blob: 52e335c615d938257566415aaa9d2bfdbc05b07a [file] [log] [blame] [raw]
/* hp2100_mux.c: HP 2100 12920A Asynchronous Multiplexer Interface simulator
Copyright (c) 2002-2016, Robert M. Supnik
Copyright (c) 2017-2018 J. David Bryan
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the names of the authors shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from the authors.
MUX,MUXL,MUXC 12920A Asynchronous Multiplexer Interface
01-May-18 JDB Removed ioCRS counter, as consecutive ioCRS calls are no longer made
28-Apr-18 JDB Fixed output completion IRQ when port is not connected
03-Aug-17 JDB Control card device renamed from MUXM to MUXC
MUXC now enabled/disabled independently of MUX and MUXL
Modified to use the "odd_parity" array in hp2100_sys.c
15-Mar-17 JDB Trace flags are now global
Changed DEBUG_PRI calls to tprintfs
10-Mar-17 JDB Added IOBUS to the debug table
17-Jan-17 JDB Changed "hp_---sc" and "hp_---dev" to "hp_---_dib"
13-May-16 JDB Modified for revised SCP API function parameter types
29-Jun-15 JDB Corrected typo in RTS macro definition
24-Dec-14 JDB Added casts for explicit downward conversions
10-Jan-13 MP Added DEV_MUX and additional DEVICE field values
10-Feb-12 JDB Deprecated DEVNO in favor of SC
Removed DEV_NET to allow restoration of listening port
28-Mar-11 JDB Tidied up signal handling
26-Oct-10 JDB Changed I/O signal handler for revised signal model
25-Nov-08 JDB Revised for new multiplexer library SHOW routines
09-Oct-08 JDB "muxl_unit" defined one too many units (17 instead of 16)
10-Sep-08 JDB SHOW MUX CONN/STAT with SET MUX DIAG is no longer disallowed
07-Sep-08 JDB Changed Telnet poll to connect immediately after reset or attach
27-Aug-08 JDB Added LINEORDER support
12-Aug-08 JDB Added BREAK deferral to allow RTE break-mode to work
26-Jun-08 JDB Rewrote device I/O to model backplane signals
16-Apr-08 JDB Sync mux poll with console poll for idle compatibility
06-Mar-07 JDB Corrected "mux_sta" size from 16 to 21 elements
Fixed "muxc_reset" to clear lines 16-20
26-Feb-07 JDB Added debug printouts
Fixed control card OTx to set current channel number
Fixed to set "muxl_ibuf" in response to a transmit interrupt
Changed "mux_xbuf", "mux_rbuf" declarations from 8 to 16 bits
Fixed to set "mux_rchp" when a line break is received
Fixed incorrect "odd_par" table values
Reversed test in "RCV_PAR" to return "LIL_PAR" on odd parity
Fixed mux reset (ioCRS) to clear port parameters
Fixed to use PUT_DCH instead of PUT_CCH for data channel status
10-Feb-07 JDB Added DIAG/TERM modifiers to implement diagnostic mode
28-Dec-06 JDB Added ioCRS state to I/O decoders
02-Jun-06 JDB Fixed compiler warning for mux_ldsc init
22-Nov-05 RMS Revised for new terminal processing routines
29-Jun-05 RMS Added SET MUXLn DISCONNECT
07-Oct-04 JDB Allow enable/disable from any device
26-Apr-04 RMS Fixed SFS x,C and SFC x,C
Implemented DMA SRQ (follows FLG)
05-Jan-04 RMS Revised for tmxr library changes
21-Dec-03 RMS Added invalid character screening for TSB (from Mike Gemeny)
09-May-03 RMS Added network device flag
01-Nov-02 RMS Added 7B/8B support
22-Aug-02 RMS Updated for changes to sim_tmxr
Reference:
- 12920A Asynchronous Multiplexer Interface Kits Operating and Service Manual
(12920-90001, Oct-1972)
The 12920A was a 16-channel asynchronous terminal multiplexer. It supported
direct-connected terminals as well as modems at speeds up to 2400 baud. It
was the primary terminal multiplexer for the HP 2000 series of Time-Shared
BASIC systems.
The multiplexer was implemented as a three-card set consisting of a lower
data card, an upper data card, and a modem control card. Under simulation,
these are implemented by three devices:
MUXL lower data card (lines)
MUX upper data card (scanner)
MUXC control card (modem control)
The lower and upper data cards must be in adjacent I/O slots. The control
card may be placed in any slot, although in practice it was placed in the
slot above the upper data card, so that all three cards were physically
together.
The 12920A supported one or two control cards (two cards were used with
801-type automatic dialers). Under simulation, only one control card is
supported.
The multiplexer responds to I/O instructions as follows:
Upper Data Card output word format (OTA and OTB):
15 |14 13 12 |11 10 9 | 8 7 6 | 5 4 3 | 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| - | channel number | - - - - - - - - - - |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Upper Data Card input word format (LIA, LIB, MIA, and MIB):
15 |14 13 12 |11 10 9 | 8 7 6 | 5 4 3 | 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| S | channel number | - - - - - - | D | B | L | R |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Where:
S = Seeking
D = Diagnose
B = Break status
L = Character lost
R = Receive/send (0/1) character interrupt
Lower Data Card output control word format (OTA and OTB):
15 |14 13 12 |11 10 9 | 8 7 6 | 5 4 3 | 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 1 | R | I | E | D | char size | baud rate |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Where:
R = Receive/send (0/1) configuration
I = Enable interrupt
E = Echo (receive)/parity (send)
D = Diagnose
Character size:
The three least-significant bits of the sum of the data, parity, and stop
bits. For example, 7E1 is 1001, so 001 is coded.
Baud rate:
The value (14400 / device bit rate) - 1. For example, 2400 baud is 005.
Lower Data Card output data word format (OTA and OTB):
15 |14 13 12 |11 10 9 | 8 7 6 | 5 4 3 | 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 0 | 1 | - - | S | transmit data |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Where:
S = Sync bit
Transmit data:
Right-justified with leading one bits.
Lower Data Card input word format (LIA, LIB, MIA, and MIB):
15 |14 13 12 |11 10 9 | 8 7 6 | 5 4 3 | 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| P | channel | receive data |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Where:
P = Computed parity
Receive data:
Right-justified with leading one bits
Control Card output word format (OTA and OTB):
15 |14 13 12 |11 10 9 | 8 7 6 | 5 4 3 | 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| S | U |channel number | - - |EC2|EC1|C2 |C1 |ES2|ES1|SS2|SS1|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Control Card input word format (LIA, LIB, MIA, and MIB):
15 |14 13 12 |11 10 9 | 8 7 6 | 5 4 3 | 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 1 1 |channel number |I2 |I1 | 0 0 0 0 |ES2|ES1|S2 |S1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Where:
S = Scan
U = Update
ECx = Enable command bit x
Cx = Command bit x
ESx = Enable status bit x
Sx = Status bit x
SSx = Stored status bit x
Ix = Interrupt bit x
The control card provides two serial control outputs and two serial status
inputs for each of the 16 channels. The card connects to the Request to Send
(CA) and Data Terminal Ready (CD) control lines and the Data Carrier Detect
(CF) and Data Set Ready (CC) status lines. Addressable latches hold the
control line values and assert them continuously to the 16 channels. In
addition, a 16-word by 4-bit RAM holds the expected state for each channel's
status lines and the corresponding interrupt enable bits to provide
notification if those lines change.
Implementation notes:
1. If a BREAK is detected during an input poll, and we are not in diagnostic
mode, we defer recognition until either a character is output or a second
successive input poll occurs. This is necessary for RTE break-mode
operation. Without this deferral, a BREAK during output would be ignored
by the RTE driver, making it impossible to stop a long listing.
