blob: 665e44748144c0e53c3e23bca4b742e133be86d9 [file] [log] [blame] [raw]
/* hp2100_dp.c: HP 2100 12557A/13210A disc simulator
Copyright (c) 1993-2016, Robert M. Supnik
Copyright (c) 2017-2018 J. David Bryan
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the names of the authors shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from the authors.
DP 12557A 2870 disc subsystem
13210A 7900 disc subsystem
27-Feb-18 JDB Corrected the conditions that clear drive status
Added the BMDL
13-Feb-18 JDB First Status is now cleared on Read, etc.
26-Jan-18 JDB ATTACH -N now creates a full-size disc image
03-Aug-17 JDB Changed perror call for I/O errors to cprintf
11-Jul-17 JDB Renamed "ibl_copy" to "cpu_ibl"
22-Apr-17 JDB Added fall-through comment for FNC_STA case in dpcio
09-Mar-17 JDB Deprecated LOCKED/WRITEENABLED for PROTECT/UNPROTECT
27-Feb-17 JDB ibl_copy no longer returns a status code
09-Nov-16 JDB Corrected disk subsystem model number from 2871 to 2870
13-May-16 JDB Modified for revised SCP API function parameter types
30-Dec-14 JDB Added S-register parameters to ibl_copy
24-Dec-14 JDB Added casts for explicit downward conversions
18-Dec-12 MP Now calls sim_activate_time to get remaining seek time
09-May-12 JDB Separated assignments from conditional expressions
10-Feb-12 JDB Deprecated DEVNO in favor of SC
Added CNTLR_TYPE cast to dp_settype
28-Mar-11 JDB Tidied up signal handling
26-Oct-10 JDB Changed I/O signal handler for revised signal model
10-Aug-08 JDB Added REG_FIT to register variables < 32-bit size
26-Jun-08 JDB Rewrote device I/O to model backplane signals
28-Dec-06 JDB Added ioCRS state to I/O decoders
01-Mar-05 JDB Added SET UNLOAD/LOAD
07-Oct-04 JDB Fixed enable/disable from either device
Fixed ANY ERROR status for 12557A interface
Fixed unattached drive status for 12557A interface
Status cmd without prior STC DC now completes (12557A)
OTA/OTB CC on 13210A interface also does CLC CC
Fixed RAR model
Fixed seek check on 13210 if sector out of range
20-Aug-04 JDB Fixes from Dave Bryan
- Check status on unattached drive set busy and not ready
- Check status tests wrong unit for write protect status
- Drive on line sets ATN, will set FLG if polling
15-Aug-04 RMS Controller resumes polling for ATN interrupts after
read status (found by Dave Bryan)
22-Jul-04 RMS Controller sets ATN for all commands except
read status (found by Dave Bryan)
21-Apr-04 RMS Fixed typo in boot loader (found by Dave Bryan)
26-Apr-04 RMS Fixed SFS x,C and SFC x,C
Fixed SR setting in IBL
Fixed interpretation of SR<0>
Revised IBL loader
Implemented DMA SRQ (follows FLG)
25-Apr-03 RMS Revised for extended file support
Fixed bug(s) in boot (found by Terry Newton)
10-Nov-02 RMS Added BOOT command, fixed numerous bugs
15-Jan-02 RMS Fixed INIT handling (found by Bill McDermith)
10-Jan-02 RMS Fixed f(x)write call (found by Bill McDermith)
03-Dec-01 RMS Changed DEVNO to use extended SET/SHOW
24-Nov-01 RMS Changed STA to be an array
07-Sep-01 RMS Moved function prototypes
29-Nov-00 RMS Made variable names unique
21-Nov-00 RMS Fixed flag, buffer power up state
References:
- 7900A Disc Drive Operating and Service Manual
(07900-90002, February 1975)
- 13210A Disc Drive Interface Kit Operating and Service Manual
(13210-90003, May 1978)
- 12557A Cartridge Disc Interface Kit Operating and Service Manual
(12557-90001, Sepember 1970)
The simulator uses a number of state variables:
dpc_busy set to drive number + 1 when the controller is busy
of the unit in use
dpd_xfer set to 1 if the data channel is executing a data transfer
dpd_wval set to 1 by OTx if either !dpc_busy or dpd_xfer
dpc_poll set to 1 if attention polling is enabled
dpc_busy and dpd_xfer are set together at the start of a read, write, refine,
or init. When data transfers are complete (CLC DC), dpd_xfer is cleared, but the
operation is not necessarily over. When the operation is complete, dpc_busy
is cleared and the command channel flag is set.
dpc_busy && !dpd_xfer && STC DC (controller is busy, data channel transfer has
been terminated by CLC DC, but a word has been placed in the data channel buffer)
indicates data overrun.
dpd_wval is used in write operations to fill out the sector buffer with 0's
if only a partial sector has been transferred.
dpc_poll indicates whether seek completion polling can occur. It is cleared
by reset and CLC CC and set by issuance of a seek or completion of check status.
