blob: 24b3b56661996511336ed7dc6a00214ff8bc5e9e [file] [log] [blame] [raw]
/* RP15/RP02 disk pack simulator
Copyright (c) 1993-2000, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
rp RP15/RP02 disk pack
14-Apr-99 RMS Changed t_addr to unsigned
29-Jun-96 RMS Added unit disable support
*/
#include "pdp18b_defs.h"
/* Constants */
#define RP_NUMWD 256 /* words/sector */
#define RP_NUMSC 10 /* sectors/surface */
#define RP_NUMSF 20 /* surfaces/cylinder */
#define RP_NUMCY 203 /* cylinders/drive */
#define RP_NUMDR 8 /* drives/controller */
#define RP_SIZE (RP_NUMCY * RP_NUMSF * RP_NUMSC * RP_NUMWD) /* words/drive */
/* Unit specific flags */
#define UNIT_V_HWLK (UNIT_V_UF + 0) /* hwre write lock */
#define UNIT_W_UF 2 /* user flags width */
#define UNIT_HWLK (1u << UNIT_V_HWLK)
/* Parameters in the unit descriptor */
#define CYL u3 /* current cylinder */
#define FUNC u4 /* function */
/* Status register A */
#define STA_V_UNIT 15 /* unit select */
#define STA_M_UNIT 07
#define STA_V_FUNC 12 /* function */
#define STA_M_FUNC 07
#define FN_IDLE 0
#define FN_READ 1
#define FN_WRITE 2
#define FN_RECAL 3
#define FN_SEEK 4
#define FN_RDALL 5
#define FN_WRALL 6
#define FN_WRCHK 7
#define FN_2ND 010 /* second state flag */
#define STA_IED 0004000 /* int enable done */
#define STA_IEA 0002000 /* int enable attn */
#define STA_GO 0001000 /* go */
#define STA_WPE 0000400 /* write lock error */
#define STA_NXC 0000200 /* nx cyl error */
#define STA_NXF 0000100 /* nx surface error */
#define STA_NXS 0000040 /* nx sector error */
#define STA_HNF 0000020 /* hdr not found */
#define STA_SUWP 0000010 /* sel unit wrt lock */
#define STA_SUSI 0000004 /* sel unit seek inc */
#define STA_DON 0000002 /* done */
#define STA_ERR 0000001 /* error */
#define STA_RW 0777000 /* read/write */
#define STA_EFLGS (STA_WPE | STA_NXC | STA_NXF | STA_NXS | \
STA_HNF | STA_SUSI) /* error flags */
#define STA_DYN (STA_SUWP | STA_SUSI) /* per unit status */
#define GET_UNIT(x) (((x) >> STA_V_UNIT) & STA_M_UNIT)
#define GET_FUNC(x) (((x) >> STA_V_FUNC) & STA_M_FUNC)
/* Status register B */
#define STB_V_ATT0 17 /* unit 0 attention */
#define STB_ATTN 0776000 /* attention flags */
#define STB_SUFU 0001000 /* sel unit unsafe */
#define STB_PGE 0000400 /* programming error */
#define STB_EOP 0000200 /* end of pack */
#define STB_TME 0000100 /* timing error */
#define STB_FME 0000040 /* format error */
#define STB_WCE 0000020 /* write check error */
#define STB_WPE 0000010 /* word parity error */
#define STB_LON 0000004 /* long parity error */
#define STB_SUSU 0000002 /* sel unit seeking */
#define STB_SUNR 0000001 /* sel unit not rdy */
#define STB_EFLGS (STB_SUFU | STB_PGE | STB_EOP | STB_TME | STB_FME | \
STB_WCE | STB_WPE | STB_LON ) /* error flags */
#define STB_DYN (STB_SUFU | STB_SUSU | STB_SUNR) /* per unit */
/* Disk address */
#define DA_V_SECT 0 /* sector */
#define DA_M_SECT 017
#define DA_V_SURF 5
#define DA_M_SURF 037
#define DA_V_CYL 10 /* cylinder */
#define DA_M_CYL 0377
#define GET_SECT(x) (((x) >> DA_V_SECT) & DA_M_SECT)
#define GET_SURF(x) (((x) >> DA_V_SURF) & DA_M_SURF)
#define GET_CYL(x) (((x) >> DA_V_CYL) & DA_M_CYL)
#define GET_DA(x) ((((GET_CYL (x) * RP_NUMSF) + GET_SURF (x)) * \
RP_NUMSC) + GET_SECT (x))