The problem is due to timing differences between simulated and real time.
The RTE multiplexer driver is a privileged driver. Privileged drivers
bypass RTE to provide rapid interrupt handling. To inform RTE that an
operation is complete, e.g., that a line has been written, the interrupt
section of the driver sets a device timeout of one clock tick (10
milliseconds). When that timeout occurs, RTE is entered normally to
complete the I/O transaction. While the completion timeout is pending,
the driver ignores any further interrupts from the multiplexer line.
The maximum communication rate for the multiplexer is 2400 baud, or
approximately 4.2 milliseconds per character transferred. A typical line
of 20 characters would therefore take ~85 milliseconds, plus the 10
millisecond completion timeout, or about 95 milliseconds total. BREAK
recognition would be ignored for roughly 10% of that time. At lower baud
rates, recognition would be ignored for a correspondingly smaller
percentage of the time.
However, SIMH uses an optimized timing of 500 instructions per character
transfer, rather than the ~6600 instructions that a character transfer
should take, and so a typical 20-character line will take about 11,000
instructions. On the other hand, the clock tick is calibrated to real
time, and 10 milliseconds of real time takes about 420,000 instructions
on a 2.0 GHz PC. To be recognized, then, the BREAK key must be pressed
in a window that is open for about 2.5% of the time. Therefore, the
BREAK key will be ignored about 97.5% of the time, and RTE break-mode
effectively will not work.
Deferring BREAK recognition until the next character is output ensures
that the BREAK interrupt will be accepted (the simulator delivers input
interrupts before output interrupts, so the BREAK interrupt arrives
before the output character transmit interrupt). If an output operation
is not in progress, then the BREAK will be recognized at the next input
poll.
2. In simulation, establishing a port connection asserts DSR to the control
card. If the port is configured as a dataset connection (SET MUXLn
DATASET), DCD is also asserted. Disconnecting denies DSR and DCD. The
control card responds to DTR denying by dropping the port connection.
The RTS setting has no effect.
3. When a Bell 103 dataset answers a call, it asserts DSR first. After the
handshake with the remote dataset completes, DCD asserts, typically
between 1.3 and 3.6 seconds later. Similarly, when the remote dataset
terminates the call by sending a long (1.5 second) space, the local
dataset drops DSR first, followed by DCD after approximately 30
milliseconds. The dataset simulation does not model these delays; DSR
and DCD transition up and down together. This implies that the control
card software driver will see only one interrupt for each transition pair
instead of the expected two (presuming both DSR and DCD are enabled to
interrupt).
*/
#include <ctype.h>
#include "hp2100_defs.h"
#include "sim_tmxr.h"
/* Program limits */
#define TERM_COUNT 16 /* number of terminal channels */
#define AUX_COUNT 5 /* number of auxiliary channels */
#define RECV_CHAN_COUNT (TERM_COUNT + AUX_COUNT) /* number of receive channels */
#define SEND_CHAN_COUNT TERM_COUNT /* number of send channels */
#define UNIT_COUNT TERM_COUNT /* number of units */
#define FIRST_TERM 0 /* first terminal index */
#define LAST_TERM (FIRST_TERM + TERM_COUNT - 1) /* last terminal index */
#define FIRST_AUX TERM_COUNT /* first auxiliary index */
#define LAST_AUX (FIRST_AUX + AUX_COUNT - 1) /* last auxiliary index */
/* Service times */
#define MUXL_WAIT 500 /* initial fast receive/send time in event ticks */
/* Unit flags */
#define UNIT_V_MDM (TTUF_V_UF + 0) /* modem control */
#define UNIT_V_DIAG (TTUF_V_UF + 1) /* loopback diagnostic */
#define UNIT_MDM (1 << UNIT_V_MDM)
#define UNIT_DIAG (1 << UNIT_V_DIAG)
/* Channel number (OTA upper, LIA lower or upper) */
#define MUX_V_CHAN 10 /* channel num */
#define MUX_M_CHAN 037
#define MUX_CHAN(x) (((x) >> MUX_V_CHAN) & MUX_M_CHAN)
/* OTA, lower = parameters or data */
#define OTL_P 0100000 /* parameter */
#define OTL_TX 0040000 /* transmit */
#define OTL_ENB 0020000 /* enable */
#define OTL_TPAR 0010000 /* xmt parity */
#define OTL_ECHO 0010000 /* rcv echo */
#define OTL_DIAG 0004000 /* diagnose */
#define OTL_SYNC 0004000 /* sync */
#define OTL_V_LNT 8 /* char length */
#define OTL_M_LNT 07
#define OTL_LNT(x) (((x) >> OTL_V_LNT) & OTL_M_LNT)
#define OTL_V_BAUD 0 /* baud rate */
#define OTL_M_BAUD 0377
#define OTL_BAUD(x) (((x) >> OTL_V_BAUD) & OTL_M_BAUD)
#define OTL_CHAR 03777 /* char mask */
#define OTL_PAR 0200 /* char parity */
#define BAUD_RATE(p) ((28800 / (OTL_BAUD (p) + 1) + 1) / 2)
static const uint32 bits_per_char [8] = { /* bits per character, indexed by OTL_LNT encoding */
9, 10, 11, 12, 5, 6, 7, 8
};
static const BITSET_NAME lower_parameter_names [] = { /* lower data card parameter word names */
"\1send\0receive", /* bit 14 */
"enable interrupt", /* bit 13 */
"enable parity/echo", /* bit 12 */
"diagnose" /* bit 11 */
};
static const BITSET_FORMAT lower_parameter_format = /* names, offset, direction, alternates, bar */
{ FMT_INIT (lower_parameter_names, 11, msb_first, has_alt, append_bar) };
static const BITSET_NAME lower_data_names [] = { /* lower data card output data word names */
"send", /* bit 14 */
NULL, /* bit 13 */
NULL, /* bit 12 */
"sync" /* bit 11 */
};
static const BITSET_FORMAT lower_data_format = /* names, offset, direction, alternates, bar */
{ FMT_INIT (lower_data_names, 11, msb_first, no_alt, append_bar) };
/* LIA, lower = received data */
#define LIL_PAR 0100000 /* parity */
#define PUT_DCH(x) (((x) & MUX_M_CHAN) << MUX_V_CHAN)
#define LIL_CHAR 01777 /* character */
static const BITSET_NAME lower_input_names [] = { /* lower data card input data word names */
"\1odd parity\0even parity", /* bit 15 */
};
static const BITSET_FORMAT lower_input_format = /* names, offset, direction, alternates, bar */
{ FMT_INIT (lower_input_names, 0, msb_first, has_alt, append_bar) };
/* LIA, upper = status */