The controller's "Record Address Register" (RAR) contains the CHS address of
the last Seek or Address Record command executed. The RAR is shared among
all drives on the controller. In addition, each drive has an internal
position register that contains the last cylinder position transferred to the
drive during Seek command execution (data operations always start with the
RAR head and sector position).
In a real drive, the address field of the sector under the head is read and
compared to the RAR. When they match, the target sector is under the head
and is ready for reading or writing. If a match doesn't occur, an Address
Error is indicated. In the simulator, the address field is obtained from the
drive's current position register during a read, i.e., the "on-disc" address
field is assumed to match the current position.
NOTE: 13210A manuals dated November 1974 and earlier contain errors in the
schematics. See the comments preceding the "dpcio" routine for details.
The 13210A interfaces respond to I/O instructions as follows:
Output Data Word format (OTA and OTB):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| command | - - | P | D | - - - - - - | unit | command
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| write data | data
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| - - - - - - - - | cylinder address | data
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| - - - - - - | head | - - - | sector address | data
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| - - - - - - - - - - | sector count | data
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Where:
D = Defective Track
P = Protected Track
Command:
0000 = Status Check
0001 = Write Data
0010 = Read Data
0011 = Seek Record
0101 = Refine Sector
0110 = Check Data
1001 = Initialize Data
1011 = Address Record
The 12557A interface responds identically, except that the sector address and
sector count fields use one fewer bit each, i.e., use bits 3-0 and 4-0,
respectively.
Input Data Word format (LIA and LIB):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| - - - - - - - - - - - - | attention | command
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| read data | data
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| - | F | O | - | U | P | - | S | - | N | C | A | G | B | D | E | data
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Where:
F = First Status
O = Overrun
U = Drive Unsafe
P = Data Protected
S = Seek Check
N = Not Ready
C = End of Cylinder
A = Address Error
G = Flagged Cylinder
B = Drive Busy
D = Data Error
E = Any Error
The 12557A interface responds identically, except that the status word is
extended as follows:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| T | F | O | R | U | H | I | S | - | N | C | A | G | B | D | E | data
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Where the differing bits are:
T = Attention
R = Read/Write Unsafe
H = Access Hunting
I = Seek Incomplete
Implementation notes:
1. The following implemented behaviors have been inferred from secondary
sources (diagnostics, operating system drivers, etc.), due to absent or
contradictory authoritative information; future correction may be needed:
- 12557A status bit 15 (ATTENTION) does not set bit 0 (ANY ERROR).
- 12557A clears status after a Check Status command, but 13210A does
