blob: 6f8c9fa97839a3cfab0c9d6d5c5ff27d31d2e7a4 [file] [log] [blame] [raw]
/* isbc208.c: Intel iSBC208 Floppy Disk adapter
Copyright (c) 2011, William A. Beech
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
WILLIAM A. BEECH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of William A. Beech shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from William A. Beech.
MODIFICATIONS:
?? ??? 11 - Original file.
24 Apr 15 -- Modified to use simh_debug
NOTES:
These functions support a simulated iSBC208 interface to 4 each 8-, 5 1/4-, or
3 1/2-inch floppy disk drives. Commands are setup with programmed I/O to the
simulated ports of an i8237 DMA controller and an i8272 FDC. Data transfer
to/from the simulated disks is performed directly with the multibus memory.
The iSBC-208 can be configured for 8- or 16-bit addresses. It defaults to 8-bit
addresses for the 8080/8085 processors. It can be configured for I/O port
addresses with 3-bits (8-bit address) or 11-bits (16-bit address). Default is
3-bits set to 0. This defines the port offset to be used to determine the actual
port address. Bus priority can be configured for parallel or serial mode. Default is
serial. The multibus interface interrupt can be configured for interrupt 0-7.
Default is none. Since all channel registers in the i8237 are 16-bit, transfers
are done as two 8-bit operations, low- then high-byte.
Port addressing is as follows (Port offset = 0):
Port Mode Command Function
00 Write Load DMAC Channel 0 Base and Current Address Regsiters
Read Read DMAC Channel 0 Current Address Register
01 Write Load DMAC Channel 0 Base and Current Word Count Registers
Read Read DMAC Channel 0 Current Word Count Register
04 Write Load DMAC Channel 2 Base and Current Address Regsiters
Read Read DMAC Channel 2 Current Address Register
05 Write Load DMAC Channel 2 Base and Current Word Count Registers
Read Read DMAC Channel 2 Current Word Count Register
06 Write Load DMAC Channel 3 Base and Current Address Regsiters
Read Read DMAC Channel 3 Current Address Register
07 Write Load DMAC Channel 3 Base and Current Word Count Registers
Read Read DMAC Channel 3 Current Word Count Register
08 Write Load DMAC Command Register
Read Read DMAC Status Register
09 Write Load DMAC Request Register
OA Write Set/Reset DMAC Mask Register
OB Write Load DMAC Mode Register
OC Write Clear DMAC First/Last Flip-Flop
0D Write DMAC Master Clear
OF Write Load DMAC Mask Register
10 Read Read FDC Status Register
11 Write Load FDC Data Register
Read Read FDC Data Register
12 Write Load Controller Auxiliary Port
Read Poll Interrupt Status
13 Write Controller Reset
14 Write Load Controller Low-Byte Segment Address Register
15 Write Load Controller High-Byte Segment Address Register
20-2F Read/Write Reserved for iSBX Multimodule Board
Register usage is defined in the following paragraphs.
Read/Write DMAC Address Registers
Used to simultaneously load a channel's current-address register and base-address
register with the memory address of the first byte to be transferred. (The Channel
0 current/base address register must be loaded prior to initiating a diskette read
or write operation.) Since each channel's address registers are 16 bits in length
(64K address range), two "write address register" commands must be executed in
order to load the complete current/base address registers for any channel.
Read/Write DMAC Word Count Registers
The Write DMAC Word Count Register command is used to simultaneously load a
channel's current and base word-count registers with the number of bytes
to be transferred during a subsequent DMA operation. Since the word-count
registers are 16-bits in length, two commands must be executed to load both
halves of the registers.
Write DMAC Command Register
The Write DMAC Command Register command loads an 8-bit byte into the
DMAC's command register to define the operating characteristics of the
DMAC. The functions of the individual bits in the command register are
defined in the following diagram. Note that only two bits within the
register are applicable to the controller; the remaining bits select
functions that are not supported and, accordingly, must always be set
to zero.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+
| |
| +---------- 0 CONTROLLER ENABLE
| 1 CONTROLLER DISABLE
|
+------------------ 0 FIXED PRIORITY
1 ROTATING PRIORITY
Read DMAC Status Register Command
The Read DMAC Status Register command accesses an 8-bit status byte that
identifies the DMA channels that have reached terminal count or that
have a pending DMA request.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| 0 0 |
+---+---+---+---+---+---+---+---+
| | | | | |
| | | | | +-- CHANNEL 0 TC
| | | | +---------- CHANNEL 2 TC
| | | +-------------- CHANNEL 3 TC
| | +------------------ CHANNEL 0 DMA REQUEST
| +-------------------------- CHANNEL 2 DMA REQUEST
+------------------------------ CHANNEL 3 DMA REQUEST
Write DMAC Request Register
The data byte associated with the Write DMAC Request Register command
sets or resets a channel's associated request bit within the DMAC's
internal 4-bit request register.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| X X X X X |
+---+---+---+---+---+---+---+---+
| | |
| +---+-- 00 SELECT CHANNEL 0
| 01 SELECT CHANNEL 1
| 10 SELECT CHANNEL 2
| 11 SELECT CHANNEL 3
|
+---------- 0 RESET REQUEST BIT
1 SET REQUEST BIT
Set/Reset DMAC Mask Register
Prior to a DREQ-initiated DMA transfer, the channel's mask bit must
be reset to enable recognition of the DREQ input. When the transfer
is complete (terminal count reached or external EOP applied) and
the channel is not programmed to autoinitialize, the channel's
mask bit is automatically set (disabling DREQ) and must be reset
prior to a subsequent DMA transfer. All four bits of the mask
register are set (disabling the DREQ inputs) by a DMAC master
clear or controller reset. Additionally, all four bits can be
set/reset by a single Write DMAC Mask Register command.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| X X X X X |
+---+---+---+---+---+---+---+---+
| | |
| +---+-- 00 SELECT CHANNEL 0
| 01 SELECT CHANNEL 1
| 10 SELECT CHANNEL 2
| 11 SELECT CHANNEL 3
|
+---------- 0 RESET REQUEST BIT
1 SET REQUEST BIT
Write DMAC Mode Register
The Write DMAC Mode Register command is used to define the
operating mode characteristics for each DMA channel. Each
channel has an internal 6-bit mode register; the high-order
six bits of the associated data byte are written into the
mode register addressed by the two low-order bits.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| |
+---+---+---+---+---+---+---+---+
| | | | | | | |
| | | | | | +---+-- 00 SELECT CHANNEL 0
| | | | | | 01 SELECT CHANNEL 1
| | | | | | 10 SELECT CHANNEL 2
| | | | | | 11 SELECT CHANNEL 3
| | | | | |
| | | | +---+---------- 00 VERIFY TRANSFER
| | | | 01 WRITE TRANSFER
| | | | 10 READ TRANSFER
| | | |
| | | +------------------ 0 AUTOINITIALIZE DISABLE
| | | 1 AUTOINITIALIZE ENABLE
| | |
| | +---------------------- 0 ADDRESS INCREMENT
| | 1 ADDRESS DECREMENT
| |
+---+-------------------------- 00 DEMAND MODE
01 SINGLE MODE
10 BLOCK MODE
Clear DMAC First/Last Flip-Flop
The Clear DMAC First/Last Flip-Flop command initializes
the DMAC's internal first/last flip-flop so that the
next byte written to or re~d from the 16-bit address
or word-count registers is the low-order byte. The
flip-flop is toggled with each register access so that
a second register read or write command accesses the
high-order byte.
DMAC Master Clear
The DMAC Master Clear command clears the DMAC's command, status,
request, and temporary registers to zero, initializes the
first/last flip-flop, and sets the four channel mask bits in
the mask register to disable all DMA requests (i.e., the DMAC
is placed in an idle state).