#define LIU_SEEK 0100000 /* seeking NI */
#define LIU_DG 0000010 /* diagnose */
#define LIU_BRK 0000004 /* break */
#define LIU_LOST 0000002 /* char lost */
#define LIU_TR 0000001 /* trans/rcv */
static const BITSET_NAME upper_status_names [] = { /* upper data card status word names */
"seeking", /* bit 15 */
NULL, /* bit 14 */
NULL, /* bit 13 */
NULL, /* bit 12 */
NULL, /* bit 11 */
NULL, /* bit 10 */
NULL, /* bit 9 */
NULL, /* bit 8 */
NULL, /* bit 7 */
NULL, /* bit 6 */
NULL, /* bit 5 */
NULL, /* bit 4 */
"diagnose", /* bit 3 */
"break" /* bit 2 */
"lost", /* bit 1 */
"\1send\0receive" /* bit 0 */
};
static const BITSET_FORMAT upper_status_format = /* names, offset, direction, alternates, bar */
{ FMT_INIT (upper_status_names, 0, msb_first, has_alt, no_bar) };
/* OTA, control */
#define OTC_SCAN 0100000 /* scan */
#define OTC_UPD 0040000 /* update */
#define OTC_V_CHAN 10 /* channel */
#define OTC_M_CHAN 017
#define OTC_CHAN(x) (((x) >> OTC_V_CHAN) & OTC_M_CHAN)
#define OTC_EC2 0000200 /* enable Cn upd */
#define OTC_EC1 0000100
#define OTC_C2 0000040 /* Cn flops */
#define OTC_C1 0000020
#define OTC_V_C 4 /* S1 to C1 */
#define OTC_ES2 0000010 /* enb comparison */
#define OTC_ES1 0000004
#define OTC_V_ES 2
#define OTC_SS2 0000002 /* SSn flops */
#define OTC_SS1 0000001
#define OTC_RW (OTC_ES2|OTC_ES1|OTC_SS2|OTC_SS1)
static const BITSET_NAME cntl_control_names [] = { /* control card control word names */
"scan", /* bit 15 */
"update", /* bit 14 */
NULL, /* bit 13 */
NULL, /* bit 12 */
NULL, /* bit 11 */
NULL, /* bit 10 */
NULL, /* bit 9 */
NULL, /* bit 8 */
"EC2", /* bit 7 */
"EC1", /* bit 6 */
"\1C2\0~C2", /* bit 5 */
"\1C1\0~C1", /* bit 4 */
"ES2", /* bit 3 */
"ES1", /* bit 2 */
"\1S2\0~S2", /* bit 1 */
"\1S1\0~S1" /* bit 0 */
};
static const BITSET_FORMAT cntl_control_format = /* names, offset, direction, alternates, bar */
{ FMT_INIT (cntl_control_names, 0, msb_first, has_alt, no_bar) };
/* LIA, control */
#define LIC_MBO 0140000 /* always set */
#define LIC_V_CHAN 10 /* channel */
#define LIC_M_CHAN 017
#define PUT_CCH(x) (((x) & OTC_M_CHAN) << OTC_V_CHAN)
#define LIC_I2 0001000 /* change flags */
#define LIC_I1 0000400
#define LIC_S2 0000002 /* Sn flops */
#define LIC_S1 0000001
#define LIC_V_I 8 /* S1 to I1 */
#define LIC_TSTI(ch) (((muxc_lia[ch] ^ muxc_ota[ch]) & \
((muxc_ota[ch] & (OTC_ES2|OTC_ES1)) >> OTC_V_ES)) \
<< LIC_V_I)
static const BITSET_NAME cntl_status_names [] = { /* control card status word names */
"I2", /* bit 9 */
"I1", /* bit 8 */
NULL, /* bit 7 */
NULL, /* bit 6 */
NULL, /* bit 5 */
NULL, /* bit 4 */
"ES2", /* bit 3 */
"ES1", /* bit 2 */
"\1S2\0~S2", /* bit 1 */
"\1S1\0~S1" /* bit 0 */
};
static const BITSET_FORMAT cntl_status_format = /* names, offset, direction, alternates, bar */
{ FMT_INIT (cntl_status_names, 0, msb_first, has_alt, no_bar) };
/* Control card #1 serial line bits */
#define RTS OTC_C2 /* Control card #1 C2 = Request to Send */
#define DTR OTC_C1 /* Control card #1 C1 = Data Terminal Ready */
#define DCD LIC_S2 /* Control card #1 S2 = Data Carrier Detect */
#define DSR LIC_S1 /* Control card #1 S1 = Data Set Ready */
static const BITSET_NAME cntl_line_names [] = { /* Control card serial line status names */
"RTS", /* bit 5 */
"DTR", /* bit 4 */
NULL, /* bit 3 */
NULL, /* bit 2 */
"DCD", /* bit 1 */
"DSR" /* bit 0 */
};
static const BITSET_FORMAT cntl_line_format = /* names, offset, direction, alternates, bar */
{ FMT_INIT (cntl_line_names, 0, msb_first, no_alt, no_bar) };
/* Program constants */
#define RCV_PAR(x) (odd_parity [(x) & 0377] ? 0 : LIL_PAR)
#define XMT_PAR(x) (odd_parity [(x) & 0377] ? 0 : OTL_PAR)
/* Multiplexer controller state variables */
struct {
FLIP_FLOP control; /* control flip-flop */
FLIP_FLOP flag; /* flag flip-flop */
FLIP_FLOP flagbuf; /* flag buffer flip-flop */
} muxl = { CLEAR, CLEAR, CLEAR };
uint32 muxl_ibuf = 0; /* low in: rcv data */
uint32 muxl_obuf = 0; /* low out: param */
uint32 muxu_ibuf = 0; /* upr in: status */
uint32 muxu_obuf = 0; /* upr out: chan */
struct {
FLIP_FLOP control; /* control flip-flop */
FLIP_FLOP flag; /* flag flip-flop */
FLIP_FLOP flagbuf; /* flag buffer flip-flop */
} muxc = { CLEAR, CLEAR, CLEAR };
uint32 muxc_chan = 0; /* ctrl chan */
uint32 muxc_scan = 0; /* ctrl scan */
/* Multiplexer per-line state variables */
uint16 mux_sta [RECV_CHAN_COUNT]; /* line status */
uint16 mux_rpar [RECV_CHAN_COUNT]; /* rcv param */
uint16 mux_xpar [SEND_CHAN_COUNT]; /* xmt param */
uint8 mux_rchp [RECV_CHAN_COUNT]; /* rcv chr pend */
uint8 mux_defer [RECV_CHAN_COUNT]; /* rcv break deferred flags */
uint8 mux_xdon [SEND_CHAN_COUNT]; /* xmt done */
uint8 muxc_ota [TERM_COUNT]; /* ctrl: Cn,ESn,SSn */
uint8 muxc_lia [TERM_COUNT]; /* ctrl: Sn */
/* Multiplexer per-line buffer variables */
uint16 mux_rbuf [RECV_CHAN_COUNT]; /* rcv buf */
uint16 mux_xbuf [SEND_CHAN_COUNT]; /* xmt buf */
/* Multiplexer local routines */
void mux_receive (int32 ln, int32 c, t_bool diag);
void mux_data_int (void);
void mux_ctrl_int (void);
void mux_diag (int32 c);
/* Multiplexer global routines */
IOHANDLER muxlio;
IOHANDLER muxuio;
IOHANDLER muxcio;
t_stat muxi_svc (UNIT *uptr);
t_stat muxo_svc (UNIT *uptr);
t_stat muxc_reset (DEVICE *dptr);
t_stat mux_attach (UNIT *uptr, CONST char *cptr);
t_stat mux_detach (UNIT *uptr);
t_stat mux_setdiag (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
/* Multiplexer SCP data structures */
/* Terminal multiplexer library structures */
static int32 mux_order [TERM_COUNT] = { /* line connection order */
-1 /* use the default order */
};
static TMLN mux_ldsc [TERM_COUNT] = { /* line descriptors */
{ 0 }
};
static TMXR mux_desc = { /* multiplexer descriptor */
TERM_COUNT, /* number of terminal lines */
0, /* listening port (reserved) */
0, /* master socket (reserved) */
mux_ldsc, /* line descriptors */
mux_order, /* line connection order */
NULL /* multiplexer device (derived internally) */
};
/* Device information blocks.
The DIBs of adjacent cards must be contained in an array, so they are defined
here and referenced in the lower and upper card device structures.