not.
- Omitting STC DC before Status Check does not set DC flag but does
poll.
*/
#include "hp2100_defs.h"
#include "hp2100_cpu.h"
#define UNIT_V_WLK (UNIT_V_UF + 0) /* write locked */
#define UNIT_V_UNLOAD (UNIT_V_UF + 1) /* heads unloaded */
#define UNIT_WLK (1 << UNIT_V_WLK)
#define UNIT_UNLOAD (1 << UNIT_V_UNLOAD)
#define FNC u3 /* saved function */
#define DRV u4 /* drive number (DC) */
#define UNIT_WPRT (UNIT_WLK | UNIT_RO) /* write prot */
#define DP_N_NUMWD 7
#define DP_NUMWD (1 << DP_N_NUMWD) /* words/sector */
#define DP_NUMSC2 12 /* sectors/srf 12557 */
#define DP_NUMSC3 24 /* sectors/srf 13210 */
#define DP_NUMSC (dp_ctype ? DP_NUMSC3 : DP_NUMSC2)
#define DP_NUMSF 4 /* surfaces/cylinder */
#define DP_NUMCY 203 /* cylinders/disk */
#define DP_SIZE2 (DP_NUMSF * DP_NUMCY * DP_NUMSC2 * DP_NUMWD)
#define DP_SIZE3 (DP_NUMSF * DP_NUMCY * DP_NUMSC3 * DP_NUMWD)
#define DP_NUMDRV 4 /* # drives */
/* Command word.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| command | - - | P | D | - - - - - - | unit |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
*/
#define CW_V_FNC 12 /* function */
#define CW_M_FNC 017
#define CW_GETFNC(x) (((x) >> CW_V_FNC) & CW_M_FNC)
#define FNC_STA 000 /* status check */
#define FNC_WD 001 /* write */
#define FNC_RD 002 /* read */
#define FNC_SEEK 003 /* seek */
#define FNC_REF 005 /* refine */
#define FNC_CHK 006 /* check */
#define FNC_INIT 011 /* init */
#define FNC_AR 013 /* address */
#define FNC_SEEK1 020 /* fake - seek1 */
#define FNC_SEEK2 021 /* fake - seek2 */
#define FNC_SEEK3 022 /* fake - seek3 */
#define FNC_CHK1 023 /* fake - check1 */
#define FNC_AR1 024 /* fake - arec1 */
#define CW_V_DRV 0 /* drive */
#define CW_M_DRV 03
#define CW_GETDRV(x) (((x) >> CW_V_DRV) & CW_M_DRV)
/* Disk address words */
#define DA_V_CYL 0 /* cylinder */
#define DA_M_CYL 0377
#define DA_GETCYL(x) (((x) >> DA_V_CYL) & DA_M_CYL)
#define DA_V_HD 8 /* head */
#define DA_M_HD 03
#define DA_GETHD(x) (((x) >> DA_V_HD) & DA_M_HD)
#define DA_V_SC 0 /* sector */
#define DA_M_SC2 017
#define DA_M_SC3 037
#define DA_M_SC (dp_ctype ? DA_M_SC3 : DA_M_SC2)
#define DA_GETSC(x) (((x) >> DA_V_SC) & DA_M_SC)
#define DA_CKMASK2 037 /* check mask */
#define DA_CKMASK3 077
#define DA_CKMASK (dp_ctype ? DA_CKMASK3 : DA_CKMASK2)
/* Status in dpc_sta [drv].
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| - | F | O | - | U | P | - | S | - | N | C | A | G | B | D | E | 13210A
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| T | F | O | R | U | H | I | S | - | N | C | A | G | B | D | E | 12557A
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Implementation notes:
1. The Data Protected, Not Ready, and Any Error bits are determined
dynamically. The other status bits are stored in the drive status array.
*/
#define STA_ATN 0100000 /* (T) Attention (12557) */
#define STA_1ST 0040000 /* (F) First status */
#define STA_OVR 0020000 /* (O) Overrun */
#define STA_RWU 0010000 /* (R) Read/Write Unsafe (12557) */
#define STA_ACU 0004000 /* (U) Drive Unsafe */
#define STA_PROT 0002000 /* (P) Data Protected (13210) */
#define STA_HUNT 0002000 /* (H) Access Hunting (12557) */
#define STA_SKI 0001000 /* (I) Seek Incomplete (12557) */
#define STA_SKE 0000400 /* (S) Seek Check */
/* 0000200 (unused) */
#define STA_NRDY 0000100 /* (N) Not Ready */