Write DMAC Mask Register
The Write DMAC Mask Register command allows all four bits of the
DMAC's mask register to be written with a single command.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| X X X X X |
+---+---+---+---+---+---+---+---+
| | |
| | +-- 0 CLEAR CHANNEL 0 MASK BIT
| | 1 SET CHANNEL 0 MASK BIT
| |
| +---------- 0 CLEAR CHANNEL 2 MASK BIT
| 1 SET CHANNEL 2 MASK BIT
|
+-------------- 0 CLEAR CHANNEL 3 MASK BIT
1 SET CHANNEL 3 MASK BIT
Read FDC Status Register
The Read FDC Status Register command accesses the FDC's main
status register. The individual status register bits are as
follows:
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| |
+---+---+---+---+---+---+---+---+
| | | | | | | |
| | | | | | | +-- FDD 0 BUSY
| | | | | | +------ FDD 1 BUSY
| | | | | +---------- FDD 2 BUSY
| | | | +-------------- FDD 3 BUSY
| | | +------------------ FDC BUSY
| | +---------------------- NON-DMA MODE
| +-------------------------- DATA INPUT/OUTPUT
+------------------------------ REQUEST FOR MASTER
Read/Write FDC Data Register
The Read and Write FDC Data Register commands are used to write
command and parameter bytes to the FDC in order to specify the
operation to be performed (referred to as the "command phase")
and to read status bytes from the FDC following the operation
(referred to as the "result phase"). During the command and
result phases, the 8-bit data register is actually a series of
8-bit registers in a stack. Each register is accessed in
sequence; the number of registers accessed and the individual
register contents are defined by the specific disk command.
Write Controller Auxiliary Port
The Write Controller Auxiliary Port command is used to set or
clear individual bits within the controller's auxiliary port.
The four low-order port bits are dedicated to auxiliary drive
control functions (jumper links are required to connect the
desired port bit to an available pin on the drive interface
connectors). The most common application for these bits is
the "Motor-On" control function for mini-sized drives.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| |
+---+---+---+---+---+---+---+---+
| | | | | | | |
| | | | +---+---+---+-- DRIVE CONTROL
| | | +------------------ ADDR 20
| | +---------------------- ADDR 21
| +-------------------------- ADDR 22
+------------------------------ ADDR 23
Poll Interrupt Status
The Poll Interrupt Status command presents the interrupt
status of the controller and the two interrupt status
lines dedicated to the iSBX Multimodule board.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| X X X X X |
+---+---+---+---+---+---+---+---+
| | |
| | +-- CONTROLLER INTERRUPT
| +------ MULTIMODULE BOARD INTERRUPT 0
+---------- MULTIMODULE BOARD INTERRUPT 1
Controller Reset
The Controller Reset command is the software reset for the
controller. This command clears the controller's auxiliary
port and segment address register, provides a reset signal
to the iSBX Multimodule board and initializes the bus
controller (releases the bus), the DMAC (clears the internal
registers and masks the DREQ inputs), and the FDC (places
the FDC in an idle state and disables the output control
lines to the diskette drive).
Write Controller Low- And High-Byte Segment Address Registers
The Write Controller Low- and High-Byte Address Registers
commands are required when the controller uses 20-bit
addressing (memory address range from 0 to OFFFFFH). These
commands are issued prior to initiating a diskette read or
write operation to specify the 16-bit segment address.
FDC Commands
The 8272/D765 is capable of performing 15 different
commands. Each command is initiated by a multibyte transfer
from the processor, and the result after execution of the
command may also be a multibyte transfer back to the processor.
Because of this multibyte interchange of information between
the FDC and the processor, it is convenient to consider each
command as consisting of three phases:
Command Phase: The FDC receives all information required to
perform a particular operation from the processor.
Execution Phase: The FDC performs the operation it was
instructed to do.
Result Phase: After completion of the operation, status
and other housekeeping information are made available
to the processor.
Not all the FDC commands are supported by this emulation. Only the subset
of commands required to build an operable CP/M BIOS are supported. They are:
Read - Read specified data from the selected FDD.
Write - Write specified data to the selected FDD.
Seek - Move the R/W head to the specified cylinder on the specified FDD.
Specify - Set the characteristics for all the FDDs.
Sense Interrupt - Sense change in FDD Ready line or and of Seek/Recalibrate
command.
Sense Drive - Returns status of all the FDDs.
Recalibrate - Move the R/W head to cylinder 0 on the specified FDD.
Format Track - Format the current track on the specified FDD.
Read ID - Reads the first address mark it finds.
Simulated Floppy Disk Drives
The units in this device simulate an 8- or 5 1/4- or 3 1/2 inch drives. The
drives can emulate SSSD, SSDD, and DSDD. Drives can be attached to files up
to 1.44MB in size. Drive configuration is selected when a disk is logged onto
the system. An identity sector or identity byte contains information to
configure the OS drivers for the type of drive to emulate.
uptr->u3 -
uptr->u4 -
uptr->u5 -
uptr->u6 - unit number (0-FDD_NUM)
*/
#include "system_defs.h"
#define UNIT_V_WPMODE (UNIT_V_UF) /* Write protect */
#define UNIT_WPMODE (1 << UNIT_V_WPMODE)
/* master status register definitions */
#define RQM 0x80 /* Request for master */
#define DIO 0x40 /* Data I/O Direction 0=W, 1=R */
#define NDM 0x20 /* Non-DMA mode */
#define CB 0x10 /* FDC busy */
#define D3B 0x08 /* FDD 3 busy */`
#define D2B 0x04 /* FDD 2 busy */`
#define D1B 0x02 /* FDD 1 busy */`
#define D0B 0x01 /* FDD 0 busy */`
/* status register 0 definitions */
#define IC 0xC0 /* Interrupt code */
#define IC_NORM 0x00 /* normal completion */
#define IC_ABNORM 0x40 /* abnormal completion */
#define IC_INVC 0x80 /* invalid command */
#define IC_RC 0xC0 /* drive not ready */