*/
DIB mux_dib [] = {
{ &muxlio, MUXL, 0 },
{ &muxuio, MUXU, 0 }
};
#define muxl_dib mux_dib [0]
#define muxu_dib mux_dib [1]
/* Unit list */
static UNIT muxl_unit [UNIT_COUNT] = {
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, TT_MODE_UC, 0), MUXL_WAIT }
};
/* Register list */
static REG muxl_reg [] = {
/* Macro Name Location Radix Width Offset Depth Flags */
/* ------ ----- -------------------- ----- ----- ------ ----------------- ----------------- */
{ FLDATA (CTL, muxl.control, 0) },
{ FLDATA (FLG, muxl.flag, 0) },
{ FLDATA (FBF, muxl.flagbuf, 0) },
{ BRDATA (STA, mux_sta, 8, 16, RECV_CHAN_COUNT) },
{ BRDATA (RPAR, mux_rpar, 8, 16, RECV_CHAN_COUNT) },
{ BRDATA (XPAR, mux_xpar, 8, 16, SEND_CHAN_COUNT) },
{ BRDATA (RBUF, mux_rbuf, 8, 16, RECV_CHAN_COUNT), REG_A },
{ BRDATA (XBUF, mux_xbuf, 8, 16, SEND_CHAN_COUNT), REG_A },
{ BRDATA (RCHP, mux_rchp, 8, 1, RECV_CHAN_COUNT) },
{ BRDATA (XDON, mux_xdon, 8, 1, SEND_CHAN_COUNT) },
{ BRDATA (BDFR, mux_defer, 8, 1, TERM_COUNT) },
{ URDATA (TIME, muxl_unit[0].wait, 10, 24, 0, TERM_COUNT, REG_NZ | PV_LEFT) },
{ ORDATA (SC, muxl_dib.select_code, 6), REG_HRO },
{ ORDATA (DEVNO, muxl_dib.select_code, 6), REG_HRO },
{ NULL }
};
/* Modifier list */
static MTAB muxl_mod [] = {
{ TT_MODE, TT_MODE_UC, "UC", "UC", NULL, NULL, NULL },
{ TT_MODE, TT_MODE_7B, "7b", "7B", NULL, NULL, NULL },
{ TT_MODE, TT_MODE_8B, "8b", "8B", NULL, NULL, NULL },
{ TT_MODE, TT_MODE_7P, "7p", "7P", NULL, NULL, NULL },
{ UNIT_MDM, UNIT_MDM, "data set", "DATASET", NULL, NULL, NULL },
{ UNIT_MDM, 0, "direct", "NODATASET", NULL, NULL, NULL },
{ MTAB_XUN | MTAB_NC, 0, "LOG", "LOG", &tmxr_set_log, &tmxr_show_log, (void *) &mux_desc },
{ MTAB_XUN | MTAB_NC, 0, NULL, "NOLOG", &tmxr_set_nolog, NULL, (void *) &mux_desc },
{ MTAB_XUN, 0, NULL, "DISCONNECT", &tmxr_dscln, NULL, (void *) &mux_desc },
{ MTAB_XDV, 2u, "SC", "SC", &hp_set_dib, &hp_show_dib, (void *) &mux_dib },
{ MTAB_XDV | MTAB_NMO, ~2u, "DEVNO", "DEVNO", &hp_set_dib, &hp_show_dib, (void *) &mux_dib },
{ 0 }
};
/* Debugging trace list */
static DEBTAB muxl_deb [] = {
{ "CSRW", TRACE_CSRW }, /* Interface control, status, read, and write actions */
{ "SERV", TRACE_SERV }, /* Channel unit service scheduling calls */
{ "XFER", TRACE_XFER }, /* Data receptions and transmissions */
{ "IOBUS", TRACE_IOBUS }, /* interface I/O bus signals and data words */
{ NULL, 0 }
};
/* Device descriptor */
DEVICE muxl_dev = {
"MUXL", /* device name */
muxl_unit, /* unit array */
muxl_reg, /* register array */
muxl_mod, /* modifier array */
UNIT_COUNT, /* number of units */
10, /* address radix */
31, /* address width */
1, /* address increment */
8, /* data radix */
8, /* data width */
NULL, /* examine routine */
NULL, /* deposit routine */
&muxc_reset, /* reset routine */
NULL, /* boot routine */
NULL, /* attach routine */
NULL, /* detach routine */
&muxl_dib, /* device information block pointer */
DEV_DISABLE | DEV_DEBUG, /* device flags */
0, /* debug control flags */
muxl_deb, /* debug flag name array */
NULL, /* memory size change routine */
NULL, /* logical device name */
NULL, /* help routine */
NULL, /* help attach routine*/
NULL /* help context */
};
/* Unit list */
static UNIT muxu_unit = { UDATA (&muxi_svc, UNIT_ATTABLE, 0), POLL_FIRST };
/* Register list */
static REG muxu_reg [] = {
/* Macro Name Location Width Flags */
/* ------ ----- -------------------- ----- ------- */
{ ORDATA (IBUF, muxu_ibuf, 16) },
{ ORDATA (OBUF, muxu_obuf, 16) },
{ ORDATA (SC, muxu_dib.select_code, 6), REG_HRO },
{ ORDATA (DEVNO, muxu_dib.select_code, 6), REG_HRO },
{ NULL }
};
/* Modifier list */
static MTAB muxu_mod [] = {
{ UNIT_DIAG, UNIT_DIAG, "diagnostic mode", "DIAGNOSTIC", &mux_setdiag, NULL, NULL },
{ UNIT_DIAG, 0, "terminal mode", "TERMINAL", &mux_setdiag, NULL, NULL },
{ UNIT_ATT, UNIT_ATT, "", NULL, NULL, &tmxr_show_summ, (void *) &mux_desc },
{ MTAB_XDV | MTAB_NMO, 0, "LINEORDER", "LINEORDER", &tmxr_set_lnorder, &tmxr_show_lnorder, &mux_desc },
{ MTAB_XDV | MTAB_NMO, 1, "CONNECTIONS", NULL, NULL, &tmxr_show_cstat, (void *) &mux_desc },
{ MTAB_XDV | MTAB_NMO, 0, "STATISTICS", NULL, NULL, &tmxr_show_cstat, (void *) &mux_desc },
{ MTAB_XDV, 1, NULL, "DISCONNECT", &tmxr_dscln, NULL, (void *) &mux_desc },
{ MTAB_XDV, 2u, "SC", "SC", &hp_set_dib, &hp_show_dib, (void *) &mux_dib },
{ MTAB_XDV | MTAB_NMO, ~2u, "DEVNO", "DEVNO", &hp_set_dib, &hp_show_dib, (void *) &mux_dib },
{ 0 }
};
/* Debugging trace list */
static DEBTAB muxu_deb [] = {
{ "CSRW", TRACE_CSRW }, /* Interface control, status, read, and write actions */
{ "PSERV", TRACE_PSERV }, /* Poll unit service scheduling calls */
{ "IOBUS", TRACE_IOBUS }, /* interface I/O bus signals and data words */
{ NULL, 0 }
};
/* Device descriptor */
DEVICE muxu_dev = {
"MUX", /* device name */
&muxu_unit, /* unit array */
muxu_reg, /* register array */
muxu_mod, /* modifier array */
1, /* number of units */
10, /* address radix */
31, /* address width */
1, /* address increment */
8, /* data radix */
8, /* data width */
&tmxr_ex, /* examine routine */
&tmxr_dep, /* deposit routine */
&muxc_reset, /* reset routine */
NULL, /* boot routine */
&mux_attach, /* attach routine */
&mux_detach, /* detach routine */
&muxu_dib, /* device information block pointer */
DEV_DISABLE | DEV_DEBUG | DEV_MUX, /* device flags */
0, /* debug control flags */
muxu_deb, /* debug flag name array */
NULL, /* memory size change routine */
NULL, /* logical device name */
NULL, /* help routine */
NULL, /* help attach routine*/
(void *) &mux_desc /* help context */
};
/* Device information block */
static DIB muxc_dib = {
&muxcio, /* device interface */
MUXC, /* select code */
0 /* card index */
};
/* Unit list */
UNIT muxc_unit = { UDATA (NULL, 0, 0) };
/* Register list */
static REG muxc_reg [] = {
/* Macro Name Location Radix Width Offset Depth Flags */
/* ------ ----- -------------------- ----- ----- ------ ----------------- ----------------- */
{ FLDATA (CTL, muxc.control, 0) },
{ FLDATA (FLG, muxc.flag, 0) },
{ FLDATA (FBF, muxc.flagbuf, 0) },
{ FLDATA (SCAN, muxc_scan, 0) },
{ ORDATA (CHAN, muxc_chan, 4) },
{ BRDATA (DSO, muxc_ota, 2, 6, TERM_COUNT) },