#define RP_MIN 2
#define MAX(x,y) (((x) > (y))? (x): (y))
extern int32 M[];
extern int32 int_req, nexm;
extern UNIT cpu_unit;
int32 rp_sta = 0; /* status A */
int32 rp_stb = 0; /* status B */
int32 rp_ma = 0; /* memory address */
int32 rp_da = 0; /* disk address */
int32 rp_wc = 0; /* word count */
int32 rp_busy = 0; /* busy */
int32 rp_stopioe = 1; /* stop on error */
int32 rp_swait = 10; /* seek time */
int32 rp_rwait = 10; /* rotate time */
t_stat rp_svc (UNIT *uptr);
void rp_updsta (int32 newa, int32 newb);
t_stat rp_reset (DEVICE *dptr);
t_stat rp_attach (UNIT *uptr, char *cptr);
t_stat rp_detach (UNIT *uptr);
extern t_stat sim_activate (UNIT *uptr, int32 delay);
extern t_stat sim_cancel (UNIT *uptr);
extern int32 sim_is_active (UNIT *uptr);
extern size_t fxread (void *bptr, size_t size, size_t count, FILE *fptr);
extern size_t fxwrite (void *bptr, size_t size, size_t count, FILE *fptr);
/* RP15 data structures
rp_dev RP device descriptor
rp_unit RP unit list
rp_reg RP register list
rp_mod RP modifier list
*/
UNIT rp_unit[] = {
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) } };
REG rp_reg[] = {
{ ORDATA (STA, rp_sta, 18) },
{ ORDATA (STB, rp_stb, 18) },
{ ORDATA (DA, rp_da, 18) },
{ ORDATA (MA, rp_ma, 18) },
{ ORDATA (WC, rp_wc, 18) },
{ FLDATA (INT, int_req, INT_V_RP) },
{ FLDATA (BUSY, rp_busy, 0) },
{ FLDATA (STOP_IOE, rp_stopioe, 0) },
{ DRDATA (STIME, rp_swait, 24), PV_LEFT },
{ DRDATA (RTIME, rp_rwait, 24), PV_LEFT },
{ GRDATA (FLG0, rp_unit[0].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG1, rp_unit[1].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG2, rp_unit[2].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG3, rp_unit[3].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG4, rp_unit[4].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG5, rp_unit[5].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG6, rp_unit[6].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ GRDATA (FLG7, rp_unit[7].flags, 8, UNIT_W_UF, UNIT_V_UF - 1),
REG_HRO },
{ NULL } };
MTAB rp_mod[] = {
{ UNIT_HWLK, 0, "write enabled", "ENABLED", NULL },
{ UNIT_HWLK, UNIT_HWLK, "write locked", "LOCKED", NULL },
{ 0 } };
DEVICE rp_dev = {
"RP", rp_unit, rp_reg, rp_mod,
RP_NUMDR, 8, 24, 1, 8, 18,
NULL, NULL, &rp_reset,
NULL, &rp_attach, &rp_detach };
/* IOT routines */
int32 rp63 (int32 pulse, int32 AC)
{
rp_updsta (0, 0);
if (pulse == 001) /* DPSF */
return ((rp_sta & (STA_DON | STA_ERR)) || (rp_stb & STB_ATTN))?
IOT_SKP + AC: AC;
if (pulse == 021) /* DPSA */
return (rp_stb & STB_ATTN)? IOT_SKP + AC: AC;
if (pulse == 041) /* DPSJ */
return (rp_sta & STA_DON)? IOT_SKP + AC: AC;
if (pulse == 061) /* DPSE */
return (rp_sta & STA_ERR)? IOT_SKP + AC: AC;
if (pulse == 002) return rp_sta; /* DPOSA */
if (pulse == 022) return rp_stb; /* DPOSB */
if (((pulse & 007) == 004) && rp_busy) { /* busy? */
rp_updsta (0, STB_PGE);
return AC; }
if (pulse == 004) { /* DPLA */
rp_da = AC;
if (GET_SECT (rp_da) >= RP_NUMSC) rp_updsta (STA_NXS, 0);
if (GET_SURF (rp_da) >= RP_NUMSF) rp_updsta (STA_NXF, 0);
if (GET_CYL (rp_da) >= RP_NUMCY) rp_updsta (STA_NXC, 0); }
if (pulse == 024) { /* DPCS */
rp_sta = rp_sta & ~(STA_HNF | STA_DON);
rp_stb = rp_stb & ~(STB_FME | STB_WPE | STB_LON | STB_WCE |
STB_TME | STB_PGE | STB_EOP);