#define SE 0x20 /* Seek end */
#define EC 0x10 /* Equipment check */
#define NR 0x08 /* Not ready */
#define HD 0x04 /* Head selected */
#define US 0x03 /* Unit selected */
#define US_0 0x00 /* Unit 0 */
#define US_1 0x01 /* Unit 1 */
#define US_2 0x02 /* Unit 2 */
#define US_3 0x03 /* Unit 3 */
/* status register 1 definitions */
#define EN 0x80 /* End of cylinder */
#define DE 0x20 /* Data error */
#define OR 0x10 /* Overrun */
#define ND 0x04 /* No data */
#define NW 0x02 /* Not writable */
#define MA 0x01 /* Missing address mark */
/* status register 2 definitions */
#define CM 0x40 /* Control mark */
#define DD 0x20 /* Data error in data field */
#define WC 0x10 /* Wrong cylinder */
#define BC 0x02 /* Bad cylinder */
#define MD 0x01 /* Missing address mark in data field */
/* status register 3/fddst definitions */
#define FT 0x80 /* Fault */
#define WP 0x40 /* Write protect */
#define RDY 0x20 /* Ready */
#define T0 0x10 /* Track 0 */
#define TS 0x08 /* Two sided */
//#define HD 0x04 /* Head selected */
//#define US 0x03 /* Unit selected */
/* FDC command definitions */
#define READTRK 0x02
#define SPEC 0x03
#define SENDRV 0x04
#define WRITE 0x05
#define READ 0x06
#define HOME 0x07
#define SENINT 0x08
#define WRITEDEL 0x09
#define READID 0x0A
#define READDEL 0x0C
#define FMTTRK 0x0D
#define SEEK 0x0F
#define SCANEQ 0x11
#define SCANLOEQ 0x19
#define SCANHIEQ 0x1D
#define FDD_NUM 4
int32 sbc208_devnum = 0; //actual number of 8255 instances + 1
uint16 sbc208_port[4]; //base port registered to each instance
/* internal function prototypes */
t_stat isbc208_svc (UNIT *uptr);
t_stat isbc208_reset (DEVICE *dptr, uint16 base);
void isbc208_reset1 (void);
t_stat isbc208_attach (UNIT *uptr, CONST char *cptr);
t_stat isbc208_set_mode (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
uint8 isbc208_r0(t_bool io, uint8 data);
uint8 isbc208_r1(t_bool io, uint8 data);
uint8 isbc208_r2(t_bool io, uint8 data);
uint8 isbc208_r3(t_bool io, uint8 data);
uint8 isbc208_r4(t_bool io, uint8 data);
uint8 isbc208_r5(t_bool io, uint8 data);
uint8 isbc208_r6(t_bool io, uint8 data);
uint8 isbc208_r7(t_bool io, uint8 data);
uint8 isbc208_r8(t_bool io, uint8 data);
uint8 isbc208_r9(t_bool io, uint8 data);
uint8 isbc208_rA(t_bool io, uint8 data);
uint8 isbc208_rB(t_bool io, uint8 data);
uint8 isbc208_rC(t_bool io, uint8 data);
uint8 isbc208_rD(t_bool io, uint8 data);
uint8 isbc208_rE(t_bool io, uint8 data);
uint8 isbc208_rF(t_bool io, uint8 data);
uint8 isbc208_r10(t_bool io, uint8 data);
uint8 isbc208_r11(t_bool io, uint8 data);
uint8 isbc208_r12(t_bool io, uint8 data);
uint8 isbc208_r13(t_bool io, uint8 data);
uint8 isbc208_r14(t_bool io, uint8 data);
uint8 isbc208_r15(t_bool io, uint8 data);
/* external function prototypes */
extern void set_irq(int32 int_num);
extern void clr_irq(int32 int_num);
extern uint16 reg_dev(uint8 (*routine)(t_bool, uint8), uint16, uint8);
extern void multibus_put_mbyte(uint16 addr, uint8 val);
extern uint8 multibus_get_mbyte(uint16 addr);
/* 8237 physical register definitions */
uint16 i8237_r0; // 8237 ch 0 address register
uint16 i8237_r1; // 8237 ch 0 count register
uint16 i8237_r2; // 8237 ch 1 address register
uint16 i8237_r3; // 8237 ch 1 count register
uint16 i8237_r4; // 8237 ch 2 address register
uint16 i8237_r5; // 8237 ch 2 count register
uint16 i8237_r6; // 8237 ch 3 address register
uint16 i8237_r7; // 8237 ch 3 count register
uint8 i8237_r8; // 8237 status register
uint8 i8237_r9; // 8237 command register
uint8 i8237_rA; // 8237 mode register
uint8 i8237_rB; // 8237 mask register
uint8 i8237_rC; // 8237 request register
uint8 i8237_rD; // 8237 first/last ff
uint8 i8237_rE; // 8237
uint8 i8237_rF; // 8237
/* 8272 physical register definitions */
/* 8272 command register stack*/
uint8 i8272_w0; // MT+MFM+SK+command
uint8 i8272_w1; // HDS [HDS=H << 2] + DS1 + DS0
uint8 i8272_w2; // cylinder # (0-XX)
uint8 i8272_w3; // head # (0 or 1)
uint8 i8272_w4; // sector # (1-XX)
uint8 i8272_w5; // number of bytes (128 << N)
uint8 i8272_w6; // End of track (last sector # on cylinder)
uint8 i8272_w7; // Gap length
uint8 i8272_w8; // Data length (when N=0, size to read or write)
/* 8272 status register stack */
uint8 i8272_msr; // main status
uint8 i8272_r0; // ST 0
uint8 i8272_r1; // ST 1
uint8 i8272_r2; // ST 2
uint8 i8272_r3; // ST 3
/* iSBC-208 physical register definitions */
uint16 isbc208_sr; // isbc-208 segment register
uint8 isbc208_i; // iSBC-208 interrupt register
uint8 isbc208_a; // iSBC-208 auxillary port register
/* data obtained from analyzing command registers/attached file length */
int32 wsp = 0, rsp = 0; // indexes to write and read stacks (8272 data)
int32 cyl; // current cylinder
int32 hed; // current head [ h << 2]
int32 h; // current head
int32 sec; // current sector
int32 drv; // current drive
uint8 cmd, pcmd; // current command
int32 secn; // N 0-128, 1-256, etc
int32 spt; // sectors per track
int32 ssize; // sector size (128 << N)
uint8 *isbc208_buf[FDD_NUM] = { /* FDD buffer pointers */
NULL,
NULL,
NULL,
NULL
};
int32 fddst[FDD_NUM] = { // in ST3 format
0, // status of FDD 0
0, // status of FDD 1
0, // status of FDD 2
0 // status of FDD 3
};
int8 maxcyl[FDD_NUM] = {
0, // last cylinder + 1 of FDD 0
0, // last cylinder + 1 of FDD 1
0, // last cylinder + 1 of FDD 2
0 // last cylinder + 1 of FDD 3
};
/* isbc208 Standard SIMH Device Data Structures - 4 units */
UNIT isbc208_unit[] = {
{ UDATA (&isbc208_svc, UNIT_ATTABLE+UNIT_DISABLE, 0), 20 },
{ UDATA (&isbc208_svc, UNIT_ATTABLE+UNIT_DISABLE, 0), 20 },
{ UDATA (&isbc208_svc, UNIT_ATTABLE+UNIT_DISABLE, 0), 20 },
{ UDATA (&isbc208_svc, UNIT_ATTABLE+UNIT_DISABLE, 0), 20 }
};
REG isbc208_reg[] = {
{ HRDATA (CH0ADR, i8237_r0, 16) },
{ HRDATA (CH0CNT, i8237_r1, 16) },
{ HRDATA (CH1ADR, i8237_r2, 16) },
{ HRDATA (CH1CNT, i8237_r3, 16) },
{ HRDATA (CH2ADR, i8237_r4, 16) },
{ HRDATA (CH2CNT, i8237_r5, 16) },
{ HRDATA (CH3ADR, i8237_r6, 16) },
{ HRDATA (CH3CNT, i8237_r7, 16) },
{ HRDATA (STAT37, i8237_r8, 8) },
{ HRDATA (CMD37, i8237_r9, 8) },
{ HRDATA (MODE, i8237_rA, 8) },
{ HRDATA (MASK, i8237_rB, 8) },
{ HRDATA (REQ, i8237_rC, 8) },