#define STA_EOC 0000040 /* (C) End of Cylinder */
#define STA_AER 0000020 /* (A) Address Error */
#define STA_FLG 0000010 /* (G) Flagged Cylinder */
#define STA_BSY 0000004 /* (B) Drive Busy */
#define STA_DTE 0000002 /* (D) Data Error */
#define STA_ERR 0000001 /* (E) Any Error */
#define STA_ERSET2 (STA_1ST | STA_OVR | STA_RWU | STA_ACU | \
STA_SKI | STA_SKE | STA_NRDY | \
STA_EOC | STA_AER | STA_DTE) /* 12557A error set */
#define STA_ERSET3 (STA_ATN | STA_1ST | STA_OVR | STA_RWU | STA_ACU | \
STA_SKI | STA_SKE | STA_NRDY | STA_EOC | STA_AER | \
STA_FLG | STA_BSY | STA_DTE) /* 13210A error set */
#define STA_ANYERR (dp_ctype ? STA_ERSET3 : STA_ERSET2)
#define STA_UNLOADED (dp_ctype ? (STA_NRDY | STA_BSY) : STA_NRDY)
#define STA_MBZ13 (STA_ATN | STA_RWU | STA_SKI) /* zero in 13210 */
struct {
FLIP_FLOP command; /* cch command flip-flop */
FLIP_FLOP control; /* cch control flip-flop */
FLIP_FLOP flag; /* cch flag flip-flop */
FLIP_FLOP flagbuf; /* cch flag buffer flip-flop */
} dpc = { CLEAR, CLEAR, CLEAR, CLEAR };
/* Controller types */
typedef enum {
A12557,
A13210
} CNTLR_TYPE;
CNTLR_TYPE dp_ctype = A13210; /* ctrl type */
int32 dpc_busy = 0; /* cch unit */
int32 dpc_poll = 0; /* cch poll enable */
int32 dpc_cnt = 0; /* check count */
int32 dpc_eoc = 0; /* end of cyl */
int32 dpc_stime = 100; /* seek time */
int32 dpc_ctime = 100; /* command time */
int32 dpc_xtime = 5; /* xfer time */
int32 dpc_dtime = 2; /* dch time */
int32 dpd_obuf = 0, dpd_ibuf = 0; /* dch buffers */
int32 dpc_obuf = 0; /* cch buffers */
struct {
FLIP_FLOP command; /* dch command flip-flop */
FLIP_FLOP control; /* dch control flip-flop */
FLIP_FLOP flag; /* dch flag flip-flop */
FLIP_FLOP flagbuf; /* dch flag buffer flip-flop */
} dpd = { CLEAR, CLEAR, CLEAR, CLEAR };
int32 dpd_xfer = 0; /* xfer in prog */
int32 dpd_wval = 0; /* write data valid */
int32 dp_ptr = 0; /* buffer ptr */
uint8 dpc_rarc = 0; /* RAR cylinder */
uint8 dpc_rarh = 0; /* RAR head */
uint8 dpc_rars = 0; /* RAR sector */
uint8 dpc_ucyl[DP_NUMDRV] = { 0 }; /* unit cylinder */
uint16 dpc_sta[DP_NUMDRV] = { 0 }; /* status regs */
uint16 dpxb[DP_NUMWD]; /* sector buffer */
DEVICE dpd_dev, dpc_dev;
IOHANDLER dpdio;
IOHANDLER dpcio;
t_stat dpc_svc (UNIT *uptr);
t_stat dpd_svc (UNIT *uptr);
t_stat dpc_reset (DEVICE *dptr);
t_stat dpc_attach (UNIT *uptr, CONST char *cptr);
t_stat dpc_detach (UNIT* uptr);
t_stat dpc_boot (int32 unitno, DEVICE *dptr);
void dp_god (int32 fnc, int32 drv, int32 time);
void dp_goc (int32 fnc, int32 drv, int32 time);
t_stat dpc_load_unload (UNIT *uptr, int32 value, CONST char *cptr, void *desc);
t_stat dp_settype (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
t_stat dp_showtype (FILE *st, UNIT *uptr, int32 val, CONST void *desc);
/* DPD data structures
dpd_dev DPD device descriptor
dpd_unit DPD unit list
dpd_reg DPD register list
*/
DIB dp_dib[] = {
{ &dpdio, DPD },
{ &dpcio, DPC }
};
#define dpd_dib dp_dib[0]
#define dpc_dib dp_dib[1]
UNIT dpd_unit = { UDATA (&dpd_svc, 0, 0) };
REG dpd_reg[] = {
{ ORDATA (IBUF, dpd_ibuf, 16) },
{ ORDATA (OBUF, dpd_obuf, 16) },
{ BRDATA (DBUF, dpxb, 8, 16, DP_NUMWD) },
{ DRDATA (BPTR, dp_ptr, DP_N_NUMWD) },
{ FLDATA (CMD, dpd.command, 0) },
{ FLDATA (CTL, dpd.control, 0) },
{ FLDATA (FLG, dpd.flag, 0) },
{ FLDATA (FBF, dpd.flagbuf, 0) },
