;
char *tptr;
val = strtotv (cptr, &tptr, radix);
if ((cptr == tptr) || (val > max) || (*tptr != 0)) *status = SCPE_ARG;
else *status = SCPE_OK;
return val;
}
/* Find_device find device matching input string
Inputs:
cptr = pointer to input string
iptr = pointer to unit number (can be null)
Outputs:
result = pointer to device
*iptr = unit number, if valid
*/
DEVICE *find_device (char *cptr, int32 *iptr)
{
int32 i, lenn, unitno;
t_stat r;
DEVICE *dptr;
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* exact match? */
if (strcmp (cptr, dptr -> name) != 0) continue;
if (iptr != NULL) *iptr = 0;
return sim_devices[i]; }
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* base + unit#? */
lenn = strlen (dptr -> name);
if (strncmp (cptr, dptr -> name, lenn) != 0) continue;
cptr = cptr + lenn;
if ((*cptr == 0) || (dptr -> numunits == 0)) unitno = 0;
else { unitno = (int32) get_uint (cptr, 10, dptr -> numunits - 1, &r);
if (r != SCPE_OK) return NULL; }
if (iptr != NULL) *iptr = unitno;
return sim_devices[i]; }
return NULL;
}
/* Find_dev_from_unit find device for unit
Inputs:
uptr = pointer to unit
Outputs:
result = pointer to device
*/
DEVICE *find_dev_from_unit (UNIT *uptr)
{
DEVICE *dptr;
int32 i, j;
if (uptr == NULL) return NULL;
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) {
for (j = 0; j < dptr -> numunits; j++) {
if (uptr == (dptr -> units + j)) return dptr; } }
return NULL;
}
/* find_reg find register matching input string
Inputs:
cptr = pointer to input string
optr = pointer to output pointer (can be null)
dptr = pointer to device
Outputs:
result = pointer to register, NULL if error
*optr = pointer to next character in input string
*/
REG *find_reg (char *cptr, char **optr, DEVICE *dptr)
{
char *tptr;
REG *rptr;
if ((cptr == NULL) || (dptr == NULL) ||
(dptr -> registers == NULL)) return NULL;
tptr = cptr;
do { tptr++; }
while (isalnum (*tptr) || (*tptr == '*') || (*tptr == '_'));
for (rptr = dptr -> registers; rptr -> name != NULL; rptr++) {
if (strncmp (cptr, rptr -> name, tptr - cptr) == 0) {
if (optr != NULL) *optr = tptr;
return rptr; } }
return NULL;
}
/* get_switches get switches from input string
Inputs:
cptr = pointer to input string
Outputs:
sw = switch bit mask
0 if no switches, -1 if error
*/
int32 get_switches (char *cptr)
{
int32 sw;
if (*cptr != '-') return 0;
sw = 0;
for (cptr++; (isspace (*cptr) == 0) && (*cptr != 0); cptr++) {
if (isalpha (*cptr) == 0) return -1;
sw = sw | SWMASK (*cptr); }
return sw;
}
/* Get search specification
Inputs:
cptr = pointer to input string
dptr = pointer to device
schptr = pointer to search table
Outputs:
return = NULL if error
schptr if valid search specification
*/
SCHTAB *get_search (char *cptr, DEVICE *dptr, SCHTAB *schptr)
{
int c, logop, cmpop;
t_value logval, cmpval;
char *sptr, *tptr;
const char logstr[] = "|&^", cmpstr[] = "=!><";
if (*cptr == 0) return NULL; /* check for clause */
for (logop = cmpop = -1; c = *cptr++; ) { /* loop thru clauses */
if (sptr = strchr (logstr, c)) { /* check for mask */
logop = sptr - logstr;
logval = strtotv (cptr, &tptr, dptr -> dradix);
if (cptr == tptr) return NULL;
cptr = tptr; }
else if (sptr = strchr (cmpstr, c)) { /* check for bool */
cmpop = sptr - cmpstr;
if (*cptr == '=') {
cmpop = cmpop + strlen (cmpstr);
cptr++; }
cmpval = strtotv (cptr, &tptr, dptr -> dradix);
if (cptr == tptr) return NULL;
cptr = tptr; }
else return NULL; } /* end while */
if (logop >= 0) {
schptr -> logic = logop;
schptr -> mask = logval; }
if (cmpop >= 0) {
schptr -> bool = cmpop;
schptr -> comp = cmpval; }
return schptr;
}
/* Test value against search specification
Inputs:
val = value to test
schptr = pointer to search table
Outputs:
return = 1 if value passes search criteria, 0 if not
*/
int test_search (t_value val, SCHTAB *schptr)
{
if (schptr == NULL) return 0;
switch (schptr -> logic) { /* case on logical */
case SCH_OR:
val = val | schptr -> mask;
break;
case SCH_AND:
val = val & schptr -> mask;
break;
case SCH_XOR:
val = val ^ schptr -> mask;
break; }
switch (schptr -> bool) { /* case on comparison */
case SCH_E: case SCH_EE:
return (val == schptr -> comp);
case SCH_N: case SCH_NE:
return (val != schptr -> comp);
case SCH_G:
return (val > schptr -> comp);
case SCH_GE:
return (val >= schptr -> comp);
case SCH_L:
return (val < schptr -> comp);
case SCH_LE:
return (val <= schptr -> comp); }
return 0;
}
/* General radix input routine
Inputs:
inptr = string to convert
endptr = pointer to first unconverted character
radix = radix for input
Outputs:
value = converted value
On an error, the endptr will equal the inptr.