rp_updsta (0, 0); }
if (pulse == 044) rp_ma = AC; /* DPCA */
if (pulse == 064) rp_wc = AC; /* DPWC */
return AC;
}
/* IOT 64 */
int32 rp64 (int32 pulse, int32 AC)
{
int32 u, f, c;
UNIT *uptr;
if (pulse == 021) return IOT_SKP + AC; /* DPSN */
if (pulse == 002) return rp_unit[GET_UNIT (rp_sta)].CYL; /* DPOU */
if (pulse == 022) return rp_da; /* DPOA */
if (pulse == 042) return rp_ma; /* DPOC */
if (pulse == 062) return rp_wc; /* DPOW */
if ((pulse & 007) != 004) return AC;
if (rp_busy) { /* busy? */
rp_updsta (0, STB_PGE);
return AC; }
if (pulse == 004) rp_sta = rp_sta & ~STA_RW; /* DPCF */
if (pulse == 024) rp_sta = rp_sta & (AC | ~STA_RW); /* DPLZ */
if (pulse == 044) rp_sta = rp_sta | (AC & STA_RW); /* DPLO */
if (pulse == 064) rp_sta = (rp_sta & ~STA_RW) | (AC & STA_RW); /* DPLF */
if (rp_sta & STA_GO) {
u = GET_UNIT (rp_sta); /* get unit num */
uptr = rp_dev.units + u; /* select unit */
if (sim_is_active (uptr)) return AC; /* can't if busy */
f = uptr -> FUNC = GET_FUNC (rp_sta); /* get function */
rp_busy = 1; /* set ctrl busy */
rp_sta = rp_sta & ~(STA_HNF | STA_DON); /* clear flags */
rp_stb = rp_stb & ~(STB_FME | STB_WPE | STB_LON | STB_WCE |
STB_TME | STB_PGE | STB_EOP | (1 << (STB_V_ATT0 - u)));
if (((uptr -> flags & UNIT_ATT) == 0) || (f == FN_IDLE) ||
(f == FN_SEEK) || (f == FN_RECAL))
sim_activate (uptr, RP_MIN); /* short delay */
else { c = GET_CYL (rp_da);
c = abs (c - uptr -> CYL) * rp_swait; /* seek time */
sim_activate (uptr, MAX (RP_MIN, c + rp_rwait)); } }
rp_updsta (0, 0);
return AC;
}
/* Unit service
If function = idle, clear busy
If seek or recal initial state, clear attention line, compute seek time,
put on cylinder, set second state
If unit not attached, give error
If seek or recal second state, set attention line, compute errors
Else complete data transfer command
The unit control block contains the function and cylinder for
the current command.
*/
static int32 fill[RP_NUMWD] = { 0 };
t_stat rp_svc (UNIT *uptr)
{
int32 f, u, comp, cyl, sect, surf;
int32 err, pa, da, wc, awc, i;
u = uptr - rp_dev.units; /* get drv number */
f = uptr -> FUNC; /* get function */
if (f == FN_IDLE) { /* idle? */
rp_busy = 0; /* clear busy */
return SCPE_OK; }
if ((f == FN_SEEK) || (f == FN_RECAL)) { /* seek or recal? */
rp_busy = 0; /* not busy */
cyl = (f == FN_SEEK)? GET_CYL (rp_da): 0; /* get cylinder */
sim_activate (uptr, MAX (RP_MIN, abs (cyl - uptr -> CYL) * rp_swait));
uptr -> CYL = cyl; /* on cylinder */
uptr -> FUNC = FN_SEEK | FN_2ND; /* set second state */
rp_updsta (0, 0); /* update status */
return SCPE_OK; }
if (f == (FN_SEEK | FN_2ND)) { /* seek done? */
rp_updsta (0, rp_stb | (1 << (STB_V_ATT0 - u))); /* set attention */
return SCPE_OK; }
if ((uptr -> flags & UNIT_ATT) == 0) { /* not attached? */
rp_updsta (STA_DON, STB_SUFU); /* done, unsafe */
return IORETURN (rp_stopioe, SCPE_UNATT); }
if (GET_SECT (rp_da) >= RP_NUMSC) rp_updsta (STA_NXS, 0);
if (GET_SURF (rp_da) >= RP_NUMSF) rp_updsta (STA_NXF, 0);
if (GET_CYL (rp_da) >= RP_NUMCY) rp_updsta (STA_NXC, 0);
if (rp_sta & (STA_NXS | STA_NXF | STA_NXC)) { /* or bad disk addr? */
rp_updsta (STA_DON, STB_SUFU); /* done, unsafe */
return SCPE_OK; }
pa = rp_ma & ADDRMASK; /* get mem addr */
da = GET_DA (rp_da) * RP_NUMWD; /* get disk addr */