{ BRDATA (DSI, muxc_lia, 2, 2, TERM_COUNT) },
{ ORDATA (SC, muxc_dib.select_code, 6), REG_HRO },
{ ORDATA (DEVNO, muxc_dib.select_code, 6), REG_HRO },
{ NULL }
};
/* Modifier list */
static MTAB muxc_mod [] = {
{ MTAB_XTD | MTAB_VDV, 1u, "SC", "SC", &hp_set_dib, &hp_show_dib, (void *) &muxc_dib },
{ MTAB_XTD | MTAB_VDV | MTAB_NMO, ~1u, "DEVNO", "DEVNO", &hp_set_dib, &hp_show_dib, (void *) &muxc_dib },
{ 0 }
};
/* Debugging trace list */
static DEBTAB muxc_deb [] = {
{ "CSRW", TRACE_CSRW }, /* Interface control, status, read, and write actions */
{ "XFER", TRACE_XFER }, /* Data receptions and transmissions */
{ "IOBUS", TRACE_IOBUS }, /* interface I/O bus signals and data words */
{ NULL, 0 }
};
/* Device descriptor */
DEVICE muxc_dev = {
"MUXM", /* device name (deprecated; use MUXC) */
&muxc_unit, /* unit array */
muxc_reg, /* register array */
muxc_mod, /* modifier array */
1, /* number of units */
10, /* address radix */
31, /* address width */
1, /* address increment */
8, /* data radix */
8, /* data width */
NULL, /* examine routine */
NULL, /* deposit routine */
&muxc_reset, /* reset routine */
NULL, /* boot routine */
NULL, /* attach routine */
NULL, /* detach routine */
&muxc_dib, /* device information block pointer */
DEV_DISABLE | DEV_DEBUG, /* device flags */
0, /* debug control flags */
muxc_deb, /* debug flag name array */
NULL, /* memory size change routine */
NULL, /* logical device name */
NULL, /* help routine */
NULL, /* help attach routine*/
NULL /* help context */
};
/* Lower data card I/O signal handler.
Implementation notes:
1. The operating manual says that "at least 100 milliseconds of CLC 0s must
be programmed" by systems employing the multiplexer to ensure that the
multiplexer resets. In practice, such systems issue 128K CLC 0
instructions. In simulation, only one ioCRS invocation is required to
reset the multiplexer.
*/
uint32 muxlio (DIB *dibptr, IOCYCLE signal_set, uint32 stat_data)
{
int32 ln;
IOSIGNAL signal;
IOCYCLE working_set = IOADDSIR (signal_set); /* add ioSIR if needed */
while (working_set) {
signal = IONEXT (working_set); /* isolate next signal */
switch (signal) { /* dispatch I/O signal */
case ioCLF: /* clear flag flip-flop */
muxl.flag = muxl.flagbuf = CLEAR;
mux_data_int (); /* look for new int */
break;
case ioSTF: /* set flag flip-flop */
case ioENF: /* enable flag */
muxl.flag = muxl.flagbuf = SET;
break;
case ioSFC: /* skip if flag is clear */
setstdSKF (muxl);
break;
case ioSFS: /* skip if flag is set */
setstdSKF (muxl);
break;
case ioIOI: /* I/O data input */
tprintf (muxl_dev, TRACE_CSRW, "Input data is channel %u | %s%04o\n",
MUX_CHAN (muxl_ibuf),
fmt_bitset (muxl_ibuf, lower_input_format),
muxl_ibuf & LIL_CHAR);
stat_data = IORETURN (SCPE_OK, muxl_ibuf); /* merge in return status */
break;
case ioIOO: /* I/O data output */
muxl_obuf = IODATA (stat_data); /* store data */
if (muxl_obuf & OTL_P)
tprintf (muxl_dev, TRACE_CSRW, "Parameter is %s%u bits | %u baud\n",
fmt_bitset (muxl_obuf, lower_parameter_format),
bits_per_char [OTL_LNT (muxl_obuf)],
BAUD_RATE (muxl_obuf));
else
tprintf (muxl_dev, TRACE_CSRW, "Output data is %s%04o\n",
fmt_bitset (muxl_obuf, lower_data_format),
muxl_obuf & OTL_CHAR);
break;
case ioPOPIO: /* power-on preset to I/O */
muxl.flag = muxl.flagbuf = SET; /* set flag andflag buffer */
break;
case ioCRS: /* control reset */
muxl.control = CLEAR; /* clear control flip-flop */
for (ln = 0; ln < SEND_CHAN_COUNT; ln++) { /* clear transmit info */
mux_xbuf[ln] = mux_xpar[ln] = 0;
muxc_ota[ln] = muxc_lia[ln] = mux_xdon[ln] = 0;
}
for (ln = 0; ln < RECV_CHAN_COUNT; ln++) {
mux_rbuf[ln] = mux_rpar[ln] = 0; /* clear receive info */
mux_sta[ln] = mux_rchp[ln] = 0;
}
break;
case ioCLC: /* clear control flip-flop */
muxl.control = CLEAR;
break;
case ioSTC: /* set control flip-flop */
muxl.control = SET; /* set control */
ln = MUX_CHAN (muxu_obuf); /* get chan # */
if (muxl_obuf & OTL_TX) /* if this is a send parameter or data */
if (ln >= SEND_CHAN_COUNT) /* then report if the channel number is out of range */
tprintf (muxl_dev, TRACE_CSRW, "Send channel %d invalid\n",
ln);
else if (muxl_obuf & OTL_P) { /* otherwise if this is a parameter store */
mux_xpar[ln] = (uint16) muxl_obuf; /* then save it */
tprintf (muxl_dev, TRACE_CSRW, "Channel %d send parameter %06o stored\n",
ln, muxl_obuf);
}
else { /* otherwise this is a data store */
if (mux_xpar[ln] & OTL_TPAR) /* if parity is enabled */
muxl_obuf = muxl_obuf & ~OTL_PAR /* then replace the parity bit */
| XMT_PAR (muxl_obuf); /* with the calculated value */
mux_xbuf[ln] = (uint16) muxl_obuf; /* load buffer */
if (sim_is_active (&muxl_unit[ln])) { /* still working? */
mux_sta[ln] = mux_sta[ln] | LIU_LOST; /* char lost */
tprintf (muxl_dev, TRACE_CSRW, "Channel %d send data overrun\n",
ln);
}
else {
if (muxu_unit.flags & UNIT_DIAG) /* loopback? */
mux_ldsc[ln].conn = 1; /* connect this line */
sim_activate (&muxl_unit[ln], muxl_unit[ln].wait);
tprintf (muxl_dev, TRACE_CSRW, "Channel %d send data %06o stored\n",
ln, muxl_obuf);
tprintf (muxl_dev, TRACE_SERV, "Channel %d delay %d service scheduled\n",
ln, muxl_unit [ln].wait);
}
}
else /* otherwise this is a receive parameter */
if (ln >= RECV_CHAN_COUNT) /* report if the channel number is out of range */
tprintf (muxl_dev, TRACE_CSRW, "Receive channel %d invalid\n",
ln);
else if (muxl_obuf & OTL_P) { /* otherwise if this is a parameter store */
mux_rpar[ln] = (uint16) muxl_obuf; /* then save it */
tprintf (muxl_dev, TRACE_CSRW, "Channel %d receive parameter %06o stored\n",
ln, muxl_obuf);
}
else /* otherwise a data store to a receive channel is invalid */
tprintf (muxl_dev, TRACE_CSRW, "Channel %d receive output data word %06o invalid\n",
ln, muxl_obuf);
break;
case ioSIR: /* set interrupt request */
setstdPRL (muxl); /* set standard PRL signal */
setstdIRQ (muxl); /* set standard IRQ signal */
setstdSRQ (muxl); /* set standard SRQ signal */
break;
case ioIAK: /* interrupt acknowledge */
muxl.flagbuf = CLEAR;
break;
default: /* all other signals */
break; /* are ignored */
}
working_set = working_set & ~signal; /* remove current signal from set */
}
return stat_data;
}
/* Upper data card I/O signal handler.