*/
t_value strtotv (char *inptr, char **endptr, int radix)
{
int nodigit;
t_value val;
int c, digit;
*endptr = inptr; /* assume fails */
if ((radix < 2) || (radix > 36)) return 0;
while (isspace (*inptr)) inptr++; /* bypass white space */
val = 0;
nodigit = 1;
for (c = *inptr; isalnum(c); c = *++inptr) { /* loop through char */
if (islower (c)) c = toupper (c);
if (isdigit (c)) digit = c - (int) '0'; /* digit? */
else digit = c + 10 - (int) 'A'; /* no, letter */
if (digit >= radix) return 0; /* valid in radix? */
val = (val * radix) + digit; /* add to value */
nodigit = 0; }
if (nodigit) return 0; /* no digits? */
*endptr = inptr; /* result pointer */
return val;
}
/* General radix printing routine
Inputs:
stream = stream designator
val = value to print
radix = radix to print
width = width to print
format = leading zeroes format
Outputs:
status = error status
*/
t_stat fprint_val (FILE *stream, t_value val, int radix,
int width, int format)
{
#define MAX_WIDTH ((int) (CHAR_BIT * sizeof (t_value)))
t_value owtest, wtest;
int32 d, digit, ndigits;
char dbuf[MAX_WIDTH + 1];
for (d = 0; d < MAX_WIDTH; d++) dbuf[d] = (format == PV_RZRO)? '0': ' ';
dbuf[MAX_WIDTH] = 0;
d = MAX_WIDTH;
do { d = d - 1;
digit = (int32) (val % (unsigned) radix);
val = val / (unsigned) radix;
dbuf[d] = (digit <= 9)? '0' + digit: 'A' + (digit - 10);
} while ((d > 0) && (val != 0));
if (format != PV_LEFT) {
wtest = owtest = radix;
ndigits = 1;
while ((wtest < width_mask[width]) && (wtest >= owtest)) {
owtest = wtest;
wtest = wtest * radix;
ndigits = ndigits + 1; }
if ((MAX_WIDTH - ndigits) < d) d = MAX_WIDTH - ndigits; }
if (fputs (&dbuf[d], stream) == EOF) return SCPE_IOERR;
return SCPE_OK;
}
/* Event queue routines
sim_activate add entry to event queue
sim_cancel remove entry from event queue
sim_process_event process entries on event queue
sim_is_active see if entry is on event queue
sim_atime return absolute time for an entry
sim_gtime return global time
Asynchronous events are set up by queueing a unit data structure
to the event queue with a timeout (in simulator units, relative
to the current time). Each simulator 'times' these events by
counting down interval counter sim_interval. When this reaches
zero the simulator calls sim_process_event to process the event
and to see if further events need to be processed, or sim_interval
reset to count the next one.
The event queue is maintained in clock order; entry timeouts are
RELATIVE to the time in the previous entry.
Sim_process_event - process event
Inputs:
none
Outputs:
reason reason code returned by any event processor,
or 0 (SCPE_OK) if no exceptions
*/
t_stat sim_process_event (void)
{
UNIT *uptr;
t_stat reason;
if (stop_cpu) return SCPE_STOP; /* stop CPU? */
if (sim_clock_queue == NULL) { /* queue empty? */
UPDATE_SIM_TIME (noqueue_time); /* update sim time */
sim_interval = noqueue_time = NOQUEUE_WAIT; /* flag queue empty */
return SCPE_OK; }
UPDATE_SIM_TIME (sim_clock_queue -> time); /* update sim time */
do { uptr = sim_clock_queue; /* get first */
sim_clock_queue = uptr -> next; /* remove first */
uptr -> next = NULL; /* hygiene */
uptr -> time = 0;
if (sim_clock_queue != NULL) sim_interval = sim_clock_queue -> time;
else sim_interval = noqueue_time = NOQUEUE_WAIT;
if (uptr -> action != NULL) reason = uptr -> action (uptr);
else reason = SCPE_OK;
} while ((reason == SCPE_OK) && (sim_interval == 0));
/* Empty queue forces sim_interval != 0 */
return reason;
}
/* Activate (queue) event
Inputs:
uptr = pointer to unit
event_time = relative timeout
Outputs:
reason = result (SCPE_OK if ok)
*/
t_stat sim_activate (UNIT *uptr, int32 event_time)
{
UNIT *cptr, *prvptr;
int32 accum;
if (event_time < 0) return SCPE_ARG;
if (sim_is_active (uptr)) return SCPE_OK; /* already active? */
if (sim_clock_queue == NULL) { UPDATE_SIM_TIME (noqueue_time); }
else { UPDATE_SIM_TIME (sim_clock_queue -> time); } /* update sim time */
prvptr = NULL;
accum = 0;
for (cptr = sim_clock_queue; cptr != NULL; cptr = cptr -> next) {
if (event_time < accum + cptr -> time) break;