{ HRDATA (FF, i8237_rD, 8) },
{ HRDATA (STAT72, i8272_msr, 8) },
{ HRDATA (STAT720, i8272_r0, 8) },
{ HRDATA (STAT721, i8272_r1, 8) },
{ HRDATA (STAT722, i8272_r2, 8) },
{ HRDATA (STAT723, i8272_r3, 8) },
{ HRDATA (CMD720, i8272_w0, 8) },
{ HRDATA (CMD721, i8272_w1, 8) },
{ HRDATA (CMD722, i8272_w2, 8) },
{ HRDATA (CMD723, i8272_w3, 8) },
{ HRDATA (CMD724, i8272_w4, 8) },
{ HRDATA (CMD725, i8272_w5, 8) },
{ HRDATA (CMD726, i8272_w6, 8) },
{ HRDATA (CMD727, i8272_w7, 8) },
{ HRDATA (CMD728, i8272_w8, 8) },
{ HRDATA (FDD0, fddst[0], 8) },
{ HRDATA (FDD1, fddst[1], 8) },
{ HRDATA (FDD2, fddst[2], 8) },
{ HRDATA (FDD3, fddst[3], 8) },
{ HRDATA (SEGREG, isbc208_sr, 8) },
{ HRDATA (AUX, isbc208_a, 8) },
{ HRDATA (INT, isbc208_i, 8) },
{ NULL }
};
MTAB isbc208_mod[] = {
{ UNIT_WPMODE, 0, "RW", "RW", &isbc208_set_mode },
{ UNIT_WPMODE, UNIT_WPMODE, "WP", "WP", &isbc208_set_mode },
{ 0 }
};
DEBTAB isbc208_debug[] = {
{ "ALL", DEBUG_all },
{ "FLOW", DEBUG_flow },
{ "READ", DEBUG_read },
{ "WRITE", DEBUG_write },
{ "LEV1", DEBUG_level1 },
{ "LEV2", DEBUG_level2 },
{ "REG", DEBUG_reg },
{ NULL }
};
DEVICE isbc208_dev = {
"SBC208", //name
isbc208_unit, //units
isbc208_reg, //registers
isbc208_mod, //modifiers
FDD_NUM, //numunits
16, //aradix
32, //awidth
1, //aincr
16, //dradix
8, //dwidth
NULL, //examine
NULL, //deposit
// &isbc208_reset, //deposit
NULL, //deposit
NULL, //boot
&isbc208_attach, //attach
NULL, //detach
NULL, //ctxt
DEV_DEBUG+DEV_DISABLE+DEV_DIS, //flags
// 0, //dctrl
DEBUG_flow + DEBUG_read + DEBUG_write, //dctrl
isbc208_debug, //debflags
NULL, //msize
NULL //lname
};
/* Service routines to handle simulator functions */
/* service routine - actually does the simulated disk I/O */
t_stat isbc208_svc (UNIT *uptr)
{
uint32 i;
int32 imgadr, data;
int c;
int32 bpt, bpc;
FILE *fp;
if ((i8272_msr & CB) && cmd && (uptr->u6 == drv)) { /* execution phase */
sim_debug (DEBUG_flow, &isbc208_dev, "208_svc: Entered execution phase\n");
switch (cmd) {
case READ: /* 0x06 */
// sim_printf("READ-e: fddst=%02X", fddst[uptr->u6]);
h = i8272_w3; // h = 0 or 1
hed = i8272_w3 << 2; // hed = 0 or 4 [h << 2]
sec = i8272_w4; // sector number (1-XX)
secn = i8272_w5; // N (0-5)
spt = i8272_w6; // sectors/track
ssize = 128 << secn; // size of sector (bytes)
bpt = ssize * spt; // bytes/track
bpc = bpt * 2; // bytes/cylinder
// sim_printf(" d=%d h=%d c=%d s=%d\n", drv, h, cyl, sec);
sim_debug (DEBUG_flow, &isbc208_dev,
"208_svc: FDC read: h=%d, hed=%d, sec=%d, secn=%d, spt=%d, ssize=%04X, bpt=%04X, bpc=%04X\n",
h, hed, sec, secn, spt, ssize, bpt, bpc);
sim_debug (DEBUG_flow, &isbc208_dev,
"208_svc: FDC read: d=%d h=%d c=%d s=%d N=%d spt=%d fddst=%02X\n",
drv, h, cyl, sec, secn, spt, fddst[uptr->u6]);
sim_debug (DEBUG_read, &isbc208_dev, "208_svc: FDC read of d=%d h=%d c=%d s=%d\n",
drv, h, cyl, sec);
if ((fddst[uptr->u6] & RDY) == 0) { // drive not ready
i8272_r0 = IC_ABNORM + NR + hed + drv; /* command done - Not ready error*/
i8272_r3 = fddst[uptr->u6];
i8272_msr |= (RQM + DIO + CB); /* enter result phase */
sim_debug (DEBUG_flow, &isbc208_dev, "208_svc: FDC read: Not Ready\n");
} else { // get image addr for this d, h, c, s
imgadr = (cyl * bpc) + (h * bpt) + ((sec - 1) * ssize);
sim_debug (DEBUG_read, &isbc208_dev,
"208_svc: FDC read: DMA addr=%04X cnt=%04X imgadr=%04X\n",
i8237_r0, i8237_r1, imgadr);
for (i=0; i<=i8237_r1; i++) { /* copy selected sector to memory */
data = *(isbc208_buf[uptr->u6] + (imgadr + i));
multibus_put_mbyte(i8237_r0 + i, data);
}
//*** need to step return results IAW table 3-11 in 143078-001
i8272_w4 = ++sec; /* next sector */
i8272_r0 = hed + drv; /* command done - no error */
i8272_r3 = fddst[uptr->u6];
}
i8272_r1 = 0;
i8272_r2 = 0;
i8272_w2 = cyl; /* generate a current address mark */
i8272_w3 = h;
if (i8272_w4 > i8272_w6) { // beyond last sector of track?
i8272_w4 = 1; // yes, set to sector 1;
if (h) { // on head one?
i8272_w2++; // yes, step cylinder
h = 0; // back to head 0
}
}
i8272_w5 = secn;
i8272_msr |= (RQM + DIO + CB); /* enter result phase */
rsp = wsp = 0; /* reset indexes */
set_irq(SBC208_INT); /* set interrupt */
// sim_printf("READ-x: fddst=%02X\n", fddst[uptr->u6]);
break;
case WRITE: /* 0x05 */
// sim_printf("WRITE-e: fddst=%02X\n", fddst[uptr->u6]);
h = i8272_w3; // h = 0 or 1
hed = i8272_w3 << 2; // hed = 0 or 4 [h << 2]
sec = i8272_w4; // sector number (1-XX)
secn = i8272_w5; // N (0-5)
spt = i8272_w6; // sectors/track
ssize = 128 << secn; // size of sector (bytes)
bpt = ssize * spt; // bytes/track
bpc = bpt * 2; // bytes/cylinder
sim_debug (DEBUG_flow, &isbc208_dev,
"208_svc: FDC write: hed=%d, sec=%d, secn=%d, spt=%d, ssize=%04X, bpt=%04X, bpc=%04X\n",
hed, sec, secn, spt, ssize, bpt, bpc);
sim_debug (DEBUG_flow, &isbc208_dev,
"208_svc: FDC write: d=%d h=%d c=%d s=%d N=%d spt=%d fddst=%02X\n",
drv, h, cyl, sec, secn, spt, fddst[uptr->u6]);
sim_debug (DEBUG_write, &isbc208_dev, "208_svc: FDC write of d=%d h=%d c=%d s=%d\n",
drv, h, cyl, sec);
i8272_r1 = 0; // clear ST1
i8272_r2 = 0; // clear ST2
if ((fddst[uptr->u6] & RDY) == 0) {
i8272_r0 = IC_ABNORM + NR + hed + drv; /* Not ready error*/
i8272_r3 = fddst[uptr->u6];
i8272_msr |= (RQM + DIO + CB); /* enter result phase */
sim_debug (DEBUG_flow, &isbc208_dev, "208_svc: FDC write: Not Ready\n");
// } else if (fddst[uptr->u6] & WP) {
// i8272_r0 = IC_ABNORM + hed + drv; /* write protect error*/
// i8272_r1 = NW; // set not writable in ST1
// i8272_r3 = fddst[uptr->u6] + WP;
// i8272_msr |= (RQM + DIO + CB); /* enter result phase */
// sim_printf("\nWrite Protected fddst[%d]=%02X\n", uptr->u6, fddst[uptr->u6]);
// if (isbc208_dev.dctrl & DEBUG_flow)
// sim_printf("208_svc: FDC write: Write Protected\n");
} else { // get image addr for this d, h, c, s
imgadr = (cyl * bpc) + (h * bpt) + ((sec - 1) * ssize);
sim_debug (DEBUG_write, &isbc208_dev,
"208_svc: FDC write: DMA adr=%04X cnt=%04X imgadr=%04X\n",
i8237_r0, i8237_r1, imgadr);
for (i=0; i<=i8237_r1; i++) { /* copy selected memory to image */
data = multibus_get_mbyte(i8237_r0 + i);
*(isbc208_buf[uptr->u6] + (imgadr + i)) = data;
}
//*** quick fix. Needs more thought!