wc = 01000000 - rp_wc; /* get true wc */
if (((t_addr) (pa + wc)) > MEMSIZE) { /* memory overrun? */
nexm = 1; /* set nexm flag */
wc = MEMSIZE - pa; } /* limit xfer */
if ((da + wc) > RP_SIZE) { /* disk overrun? */
rp_updsta (0, STB_EOP); /* error */
wc = RP_SIZE - da; } /* limit xfer */
err = fseek (uptr -> fileref, da * sizeof (int), SEEK_SET);
if ((f == FN_READ) && (err == 0)) { /* read? */
awc = fxread (&M[pa], sizeof (int32), wc, uptr -> fileref);
for ( ; awc < wc; awc++) M[pa + awc] = 0;
err = ferror (uptr -> fileref); }
if ((f == FN_WRITE) && (err == 0)) { /* write? */
fxwrite (&M[pa], sizeof (int32), wc, uptr -> fileref);
err = ferror (uptr -> fileref);
if ((err == 0) && (i = (wc & (RP_NUMWD - 1)))) {
fxwrite (fill, sizeof (int), i, uptr -> fileref);
err = ferror (uptr -> fileref); } }
if ((f == FN_WRCHK) && (err == 0)) { /* write check? */
for (i = 0; (err == 0) && (i < wc); i++) {
awc = fxread (&comp, sizeof (int32), 1, uptr -> fileref);
if (awc == 0) comp = 0;
if (comp != M[pa + i]) rp_updsta (0, STB_WCE); }
err = ferror (uptr -> fileref); }
rp_wc = (rp_wc + wc) & 0777777; /* final word count */
rp_ma = (rp_ma + wc) & 0777777; /* final mem addr */
da = (da + wc + (RP_NUMWD - 1)) / RP_NUMWD; /* final sector num */
cyl = da / (RP_NUMSC * RP_NUMSF); /* get cyl */
if (cyl >= RP_NUMCY) cyl = RP_NUMCY - 1;
surf = (da % (RP_NUMSC * RP_NUMSF)) / RP_NUMSC; /* get surface */
sect = (da % (RP_NUMSC * RP_NUMSF)) % RP_NUMSC; /* get sector */
rp_da = (cyl << DA_V_CYL) | (surf << DA_V_SURF) | (sect << DA_V_SECT);
rp_busy = 0; /* clear busy */
rp_updsta (STA_DON, 0); /* set done */
if (err != 0) { /* error? */
perror ("RP I/O error");
clearerr (uptr -> fileref);
return IORETURN (rp_stopioe, SCPE_IOERR); }
return SCPE_OK;
}
/* Update status */
void rp_updsta (int32 newa, int32 newb)
{
int32 f;
UNIT *uptr;
uptr = rp_dev.units + GET_UNIT (rp_sta);
rp_sta = (rp_sta & ~(STA_DYN | STA_ERR)) | newa;
rp_stb = (rp_stb & ~STB_DYN) | newb;
if (uptr -> flags & UNIT_HWLK) rp_sta = rp_sta | STA_SUWP;
if ((uptr -> flags & UNIT_ATT) == 0) rp_stb = rp_stb | STB_SUFU | STB_SUNR;
else if (sim_is_active (uptr)) {
f = (uptr -> FUNC) & STA_M_FUNC;
if ((f == FN_SEEK) || (f == FN_RECAL))
rp_stb = rp_stb | STB_SUSU | STB_SUNR; }
else if (uptr -> CYL >= RP_NUMCY) rp_sta = rp_sta | STA_SUSI;
if ((rp_sta & STA_EFLGS) || (rp_stb & STB_EFLGS)) rp_sta = rp_sta | STA_ERR;
if (((rp_sta & (STA_ERR | STA_DON)) && (rp_sta & STA_IED)) ||
((rp_stb & STB_ATTN) && (rp_sta & STA_IEA))) int_req = int_req | INT_RP;
else int_req = int_req & ~INT_RP;
return;
}
/* Reset routine */
t_stat rp_reset (DEVICE *dptr)
{
int32 i;
UNIT *uptr;
rp_sta = rp_stb = rp_da = rp_wc = rp_ma = rp_busy = 0;
int_req = int_req & ~INT_RP;
for (i = 0; i < RP_NUMDR; i++) {
uptr = rp_dev.units + i;
sim_cancel (uptr);
uptr -> CYL = uptr -> FUNC = 0; }
return SCPE_OK;
}
/* IORS routine */
int32 rp_iors (void)
{
return ((rp_sta & (STA_ERR | STA_DON)) || (rp_stb & STB_ATTN))? IOS_RP: 0;
}
/* Attach unit */
t_stat rp_attach (UNIT *uptr, char *cptr)
{
t_stat reason;
reason = attach_unit (uptr, cptr);
rp_updsta (0, 0);
return reason;
}
/* Detach unit */
t_stat rp_detach (UNIT *uptr)
{
t_stat reason;
reason = detach_unit (uptr);
rp_updsta (0, 0);
return reason;
}