accum = accum + cptr -> time;
prvptr = cptr; }
if (prvptr == NULL) { /* insert at head */
cptr = uptr -> next = sim_clock_queue;
sim_clock_queue = uptr; }
else { cptr = uptr -> next = prvptr -> next; /* insert at prvptr */
prvptr -> next = uptr; }
uptr -> time = event_time - accum;
if (cptr != NULL) cptr -> time = cptr -> time - uptr -> time;
sim_interval = sim_clock_queue -> time;
return SCPE_OK;
}
/* Cancel (dequeue) event
Inputs:
uptr = pointer to unit
Outputs:
reason = result (SCPE_OK if ok)
*/
t_stat sim_cancel (UNIT *uptr)
{
UNIT *cptr, *nptr;
if (sim_clock_queue == NULL) return SCPE_OK;
UPDATE_SIM_TIME (sim_clock_queue -> time); /* update sim time */
nptr = NULL;
if (sim_clock_queue == uptr) nptr = sim_clock_queue = uptr -> next;
else { for (cptr = sim_clock_queue; cptr != NULL; cptr = cptr -> next) {
if (cptr -> next == uptr) {
nptr = cptr -> next = uptr -> next;
break; } } } /* end queue scan */
if (nptr != NULL) nptr -> time = nptr -> time + uptr -> time;
uptr -> next = NULL; /* hygiene */
uptr -> time = 0;
if (sim_clock_queue != NULL) sim_interval = sim_clock_queue -> time;
else sim_interval = noqueue_time = NOQUEUE_WAIT;
return SCPE_OK;
}
/* Test for entry in queue, return activation time
Inputs:
uptr = pointer to unit
Outputs:
result = absolute activation time + 1, 0 if inactive
*/
int32 sim_is_active (UNIT *uptr)
{
UNIT *cptr;
int32 accum;
accum = 0;
for (cptr = sim_clock_queue; cptr != NULL; cptr = cptr -> next) {
accum = accum + cptr -> time;
if (cptr == uptr) return accum + 1; }
return 0;
}
/* Return global time
Inputs: none
Outputs:
time = global time
*/
double sim_gtime (void)
{
if (sim_clock_queue == NULL) { UPDATE_SIM_TIME (noqueue_time); }
else { UPDATE_SIM_TIME (sim_clock_queue -> time); }
return sim_time;
}
/* Endian independent binary I/O package
For consistency, all binary data read and written by the simulator
is stored in little endian data order. That is, in a multi-byte
data item, the bytes are written out right to left, low order byte
to high order byte. On a big endian host, data is read and written
from high byte to low byte. Consequently, data written on a little
endian system must be byte reversed to be usable on a big endian
system, and vice versa.
These routines are analogs of the standard C runtime routines
fread and fwrite. If the host is little endian, or the data items
are size char, then the calls are passed directly to fread or
fwrite. Otherwise, these routines perform the necessary byte swaps
using an intermediate buffer.
*/
size_t fxread (void *bptr, size_t size, size_t count, FILE *fptr)
{
size_t c, j, nelem, nbuf, lcnt, total;
int32 i, k;
unsigned char *sptr, *dptr;
if (sim_end || (size == sizeof (char)))
return fread (bptr, size, count, fptr);
if ((size == 0) || (count == 0)) return 0;
nelem = FLIP_SIZE / size; /* elements in buffer */
nbuf = count / nelem; /* number buffers */
lcnt = count % nelem; /* count in last buf */
if (lcnt) nbuf = nbuf + 1;
else lcnt = nelem;
total = 0;
for (i = nbuf; i > 0; i--) {
c = fread (sim_flip, size, (i == 1? lcnt: nelem), fptr);
if (c == 0) return total;
total = total + c;
for (j = 0, sptr = sim_flip, dptr = bptr; j < c; j++) {
for (k = size - 1; k >= 0; k--) *(dptr + k) = *sptr++;
dptr = dptr + size; } }
return total;
}
size_t fxwrite (void *bptr, size_t size, size_t count, FILE *fptr)
{
size_t c, j, nelem, nbuf, lcnt, total;
int32 i, k;
unsigned char *sptr, *dptr;
if (sim_end || (size == sizeof (char)))
return fwrite (bptr, size, count, fptr);
if ((size == 0) || (count == 0)) return 0;
nelem = FLIP_SIZE / size; /* elements in buffer */
nbuf = count / nelem; /* number buffers */
lcnt = count % nelem; /* count in last buf */
if (lcnt) nbuf = nbuf + 1;
else lcnt = nelem;
total = 0;
for (i = nbuf; i > 0; i--) {
c = (i == 1)? lcnt: nelem;
for (j = 0, sptr = bptr, dptr = sim_flip; j < c; j++) {
for (k = size - 1; k >= 0; k--)
*(dptr + k) = *sptr++;
dptr = dptr + size; }
c = fwrite (sim_flip, size, c, fptr);
if (c == 0) return total;
total = total + c; }
return total;
}