fp = fopen(uptr->filename, "wb"); // write out modified image
if (fp) {
for (i=0; i<uptr->capac; i++) {
c = *(isbc208_buf[uptr->u6] + i) & 0xFF;
fputc(c, fp);
}
fclose(fp);
}
//*** need to step return results IAW table 3-11 in 143078-001
i8272_w2 = cyl; /* generate a current address mark */
i8272_w3 = hed >> 2;
i8272_w4 = ++sec; /* next sector */
i8272_w5 = secn;
i8272_r0 = hed + drv; /* command done - no error */
i8272_r3 = fddst[uptr->u6];
i8272_msr |= (RQM + DIO + CB); /* enter result phase */
}
rsp = wsp = 0; /* reset indexes */
set_irq(SBC208_INT); /* set interrupt */
// sim_printf("WRITE-x: fddst=%02X\n", fddst[uptr->u6]);
break;
case FMTTRK: /* 0x0D */
if ((fddst[uptr->u6] & RDY) == 0) {
i8272_r0 = IC_ABNORM + NR + hed + drv; /* Not ready error*/
i8272_msr |= (RQM + DIO + CB); /* enter result phase */
sim_debug (DEBUG_flow, &isbc208_dev, "208_svc: Not Ready\n");
} else if (fddst[uptr->u6] & WP) {
i8272_r0 = IC_ABNORM + hed + drv; /* write protect error*/
i8272_r3 = fddst[uptr->u6] + WP;
i8272_msr |= (RQM + DIO + CB); /* enter result phase */
sim_debug (DEBUG_flow, &isbc208_dev, "208_svc: Write Protected\n");
} else {
; /* do nothing for now */
i8272_msr |= (RQM + DIO + CB); /* enter result phase */
}
rsp = wsp = 0; /* reset indexes */
set_irq(SBC208_INT); /* set interrupt */
break;
case SENINT: /* 0x08 */
i8272_msr |= (RQM + DIO + CB); /* enter result phase */
i8272_r0 = hed + drv; /* command done - no error */
i8272_r1 = 0;
i8272_r2 = 0;
rsp = wsp = 0; /* reset indexes */
clr_irq(SBC208_INT); /* clear interrupt */
break;
case SENDRV: /* 0x04 */
sim_debug (DEBUG_flow, &isbc208_dev, "208_svc: FDC sense drive: d=%d fddst=%02X\n",
drv, fddst[uptr->u6]);
i8272_msr |= (RQM + DIO + CB); /* enter result phase */
i8272_r0 = hed + drv; /* command done - no error */
i8272_r1 = 0;
i8272_r2 = 0;
i8272_r3 = fddst[drv]; /* drv status */
rsp = wsp = 0; /* reset indexes */
break;
case HOME: /* 0x07 */
// sim_printf("HOME-e: fddst=%02X\n", fddst[uptr->u6]);
sim_debug (DEBUG_flow, &isbc208_dev, "208_svc: FDC home: d=%d fddst=%02X\n",
drv, fddst[uptr->u6]);
if ((fddst[uptr->u6] & RDY) == 0) {
i8272_r0 = IC_ABNORM + NR + hed + drv; /* Not ready error*/
i8272_r3 = fddst[uptr->u6];
sim_debug (DEBUG_flow, &isbc208_dev, "208_svc: Not Ready\n");
} else {
cyl = 0; /* now on cylinder 0 */
fddst[drv] |= T0; /* set status flag */
i8272_r0 = SE + hed + drv; /* seek end - no error */
}
i8272_r1 = 0;
i8272_r2 = 0;
i8272_msr &= ~(RQM + DIO + CB + hed + drv); /* execution phase done*/
i8272_msr |= RQM; /* enter COMMAND phase */
rsp = wsp = 0; /* reset indexes */
set_irq(SBC208_INT); /* set interrupt */
// sim_printf("HOME-x: fddst=%02X\n", fddst[uptr->u6]);
break;
case SPEC: /* 0x03 */
fddst[0] |= TS; //*** bad, bad, bad!
fddst[1] |= TS;
fddst[2] |= TS;
fddst[3] |= TS;
// sim_printf("SPEC-e: fddst[%d]=%02X\n", uptr->u6, fddst[uptr->u6]);
sim_debug (DEBUG_flow, &isbc208_dev,
"208_svc: FDC specify: SRT=%d ms HUT=%d ms HLT=%d ms \n",
16 - (drv >> 4), 16 * (drv & 0x0f), i8272_w2 & 0xfe);
i8272_r0 = hed + drv; /* command done - no error */
i8272_r1 = 0;
i8272_r2 = 0;
// i8272_msr &= ~(RQM + DIO + CB); /* execution phase done*/
i8272_msr = 0; // force 0 for now, where does 0x07 come from?
i8272_msr |= RQM; /* enter command phase */
rsp = wsp = 0; /* reset indexes */
// sim_printf("SPEC-x: fddst[%d]=%02X\n", uptr->u6, fddst[uptr->u6]);
break;
case READID: /* 0x0A */
if ((fddst[uptr->u6] & RDY) == 0) {
i8272_r0 = IC_RC + NR + hed + drv; /* Not ready error*/
i8272_r3 = fddst[uptr->u6];
sim_debug (DEBUG_flow, &isbc208_dev, "208_svc: Not Ready\n");
} else {
i8272_w2 = cyl; /* generate a valid address mark */
i8272_w3 = hed >> 2;
i8272_w4 = 1; /* always sector 1 */
i8272_w5 = secn;
i8272_r0 = hed + drv; /* command done - no error */
i8272_msr &= ~(RQM + DIO + CB); /* execution phase done*/
i8272_msr |= RQM; /* enter command phase */
}
i8272_r1 = 0;
i8272_r2 = 0;
rsp = wsp = 0; /* reset indexes */
break;
case SEEK: /* 0x0F */
// sim_printf("SEEK-e: fddst=%02X\n", fddst[uptr->u6]);
sim_debug (DEBUG_flow, &isbc208_dev, "208_svc: FDC seek: d=%d c=%d fddst=%02X\n",
drv, i8272_w2, fddst[uptr->u6]);
if ((fddst[uptr->u6] & RDY) == 0) { /* Not ready? */
i8272_r0 = IC_ABNORM + NR + hed + drv; /* error*/
i8272_r3 = fddst[uptr->u6];
sim_debug (DEBUG_flow, &isbc208_dev, "208_svc: FDC seek: Not Ready\n");
} else if (i8272_w2 >= maxcyl[uptr->u6]) {
i8272_r0 = IC_ABNORM + RDY + hed + drv; /* seek error*/
sim_debug (DEBUG_flow, &isbc208_dev, "208_svc: FDC seek: Invalid Cylinder %d\n", i8272_w2);
} else {
i8272_r0 |= SE + hed + drv; /* command done - no error */
cyl = i8272_w2; /* new cylinder number */
if (cyl == 0) { /* if cyl 0, set flag */
fddst[drv] |= T0; /* set T0 status flag */
i8272_r3 |= T0;
} else {
fddst[drv] &= ~T0; /* clear T0 status flag */
i8272_r3 &= ~T0;
}
}
i8272_r1 = 0;
i8272_r2 = 0;
i8272_msr &= ~(RQM + DIO + CB + hed + drv); /* execution phase done*/
i8272_msr |= RQM; /* enter command phase */
rsp = wsp = 0; /* reset indexes */
// set_irq(SBC208_INT); /* set interrupt */
// sim_printf("SEEK-x: fddst=%02X\n", fddst[uptr->u6]);
break;
default:
i8272_msr &= ~(RQM + DIO + CB); /* execution phase done*/
i8272_msr |= RQM; /* enter command phase */
i8272_r0 = IC_INVC + hed + drv; /* set bad command error */
i8272_r1 = 0;
i8272_r2 = 0;
rsp = wsp = 0; /* reset indexes */
break;
}
pcmd = cmd; /* save for result phase */
cmd = 0; /* reset command */
sim_debug (DEBUG_flow, &isbc208_dev,
"208_svc: Exit: msr=%02X ST0=%02X ST1=%02X ST2=%02X ST3=%02X\n",
i8272_msr, i8272_r0, i8272_r1, i8272_r2, i8272_r3);
}