The upper data card does not have a control, flag, or flag buffer flip-flop.
It does not drive the IRQ or SRQ lines, so the I/O dispatcher does not handle
the ioSIR signal.
Implementation notes:
1. The upper and lower data card hardware takes a number of actions in
response to the CRS signal. Under simulation, these actions are taken by
the lower data card CRS handler.
*/
uint32 muxuio (DIB *dibptr, IOCYCLE signal_set, uint32 stat_data)
{
IOSIGNAL signal;
IOCYCLE working_set = IOADDSIR (signal_set); /* add ioSIR if needed */
while (working_set) {
signal = IONEXT (working_set); /* isolate next signal */
switch (signal) { /* dispatch I/O signal */
case ioIOI: /* I/O data input */
stat_data = IORETURN (SCPE_OK, muxu_ibuf); /* merge in return status */
tprintf (muxu_dev, TRACE_CSRW, "Status is channel %u | %s\n",
MUX_CHAN (muxu_ibuf),
fmt_bitset (muxu_ibuf, upper_status_format));
break;
case ioIOO: /* I/O data output */
muxu_obuf = IODATA (stat_data); /* store data */
tprintf (muxu_dev, TRACE_CSRW, "Channel %d is selected\n",
MUX_CHAN (muxu_obuf));
break;
default: /* all other signals */
break; /* are ignored */
}
working_set = working_set & ~signal; /* remove current signal from set */
}
return stat_data;
}
/* Control card I/O signal handler.
In diagnostic mode, the control signals C1 and C2 are looped back to status
signals S1 and S2. Changing the control signals may cause an interrupt, so a
test is performed after IOO processing.
*/
uint32 muxcio (DIB *dibptr, IOCYCLE signal_set, uint32 stat_data)
{
uint16 data;
int32 ln, old;
IOSIGNAL signal;
IOCYCLE working_set = IOADDSIR (signal_set); /* add ioSIR if needed */
while (working_set) {
signal = IONEXT (working_set); /* isolate next signal */
switch (signal) { /* dispatch I/O signal */
case ioCLF: /* clear flag flip-flop */
muxc.flag = muxc.flagbuf = CLEAR;
mux_ctrl_int (); /* look for new int */
break;
case ioSTF: /* set flag flip-flop */
case ioENF: /* enable flag */
muxc.flag = muxc.flagbuf = SET;
break;
case ioSFC: /* skip if flag is clear */
setstdSKF (muxc);
break;
case ioSFS: /* skip if flag is set */
setstdSKF (muxc);
break;
case ioIOI: /* I/O data input */
data = (uint16) (LIC_MBO | PUT_CCH (muxc_chan) | /* mbo, chan num */
LIC_TSTI (muxc_chan) | /* I2, I1 */
(muxc_ota[muxc_chan] & (OTC_ES2 | OTC_ES1)) | /* ES2, ES1 */
(muxc_lia[muxc_chan] & (LIC_S2 | LIC_S1))); /* S2, S1 */
tprintf (muxc_dev, TRACE_CSRW, "Status is channel %u | %s\n",
muxc_chan, fmt_bitset (data, cntl_status_format));
muxc_chan = (muxc_chan + 1) & LIC_M_CHAN; /* incr channel */
stat_data = IORETURN (SCPE_OK, data); /* merge in return status */
break;
case ioIOO: /* I/O data output */
data = IODATA (stat_data); /* clear supplied status */
ln = muxc_chan = OTC_CHAN (data); /* set channel */
tprintf (muxc_dev, TRACE_CSRW, "Control is channel %u | %s\n",
muxc_chan, fmt_bitset (data, cntl_control_format));
if (data & OTC_SCAN) muxc_scan = 1; /* set scan flag */
else muxc_scan = 0;
if (data & OTC_UPD) { /* update? */
old = muxc_ota[ln]; /* save prior val */
muxc_ota[ln] = /* save ESn,SSn */
(muxc_ota[ln] & ~OTC_RW) | (data & OTC_RW);
if (data & OTC_EC2) /* if EC2, upd C2 */
muxc_ota[ln] =
(muxc_ota[ln] & ~OTC_C2) | (data & OTC_C2);
if (data & OTC_EC1) /* if EC1, upd C1 */
muxc_ota[ln] =
(muxc_ota[ln] & ~OTC_C1) | (data & OTC_C1);
tprintf (muxc_dev, TRACE_XFER, "Channel %d line status is %s\n",
ln, fmt_bitset (muxc_ota [ln], cntl_line_format));
if (muxu_unit.flags & UNIT_DIAG) { /* loopback? */
muxc_lia[ln ^ 1] = /* set S1, S2 to C1, C2 */
(muxc_lia[ln ^ 1] & ~(LIC_S2 | LIC_S1)) |
(muxc_ota[ln] & (OTC_C1 | OTC_C2)) >> OTC_V_C;
tprintf (muxc_dev, TRACE_XFER, "Channel %d line status is %s\n",
ln ^ 1, fmt_bitset (muxc_lia [ln ^ 1], cntl_line_format));
}
else if ((muxl_unit[ln].flags & UNIT_MDM) /* modem ctrl? */
&& (old & DTR) && !(muxc_ota[ln] & DTR)) { /* DTR drop? */
tprintf (muxc_dev, TRACE_CSRW, "Channel %d disconnected by DTR drop\n",
ln);
tmxr_linemsg (&mux_ldsc[ln], "\r\nDisconnected from the ");
tmxr_linemsg (&mux_ldsc[ln], sim_name);
tmxr_linemsg (&mux_ldsc[ln], " simulator\r\n\n");
tmxr_reset_ln (&mux_ldsc[ln]); /* reset line */
muxc_lia[ln] = 0; /* dataset off */
tprintf (muxc_dev, TRACE_XFER, "Channel %d disconnect dropped DCD and DSR\n",
ln);
}
} /* end update */
if ((muxu_unit.flags & UNIT_DIAG) && (!muxc.flag)) /* loopback and flag clear? */
mux_ctrl_int (); /* status chg may interrupt */
break;
case ioPOPIO: /* power-on preset to I/O */
muxc.flag = muxc.flagbuf = SET; /* set flag and flag buffer */
break;
case ioCRS: /* control reset */
case ioCLC: /* clear control flip-flop */
muxc.control = CLEAR;
break;
case ioSTC: /* set control flip-flop */
muxc.control = SET;
break;
case ioSIR: /* set interrupt request */
setstdPRL (muxc); /* set standard PRL signal */
setstdIRQ (muxc); /* set standard IRQ signal */
setstdSRQ (muxc); /* set standard SRQ signal */
break;
case ioIAK: /* interrupt acknowledge */
muxc.flagbuf = CLEAR;
break;
default: /* all other signals */
break; /* are ignored */
}
working_set = working_set & ~signal; /* remove current signal from set */
}
return stat_data;
}
/* Unit service - receive side
Poll for new connections
Poll all active lines for input
*/
t_stat muxi_svc (UNIT *uptr)
{
int32 ln, c;
t_bool loopback;
tprintf (muxu_dev, TRACE_PSERV, "Poll delay %d service entered\n",
uptr->wait);
loopback = ((muxu_unit.flags & UNIT_DIAG) != 0); /* diagnostic mode? */
if (!loopback) { /* terminal mode? */
if (uptr->wait == POLL_FIRST) /* first poll? */
uptr->wait = sync_poll (INITIAL); /* initial synchronization */
else /* not first */
uptr->wait = sync_poll (SERVICE); /* continue synchronization */
sim_activate (uptr, uptr->wait); /* continue polling */
ln = tmxr_poll_conn (&mux_desc); /* look for connect */
if (ln >= 0) { /* got one? */
mux_ldsc[ln].rcve = 1; /* rcv enabled */
muxc_lia[ln] = muxc_lia[ln] | DSR; /* set dsr */
if ((muxl_unit[ln].flags & UNIT_MDM) && /* modem ctrl? */
(muxc_ota[ln] & DTR)) /* DTR? */
muxc_lia[ln] = muxc_lia[ln] | DCD; /* set DCD */
tprintf (muxc_dev, TRACE_XFER, "Channel %d connected\n",
ln);
}
tmxr_poll_rx (&mux_desc); /* poll for input */
}
for (ln = 0; ln < SEND_CHAN_COUNT; ln++) { /* loop thru lines */
if (mux_ldsc[ln].conn) { /* connected? */
if (loopback) { /* diagnostic mode? */
c = mux_xbuf[ln ^ 1] & OTL_CHAR; /* get char from xmit line */
if (c == 0) /* all char bits = 0? */
c = c | SCPE_BREAK; /* set break flag */
mux_ldsc[ln].conn = 0; /* clear connection */
}
else if (mux_defer[ln]) /* break deferred? */
c = SCPE_BREAK; /* supply it now */
else
c = tmxr_getc_ln (&mux_ldsc[ln]); /* get char from line */
if (c) /* valid char? */
mux_receive (ln, c, loopback); /* process it */
}
else /* not connected */
if (!loopback) /* terminal mode? */
muxc_lia[ln] = 0; /* line disconnected */
}
if (!muxl.flag) mux_data_int (); /* scan for data int */
if (!muxc.flag) mux_ctrl_int (); /* scan modem */
return SCPE_OK;
}
/* Unit service - transmit side */
t_stat muxo_svc (UNIT *uptr)
{
const int32 ln = uptr - muxl_unit; /* line # */
const int32 altln = ln ^ 1; /* alt. line for diag mode */
int32 c, fc;
t_bool loopback;
t_stat result = SCPE_OK;
tprintf (muxl_dev, TRACE_SERV, "Channel %d service entered\n",
ln);
fc = mux_xbuf[ln] & OTL_CHAR; /* full character data */
c = fc & 0377; /* line character data */
loopback = ((muxu_unit.flags & UNIT_DIAG) != 0); /* diagnostic mode? */
if (mux_ldsc[ln].xmte) { /* xmt enabled? */
if (loopback) /* diagnostic mode? */
mux_ldsc[ln].conn = 0; /* clear connection */
else if (mux_defer[ln]) /* break deferred? */
mux_receive (ln, SCPE_BREAK, loopback); /* process it now */
if ((mux_xbuf[ln] & OTL_SYNC) == 0) { /* start bit 0? */
TMLN *lp = &mux_ldsc[ln]; /* get line */
c = sim_tt_outcvt (c, TT_GET_MODE (muxl_unit[ln].flags));
if (mux_xpar[ln] & OTL_DIAG) /* xmt diagnose? */
mux_diag (fc); /* before munge */
if (loopback) { /* diagnostic mode? */
mux_ldsc[altln].conn = 1; /* set recv connection */
sim_activate (&muxu_unit, 1); /* schedule receive */
}
else { /* no loopback */
if (c >= 0) /* valid? */
result = tmxr_putc_ln (lp, c); /* output char */
tmxr_poll_tx (&mux_desc); /* poll xmt */
}
}
else if (mux_ldsc [ln].conn == 0) /* sync character isn't seen by receiver */
result = SCPE_LOST; /* so report transfer success if connected */
mux_xdon[ln] = 1; /* set for xmit irq */
if (loopback || c >= 0)
if (result == SCPE_LOST)
tprintf (muxl_dev, TRACE_XFER, "Channel %d character %s discarded by connection loss\n",
ln, fmt_char ((uint8) (loopback ? fc : c)));
else
tprintf (muxl_dev, TRACE_XFER, "Channel %d character %s sent\n",
ln, fmt_char ((uint8) (loopback ? fc : c)));
}
else { /* buf full */
tmxr_poll_tx (&mux_desc); /* poll xmt */
sim_activate (uptr, muxl_unit[ln].wait); /* wait */
tprintf (muxl_dev, TRACE_SERV, "Channel %d delay %d service rescheduled\n",
ln, muxl_unit [ln].wait);
return SCPE_OK;
}
if (!muxl.flag) mux_data_int (); /* scan for int */
return SCPE_OK;
}
/* Process a character received from a multiplexer port */
void mux_receive (int32 ln, int32 c, t_bool diag)
{
if (c & SCPE_BREAK) { /* break? */
if (mux_defer[ln] || diag) { /* break deferred or diagnostic mode? */
mux_defer[ln] = 0; /* process now */
mux_rbuf[ln] = 0; /* break returns NUL */
mux_sta[ln] = mux_sta[ln] | LIU_BRK; /* set break status */
if (diag)
tprintf (muxl_dev, TRACE_XFER, "Channel %d break detected\n", ln);
else
tprintf (muxl_dev, TRACE_XFER, "Channel %d deferred break processed\n", ln);
}
else {
mux_defer[ln] = 1; /* defer break */
tprintf (muxl_dev, TRACE_XFER, "Channel %d break detected and deferred\n", ln);
return;
}
}
else { /* normal */
if (mux_rchp[ln]) /* char already pending? */
mux_sta[ln] = mux_sta[ln] | LIU_LOST;
if (!diag) { /* terminal mode? */
c = sim_tt_inpcvt (c, TT_GET_MODE (muxl_unit[ln].flags));
if (mux_rpar[ln] & OTL_ECHO) { /* echo? */
TMLN *lp = &mux_ldsc[ln]; /* get line */
tmxr_putc_ln (lp, c); /* output char */
tmxr_poll_tx (&mux_desc); /* poll xmt */
}
}
mux_rbuf[ln] = (uint16) c; /* save char */
}
mux_rchp[ln] = 1; /* char pending */
tprintf (muxl_dev, TRACE_XFER, "Channel %d character %s received\n",
ln, fmt_char ((uint8) c));
if (mux_rpar[ln] & OTL_DIAG) /* diagnose this line? */
mux_diag (c); /* do diagnosis */
return;
}
/* Look for data interrupt */
void mux_data_int (void)
{
int32 i;
for (i = FIRST_TERM; i <= LAST_TERM; i++) { /* rcv lines */
if ((mux_rpar[i] & OTL_ENB) && mux_rchp[i]) { /* enabled, char? */
muxl_ibuf = PUT_DCH (i) | /* lo buf = char */
mux_rbuf[i] & LIL_CHAR |
RCV_PAR (mux_rbuf[i]);
muxu_ibuf = PUT_DCH (i) | mux_sta[i]; /* hi buf = stat */
mux_rchp[i] = 0; /* clr char, stat */
mux_sta[i] = 0;
tprintf (muxl_dev, TRACE_CSRW, "Channel %d receive interrupt requested\n",
i);
muxlio (&muxl_dib, ioENF, 0); /* interrupt */
return;
}
}
for (i = FIRST_TERM; i <= LAST_TERM; i++) { /* xmt lines */
if ((mux_xpar[i] & OTL_ENB) && mux_xdon[i]) { /* enabled, done? */
muxl_ibuf = PUT_DCH (i) | /* lo buf = last rcv char */
mux_rbuf[i] & LIL_CHAR |
RCV_PAR (mux_rbuf[i]);
muxu_ibuf = PUT_DCH (i) | mux_sta[i] | LIU_TR; /* hi buf = stat */
mux_xdon[i] = 0; /* clr done, stat */
mux_sta[i] = 0;
tprintf (muxl_dev, TRACE_CSRW, "Channel %d send interrupt requested\n",
i);
muxlio (&muxl_dib, ioENF, 0); /* interrupt */
return;
}
}
for (i = FIRST_AUX; i <= LAST_AUX; i++) { /* diag lines */
if ((mux_rpar[i] & OTL_ENB) && mux_rchp[i]) { /* enabled, char? */
muxl_ibuf = PUT_DCH (i) | /* lo buf = char */
mux_rbuf[i] & LIL_CHAR |
RCV_PAR (mux_rbuf[i]);
muxu_ibuf = PUT_DCH (i) | mux_sta[i] | LIU_DG; /* hi buf = stat */
mux_rchp[i] = 0; /* clr char, stat */
mux_sta[i] = 0;
tprintf (muxl_dev, TRACE_CSRW, "Channel %d receive interrupt requested\n",
i);
muxlio (&muxl_dib, ioENF, 0); /* interrupt */
return;
}
}
return;
}
/* Look for control interrupt
If either of the incoming status bits does not match the stored status, and
the corresponding mismatch is enabled, a control interrupt request is
generated. Depending on the scan flag, we check either all 16 lines or just
the current line. If an interrupt is requested, the channel counter
indicates the interrupting channel.