sim_activate (&isbc208_unit[uptr->u6], isbc208_unit[uptr->u6].wait);
return SCPE_OK;
}
/* Reset routine */
t_stat isbc208_reset (DEVICE *dptr, uint16 base)
{
if (sbc208_devnum > SBC208_NUM) {
sim_printf("sbc208_reset: too many devices!\n");
return SCPE_MEM;
}
if (SBC202_NUM) {
sim_printf(" SBC208-%d: Hardware Reset\n", sbc208_devnum);
sim_printf(" SBC208-%d: Registered at %04X\n", sbc208_devnum, base);
sbc208_port[sbc208_devnum] = reg_dev(isbc208_r0, SBC208_BASE + 0, sbc208_devnum);
reg_dev(isbc208_r1, SBC208_BASE + 1, sbc208_devnum);
reg_dev(isbc208_r2, SBC208_BASE + 2, sbc208_devnum);
reg_dev(isbc208_r3, SBC208_BASE + 3, sbc208_devnum);
reg_dev(isbc208_r4, SBC208_BASE + 4, sbc208_devnum);
reg_dev(isbc208_r5, SBC208_BASE + 5, sbc208_devnum);
reg_dev(isbc208_r6, SBC208_BASE + 6, sbc208_devnum);
reg_dev(isbc208_r7, SBC208_BASE + 7, sbc208_devnum);
reg_dev(isbc208_r8, SBC208_BASE + 8, sbc208_devnum);
reg_dev(isbc208_r9, SBC208_BASE + 9, sbc208_devnum);
reg_dev(isbc208_rA, SBC208_BASE + 10, sbc208_devnum);
reg_dev(isbc208_rB, SBC208_BASE + 11, sbc208_devnum);
reg_dev(isbc208_rC, SBC208_BASE + 12, sbc208_devnum);
reg_dev(isbc208_rD, SBC208_BASE + 13, sbc208_devnum);
reg_dev(isbc208_rE, SBC208_BASE + 14, sbc208_devnum);
reg_dev(isbc208_rF, SBC208_BASE + 15, sbc208_devnum);
reg_dev(isbc208_r10, SBC208_BASE + 16, sbc208_devnum);
reg_dev(isbc208_r11, SBC208_BASE + 17, sbc208_devnum);
reg_dev(isbc208_r12, SBC208_BASE + 18, sbc208_devnum);
reg_dev(isbc208_r13, SBC208_BASE + 19, sbc208_devnum);
reg_dev(isbc208_r14, SBC208_BASE + 20, sbc208_devnum);
reg_dev(isbc208_r15, SBC208_BASE + 21, sbc208_devnum);
if ((isbc208_dev.flags & DEV_DIS) == 0)
isbc208_reset1();
sbc208_devnum++;
} else {
sim_printf(" No isbc208 installed\n");
}
return SCPE_OK;
}
void isbc208_reset1 (void)
{
int32 i;
UNIT *uptr;
static int flag = 1;
if (flag) sim_printf("iSBC 208: Initializing\n");
for (i = 0; i < FDD_NUM; i++) { /* handle all units */
uptr = isbc208_dev.units + i;
if (uptr->capac == 0) { /* if not configured */
// sim_printf(" SBC208%d: Not configured\n", i);
// if (flag) {
// sim_printf(" ALL: \"set isbc208 en\"\n");
// sim_printf(" EPROM: \"att isbc2080 <filename>\"\n");
// flag = 0;
// }
uptr->capac = 0; /* initialize unit */
uptr->u3 = 0;
uptr->u4 = 0;
uptr->u5 = 0;
uptr->u6 = i; /* unit number - only set here! */
fddst[i] = WP + T0 + i; /* initial drive status */
uptr->flags |= UNIT_WPMODE; /* set WP in unit flags */
sim_activate (&isbc208_unit[uptr->u6], isbc208_unit[uptr->u6].wait);
} else {
fddst[i] = RDY + WP + T0 + i; /* initial attach drive status */
// sim_printf(" SBC208%d: Configured, Attached to %s\n", i, uptr->filename);
}
}
i8237_r8 = 0; /* status */
i8237_r9 = 0; /* command */
i8237_rB = 0x0F; /* mask */
i8237_rC = 0; /* request */
i8237_rD = 0; /* first/last FF */
i8272_msr = RQM; /* 8272 ready for start of command */
rsp = wsp = 0; /* reset indexes */
cmd = 0; /* clear command */
sim_printf(" SBC208-%d: Software Reset\n", sbc208_devnum);
if (flag) {
sim_printf(" 8237 Reset\n");
sim_printf(" 8272 Reset\n");
}
flag = 0;
}
/* isbc208 attach - attach an .IMG file to a FDD */
t_stat isbc208_attach (UNIT *uptr, CONST char *cptr)
{
t_stat r;
FILE *fp;
int32 i, c = 0;
long flen;
sim_debug (DEBUG_flow, &isbc208_dev, " isbc208_attach: Entered with cptr=%s\n", cptr);
if ((r = attach_unit (uptr, cptr)) != SCPE_OK) {
sim_printf(" isbc208_attach: Attach error\n");
return r;
}
fp = fopen(uptr->filename, "rb");
if (fp == NULL) {
sim_printf(" Unable to open disk img file %s\n", uptr->filename);
sim_printf(" No disk image loaded!!!\n");
} else {
sim_printf("iSBC 208: Attach\n");
fseek(fp, 0, SEEK_END); /* size disk image */
flen = ftell(fp);
fseek(fp, 0, SEEK_SET);
if (flen == -1) {
sim_printf(" isbc208_attach: File error\n");
fclose(fp);
return SCPE_IOERR;
}
if (isbc208_buf[uptr->u6] == NULL) { /* no buffer allocated */
isbc208_buf[uptr->u6] = (uint8 *)malloc(flen);
if (isbc208_buf[uptr->u6] == NULL) {
sim_printf(" iSBC208_attach: Malloc error\n");
fclose(fp);
return SCPE_MEM;
}
}
uptr->capac = flen;
i = 0;
c = fgetc(fp); // copy disk image into buffer
while (c != EOF) {
*(isbc208_buf[uptr->u6] + i++) = c & 0xFF;
c = fgetc(fp);
}
fclose(fp);
fddst[uptr->u6] |= RDY; /* set unit ready */
if (flen == 368640) { /* 5" 360K DSDD */
maxcyl[uptr->u6] = 40;
fddst[uptr->u6] |= TS; // two sided
}
else if (flen == 737280) { /* 5" 720K DSQD / 3.5" 720K DSDD */
maxcyl[uptr->u6] = 80;
fddst[uptr->u6] |= TS; // two sided
}
else if (flen == 1228800) { /* 5" 1.2M DSHD */
maxcyl[uptr->u6] = 80;
fddst[uptr->u6] |= TS; // two sided
}
else if (flen == 1474560) { /* 3.5" 1.44M DSHD */
maxcyl[uptr->u6] = 80;
fddst[uptr->u6] |= TS; // two sided
}
sim_printf(" Drive-%d: %d bytes of disk image %s loaded, fddst=%02X\n",
uptr->u6, i, uptr->filename, fddst[uptr->u6]);
}
sim_debug (DEBUG_flow, &isbc208_dev, " iSBC208_attach: Done\n");
return SCPE_OK;
}
/* isbc208 set mode = 8- or 16-bit data bus */
/* always 8-bit mode for current simulators */
t_stat isbc208_set_mode (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
sim_debug (DEBUG_flow, &isbc208_dev, " isbc208_set_mode: Entered with val=%08XH uptr->flags=%08X\n",
val, uptr->flags);
if (val & UNIT_WPMODE) { /* write protect */
fddst[uptr->u6] |= WP;
uptr->flags |= val;
} else { /* read write */
fddst[uptr->u6] &= ~WP;
uptr->flags &= ~val;
}
// sim_printf("fddst[%d]=%02XH uptr->flags=%08X\n", uptr->u6, fddst[uptr->u6], uptr->flags);
sim_debug (DEBUG_flow, &isbc208_dev, " isbc208_set_mode: Done\n");
return SCPE_OK;
}
/* I/O instruction handlers, called from the CPU module when an
IN or OUT instruction is issued.
Each function is passed an 'io' flag, where 0 means a read from
the port, and 1 means a write to the port. On input, the actual
input is passed as the return value, on output, 'data' is written
to the device.
*/
uint8 isbc208_r0(t_bool io, uint8 data)
{
if (io == 0) { /* read current address CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r0(H) read as %04X\n", i8237_r0);
return (i8237_r0 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r0(L) read as %04X\n", i8237_r0);
return (i8237_r0 & 0xFF);
}
} else { /* write base & current address CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r0 |= (data << 8);
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r0(H) set to %04X\n", i8237_r0);
} else { /* low byte */
i8237_rD++;
i8237_r0 = data & 0xFF;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r0(L) set to %04X\n", i8237_r0);
}
return 0;
}
}
uint8 isbc208_r1(t_bool io, uint8 data)
{
if (io == 0) { /* read current word count CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r1(H) read as %04X\n", i8237_r1);
return (i8237_r1 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r1(L) read as %04X\n", i8237_r1);
return (i8237_r1 & 0xFF);
}
} else { /* write base & current address CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r1 |= (data << 8);
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r1(H) set to %04X\n", i8237_r1);
} else { /* low byte */
i8237_rD++;
i8237_r1 = data & 0xFF;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r1(L) set to %04X\n", i8237_r1);
}
return 0;
}
}
uint8 isbc208_r2(t_bool io, uint8 data)
{
if (io == 0) { /* read current address CH 1 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r2(H) read as %04X\n", i8237_r2);
return (i8237_r2 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r2(L) read as %04X\n", i8237_r2);
return (i8237_r2 & 0xFF);
}
} else { /* write base & current address CH 1 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r2 |= (data << 8);
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r2(H) set to %04X\n", i8237_r2);
} else { /* low byte */
i8237_rD++;
i8237_r2 = data & 0xFF;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r2(L) set to %04X\n", i8237_r2);
}
return 0;
}
}
uint8 isbc208_r3(t_bool io, uint8 data)
{
if (io == 0) { /* read current word count CH 1 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r3(H) read as %04X\n", i8237_r3);
return (i8237_r3 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r3(L) read as %04X\n", i8237_r3);
return (i8237_r3 & 0xFF);
}
} else { /* write base & current address CH 1 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r3 |= (data << 8);
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r3(H) set to %04X\n", i8237_r3);
} else { /* low byte */
i8237_rD++;
i8237_r3 = data & 0xFF;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r3(L) set to %04X\n", i8237_r3);
}
return 0;
}
}
uint8 isbc208_r4(t_bool io, uint8 data)
{
if (io == 0) { /* read current address CH 2 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r4(H) read as %04X\n", i8237_r4);
return (i8237_r4 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r4(L) read as %04X\n", i8237_r4);
return (i8237_r4 & 0xFF);
}
} else { /* write base & current address CH 2 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r4 |= (data << 8);
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r4(H) set to %04X\n", i8237_r4);
} else { /* low byte */
i8237_rD++;
i8237_r4 = data & 0xFF;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r4(L) set to %04X\n", i8237_r4);
}
return 0;
}
}
uint8 isbc208_r5(t_bool io, uint8 data)
{
if (io == 0) { /* read current word count CH 2 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r5(H) read as %04X\n", i8237_r5);
return (i8237_r5 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r5(L) read as %04X\n", i8237_r5);
return (i8237_r5 & 0xFF);
}
} else { /* write base & current address CH 2 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r5 |= (data << 8);
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r5(H) set to %04X\n", i8237_r5);
} else { /* low byte */
i8237_rD++;
i8237_r5 = data & 0xFF;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r5(L) set to %04X\n", i8237_r5);
}
return 0;
}
}
uint8 isbc208_r6(t_bool io, uint8 data)
{
if (io == 0) { /* read current address CH 3 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r6(H) read as %04X\n", i8237_r6);
return (i8237_r6 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r6(L) read as %04X\n", i8237_r6);
return (i8237_r6 & 0xFF);
}
} else { /* write base & current address CH 3 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r6 |= (data << 8);
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r6(H) set to %04X\n", i8237_r6);
} else { /* low byte */
i8237_rD++;
i8237_r6 = data & 0xFF;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r6(L) set to %04X\n", i8237_r6);
}
return 0;
}
}
uint8 isbc208_r7(t_bool io, uint8 data)
{
if (io == 0) { /* read current word count CH 3 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r7(H) read as %04X\n", i8237_r7);
return (i8237_r7 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r7(L) read as %04X\n", i8237_r7);
return (i8237_r7 & 0xFF);
}
} else { /* write base & current address CH 3 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r7 |= (data << 8);
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r7(H) set to %04X\n", i8237_r7);
} else { /* low byte */
i8237_rD++;
i8237_r7 = data & 0xFF;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r7(L) set to %04X\n", i8237_r7);
}
return 0;
}
}
uint8 isbc208_r8(t_bool io, uint8 data)
{
if (io == 0) { /* read status register */
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r8 (status) read as %02X\n", i8237_r8);
return (i8237_r8);
} else { /* write command register */
i8237_r9 = data & 0xFF;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_r9 (command) set to %02X\n", i8237_r9);
return 0;
}
}
uint8 isbc208_r9(t_bool io, uint8 data)
{
if (io == 0) {
sim_debug (DEBUG_reg, &isbc208_dev, "Illegal read of isbc208_r9\n");
return 0;
} else { /* write request register */
i8237_rC = data & 0xFF;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_rC (request) set to %02X\n", i8237_rC);
return 0;
}
}
uint8 isbc208_rA(t_bool io, uint8 data)
{
if (io == 0) {
sim_debug (DEBUG_reg, &isbc208_dev, "Illegal read of isbc208_rA\n");
return 0;
} else { /* write single mask register */
switch(data & 0x03) {
case 0:
if (data & 0x04)
i8237_rB |= 1;
else
i8237_rB &= ~1;
break;
case 1:
if (data & 0x04)
i8237_rB |= 2;
else
i8237_rB &= ~2;
break;
case 2:
if (data & 0x04)
i8237_rB |= 4;
else
i8237_rB &= ~4;
break;
case 3:
if (data & 0x04)
i8237_rB |= 8;
else
i8237_rB &= ~8;
break;
}
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_rB (mask) set to %02X\n", i8237_rB);
return 0;
}
}
uint8 isbc208_rB(t_bool io, uint8 data)
{
if (io == 0) {