*/
void mux_ctrl_int (void)
{
int32 i, line_count;
line_count = (muxc_scan ? TERM_COUNT : 1); /* check one or all lines */
for (i = 0; i < line_count; i++) {
if (muxc_scan) /* scanning? */
muxc_chan = (muxc_chan + 1) & LIC_M_CHAN; /* step channel */
if (LIC_TSTI (muxc_chan)) { /* status change? */
tprintf (muxc_dev, TRACE_CSRW, "Channel %u interrupt requested\n",
muxc_chan);
muxcio (&muxc_dib, ioENF, 0); /* set flag */
break;
}
}
return;
}
/* Set diagnostic lines for given character */
void mux_diag (int32 c)
{
int32 i;
for (i = FIRST_AUX; i <= LAST_AUX; i++) { /* diag lines */
if (c & SCPE_BREAK) { /* break? */
mux_sta[i] = mux_sta[i] | LIU_BRK;
mux_rbuf[i] = 0; /* no char */
}
else {
if (mux_rchp[i]) mux_sta[i] = mux_sta[i] | LIU_LOST;
mux_rchp[i] = 1;
mux_rbuf[i] = (uint16) c;
}
}
return;
}
/* Reset an individual line */
static void mux_reset_ln (int32 i)
{
mux_rbuf[i] = mux_xbuf[i] = 0; /* clear state */
mux_rpar[i] = mux_xpar[i] = 0;
mux_rchp[i] = mux_xdon[i] = 0;
mux_sta[i] = mux_defer[i] = 0;
muxc_ota[i] = muxc_lia[i] = 0; /* clear modem */
if (mux_ldsc [i].conn /* connected? */
&& (muxu_unit.flags & UNIT_DIAG) == 0) /* term mode? */
muxc_lia[i] = muxc_lia[i] | DSR /* DCD, dsr */
| (muxl_unit[i].flags & UNIT_MDM ? DCD : 0);
sim_cancel (&muxl_unit[i]);
return;
}
/* Reset routine for lower data, upper data, and control cards */
t_stat muxc_reset (DEVICE *dptr)
{
int32 i;
DIB *dibptr = (DIB *) dptr->ctxt; /* DIB pointer */
if (sim_switches & SWMASK ('P') /* initialization reset? */
&& muxc_dev.lname == NULL) /* logical name unassigned? */
muxc_dev.lname = strdup ("MUXC"); /* allocate and initialize the name */
if (dptr == &muxl_dev) /* make all consistent */
hp_enbdis_pair (dptr, &muxu_dev);
else if (dptr == &muxu_dev)
hp_enbdis_pair (dptr, &muxl_dev);
IOPRESET (dibptr); /* PRESET device (does not use PON) */
muxc_chan = muxc_scan = 0; /* init modem scan */
if (muxu_unit.flags & UNIT_ATT) { /* master att? */
muxu_unit.wait = POLL_FIRST; /* set up poll */
sim_activate (&muxu_unit, muxu_unit.wait); /* start poll immediately */
}
else
sim_cancel (&muxu_unit); /* else stop */
for (i = FIRST_TERM; i <= LAST_TERM; i++)
mux_reset_ln (i); /* reset lines 0-15 */
for (i = FIRST_AUX; i <= LAST_AUX; i++) /* reset lines 16-20 */
mux_rbuf[i] = mux_rpar[i] = mux_sta[i] = mux_rchp[i] = 0;
return SCPE_OK;
}
/* Attach master unit */
t_stat mux_attach (UNIT *uptr, CONST char *cptr)
{
t_stat status = SCPE_OK;
if (muxu_unit.flags & UNIT_DIAG) /* diag mode? */
return SCPE_NOFNC; /* command not allowed */
status = tmxr_attach (&mux_desc, uptr, cptr); /* attach */
if (status == SCPE_OK) {
muxu_unit.wait = POLL_FIRST; /* set up poll */
sim_activate (&muxu_unit, muxu_unit.wait); /* start poll immediately */
}
return status;
}
/* Detach master unit */
t_stat mux_detach (UNIT *uptr)
{
int32 i;
t_stat r;
r = tmxr_detach (&mux_desc, uptr); /* detach */
for (i = 0; i < TERM_COUNT; i++) /* disable rcv */
mux_ldsc[i].rcve = 0;
sim_cancel (uptr); /* stop poll */
return r;
}
/* Diagnostic/normal mode routine,
Diagnostic testing wants to exercise as much of the regular simulation code
as possible to ensure good test coverage. Normally, input polling and output
transmission only occurs on connected lines. In diagnostic mode, line
connection flags are set selectively to enable processing on the lines under
test. The alternative to this would require duplicating the send/receive
code; the diagnostic would then test the copy but not the actual code used
for normal character transfers, which is undesirable.
Therefore, to enable diagnostic mode, we must force a disconnect of the
master socket and any connected Telnet lines, which clears the connection
flags on all lines. Then we set the "transmission enabled" flags on all
lines to enable output character processing for the diagnostic. (Normally,
all of the flags are set when the multiplexer is first attached. Until then,
the enable flags default to "not enabled," so we enable them explicitly
here.)
*/
t_stat mux_setdiag (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
int32 ln;
if (val) { /* set diag? */
mux_detach (uptr); /* detach Telnet lines */
for (ln = 0; ln < TERM_COUNT; ln++) /* enable transmission */
mux_ldsc[ln].xmte = 1; /* on all lines */
}
else { /* set term */
for (ln = 0; ln < TERM_COUNT; ln++) /* clear connections */
mux_ldsc[ln].conn = 0; /* on all lines */
}
return SCPE_OK;
}