sim_debug (DEBUG_reg, &isbc208_dev, "Illegal read of isbc208_rB\n");
return 0;
} else { /* write mode register */
i8237_rA = data & 0xFF;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_rA (mode) set to %02X\n", i8237_rA);
return 0;
}
}
uint8 isbc208_rC(t_bool io, uint8 data)
{
if (io == 0) {
sim_debug (DEBUG_reg, &isbc208_dev, "Illegal read of isbc208_rC\n");
return 0;
} else { /* clear byte pointer FF */
i8237_rD = 0;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_rD (FF) cleared\n");
return 0;
}
}
uint8 isbc208_rD(t_bool io, uint8 data)
{
if (io == 0) { /* read temporary register */
sim_debug (DEBUG_reg, &isbc208_dev, "Illegal read of isbc208_rD\n");
return 0;
} else { /* master clear */
isbc208_reset1();
sim_debug (DEBUG_reg, &isbc208_dev, "i8237 master clear\n");
return 0;
}
}
uint8 isbc208_rE(t_bool io, uint8 data)
{
if (io == 0) {
sim_debug (DEBUG_reg, &isbc208_dev, "Illegal read of isbc208_rE\n");
return 0;
} else { /* clear mask register */
i8237_rB = 0;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_rB (mask) cleared\n");
return 0;
}
}
uint8 isbc208_rF(t_bool io, uint8 data)
{
if (io == 0) {
sim_debug (DEBUG_reg, &isbc208_dev, "Illegal read of isbc208_rF\n");
return 0;
} else { /* write all mask register bits */
i8237_rB = data & 0x0F;
sim_debug (DEBUG_reg, &isbc208_dev, "i8237_rB (mask) set to %02X\n", i8237_rB);
return 0;
}
}
uint8 isbc208_r10(t_bool io, uint8 data)
{
if (io == 0) { /* read FDC status register */
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_msr read as %02X\n", i8272_msr);
return i8272_msr;
} else {
sim_debug (DEBUG_reg, &isbc208_dev, "Illegal write to isbc208_r10\n");
return 0;
}
}
// read/write FDC data register
uint8 isbc208_r11(t_bool io, uint8 data)
{
if (io == 0) { /* read FDC data register */
wsp = 0; /* clear write stack index */
switch (rsp) { /* read from next stack register */
case 0:
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_r1 read as %02X\n", i8272_r1);
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_r3 read as %02X\n", i8272_r3);
rsp++; /* step read stack index */
clr_irq(SBC208_INT); /* clear interrupt */
if (pcmd == SENDRV) {
i8272_msr = RQM; /* result phase SENDRV done */
return i8272_r1; // SENDRV return ST1
}
return i8272_r0; /* ST0 */
case 1:
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_r2 read as %02X\n", i8272_r2);
rsp++; /* step read stack index */
if (pcmd == SENINT) {
i8272_msr = RQM; /* result phase SENINT done */
return cyl; // SENINT return current cylinder
}
return i8272_r1; /* ST1 */
case 2:
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_r3 read as %02X\n", i8272_r3);
rsp++; /* step read stack index */
return i8272_r2; /* ST2 */
case 3:
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_w2 read as %02X\n", i8272_w2);
rsp++; /* step read stack index */
return i8272_w2; /* C - cylinder */
case 4:
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_w3 read as %02X\n", i8272_w3);
rsp++; /* step read stack index */
return i8272_w3; /* H - head */
case 5:
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_w4 read as %02X\n", i8272_w4);
rsp++; /* step read stack index */
return i8272_w4; /* R - sector */
case 6:
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_w5 read as %02X\n", i8272_w5);
i8272_msr = RQM; /* result phase ALL OTHERS done */
return i8272_w5; /* N - sector size*/
}
} else { /* write FDC data register */
rsp = 0; /* clear read stack index */
switch (wsp) { /* write to next stack register */
case 0:
i8272_w0 = data; /* rws = MT + MFM + SK + cmd */
cmd = data & 0x1F; /* save the current command */
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_w0 set to %02X\n", data);
if (cmd == SENINT) {
i8272_msr = CB; /* command phase SENINT done */
return 0;
}
wsp++; /* step write stack index */
break;
case 1:
i8272_w1 = data; /* rws = hed + drv */
if (cmd != SPEC)
drv = data & 0x03;
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_w1 set to %02X\n", data);
if (cmd == HOME || cmd == SENDRV || cmd == READID) {
i8272_msr = CB + hed + drv; /* command phase HOME, READID and SENDRV done */
return 0;
}
wsp++; /* step write stack index */
break;
case 2:
i8272_w2 = data; /* rws = C */
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_w2 set to %02X\n", data);
if (cmd == SPEC || cmd == SEEK) {
i8272_msr = CB + hed + drv; /* command phase SPECIFY and SEEK done */
return 0;
}
wsp++; /* step write stack index */
break;
case 3:
i8272_w3 = data; /* rw = H */
hed = data;
wsp++; /* step write stack index */
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_w3 set to %02X\n", data);
break;
case 4:
i8272_w4 = data; /* rw = R */
sec = data;
wsp++; /* step write stack index */
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_w4 set to %02X\n", data);
break;
case 5:
i8272_w5 = data; /* rw = N */
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_w5 set to %02X\n", data);
if (cmd == FMTTRK) {
i8272_msr = CB + hed + drv; /* command phase FMTTRK done */
return 0;
}
wsp++; /* step write stack index */
break;
case 6:
i8272_w6 = data; /* rw = last sector number */
wsp++; /* step write stack index */
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_w6 set to %02X\n", data);
break;
case 7:
i8272_w7 = data; /* rw = gap length */
wsp++; /* step write stack index */
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_w7 set to %02X\n", data);
break;
case 8:
i8272_w8 = data; /* rw = bytes to transfer */
sim_debug (DEBUG_reg, &isbc208_dev, "i8272_w8 set to %02X\n", data);
if (cmd == READ || cmd == WRITE)
i8272_msr = CB + hed + drv; /* command phase all others done */
break;
}
}
return 0;
}
uint8 isbc208_r12(t_bool io, uint8 data)
{
if (io == 0) { /* read interrupt status */
sim_debug (DEBUG_reg, &isbc208_dev, "isbc208_r12 read as %02X\n", isbc208_i);
return (isbc208_i);
} else { /* write controller auxillary port */
isbc208_a = data & 0xFF;
sim_debug (DEBUG_reg, &isbc208_dev, "isbc208_r12 set to %02X\n", isbc208_a);
return 0;
}
}
uint8 isbc208_r13(t_bool io, uint8 data)
{
if (io == 0) {
sim_debug (DEBUG_reg, &isbc208_dev, "Illegal read of isbc208_r13\n");
return 0;
} else { /* reset controller */
isbc208_reset1();
sim_debug (DEBUG_reg, &isbc208_dev, "isbc208_r13 controller reset\n");
return 0;
}
}
uint8 isbc208_r14(t_bool io, uint8 data)
{
if (io == 0) {
sim_debug (DEBUG_reg, &isbc208_dev, "Illegal read of isbc208_r14\n");
return 0;
} else { /* Low-Byte Segment Address Register */
isbc208_sr = data & 0xFF;
sim_debug (DEBUG_reg, &isbc208_dev, "isbc208_sr(L) set to %02X\n", data & 0xFF);
return 0;
}
}
uint8 isbc208_r15(t_bool io, uint8 data)
{
if (io == 0) {
sim_debug (DEBUG_reg, &isbc208_dev, "Illegal read of isbc208_r15\n");
return 0;
} else { /* High-Byte Segment Address Register */
isbc208_sr |= data << 8;
sim_debug (DEBUG_reg, &isbc208_dev, "isbc208_sr(H) set to %02X\n", data);
return 0;
}
}
/* end of isbc208.c */