{ FLDATA (XFER, dpd_xfer, 0) },
{ FLDATA (WVAL, dpd_wval, 0) },
{ ORDATA (SC, dpd_dib.select_code, 6), REG_HRO },
{ ORDATA (DEVNO, dpd_dib.select_code, 6), REG_HRO },
{ NULL }
};
MTAB dpd_mod [] = {
/* Entry Flags Value Print String Match String Validation Display Descriptor */
/* ------------------- ----- ------------ ------------ ------------ ------------- ---------------- */
{ MTAB_XDV, 2u, "SC", "SC", &hp_set_dib, &hp_show_dib, (void *) &dp_dib },
{ MTAB_XDV | MTAB_NMO, ~2u, "DEVNO", "DEVNO", &hp_set_dib, &hp_show_dib, (void *) &dp_dib },
{ 0 }
};
/* Debugging trace list */
static DEBTAB dpd_deb [] = {
{ "IOBUS", TRACE_IOBUS }, /* trace I/O bus signals and data words received and returned */
{ NULL, 0 }
};
/* Device descriptor */
DEVICE dpd_dev = {
"DPD", /* device name */
&dpd_unit, /* unit array */
dpd_reg, /* register array */
dpd_mod, /* modifier array */
1, /* number of units */
10, /* address radix */
DP_N_NUMWD, /* address width = 4 GB */
1, /* address increment */
8, /* data radix */
16, /* data width */
NULL, /* examine routine */
NULL, /* deposit routine */
&dpc_reset, /* reset routine */
NULL, /* boot routine */
NULL, /* attach routine */
NULL, /* detach routine */
&dpd_dib, /* device information block pointer */
DEV_DISABLE | DEV_DEBUG, /* device flags */
0, /* debug control flags */
dpd_deb, /* debug flag name array */
NULL, /* memory size change routine */
NULL /* logical device name */
};
/* DPC data structures
dpc_dev DPC device descriptor
dpc_unit DPC unit list
dpc_reg DPC register list
dpc_mod DPC modifier list
*/
UNIT dpc_unit[] = {
{ UDATA (&dpc_svc, UNIT_FIX | UNIT_ATTABLE | UNIT_ROABLE |
UNIT_DISABLE | UNIT_UNLOAD, DP_SIZE3) },
{ UDATA (&dpc_svc, UNIT_FIX | UNIT_ATTABLE | UNIT_ROABLE |
UNIT_DISABLE | UNIT_UNLOAD, DP_SIZE3) },
{ UDATA (&dpc_svc, UNIT_FIX | UNIT_ATTABLE | UNIT_ROABLE |
UNIT_DISABLE | UNIT_UNLOAD, DP_SIZE3) },
{ UDATA (&dpc_svc, UNIT_FIX | UNIT_ATTABLE | UNIT_ROABLE |
UNIT_DISABLE | UNIT_UNLOAD, DP_SIZE3) }
};
REG dpc_reg[] = {
{ ORDATA (OBUF, dpc_obuf, 16) },
{ ORDATA (BUSY, dpc_busy, 4), REG_RO },
{ ORDATA (CNT, dpc_cnt, 5) },
{ FLDATA (CMD, dpc.command, 0) },
{ FLDATA (CTL, dpc.control, 0) },
{ FLDATA (FLG, dpc.flag, 0) },
{ FLDATA (FBF, dpc.flagbuf, 0) },
{ FLDATA (EOC, dpc_eoc, 0) },
{ FLDATA (POLL, dpc_poll, 0) },
{ DRDATA (RARC, dpc_rarc, 8), PV_RZRO | REG_FIT },
{ DRDATA (RARH, dpc_rarh, 2), PV_RZRO | REG_FIT },
{ DRDATA (RARS, dpc_rars, 5), PV_RZRO | REG_FIT },
{ BRDATA (CYL, dpc_ucyl, 10, 8, DP_NUMDRV), PV_RZRO },
{ BRDATA (STA, dpc_sta, 8, 16, DP_NUMDRV) },
{ DRDATA (CTIME, dpc_ctime, 24), PV_LEFT },
{ DRDATA (DTIME, dpc_dtime, 24), PV_LEFT },
{ DRDATA (STIME, dpc_stime, 24), PV_LEFT },
{ DRDATA (XTIME, dpc_xtime, 24), REG_NZ | PV_LEFT },
{ FLDATA (CTYPE, dp_ctype, 0), REG_HRO },
{ URDATA (UFNC, dpc_unit[0].FNC, 8, 8, 0,
DP_NUMDRV, REG_HRO) },
{ URDATA (CAPAC, dpc_unit[0].capac, 10, T_ADDR_W, 0,
DP_NUMDRV, PV_LEFT | REG_HRO) },
{ ORDATA (SC, dpc_dib.select_code, 6), REG_HRO },
{ ORDATA (DEVNO, dpc_dib.select_code, 6), REG_HRO },
{ NULL }
};
MTAB dpc_mod [] = {
/* Mask Value Match Value Print String Match String Validation Display Descriptor */
/* ------------ ------------ ----------------- --------------- ----------------- ------- ---------- */
{ UNIT_UNLOAD, UNIT_UNLOAD, "heads unloaded", "UNLOADED", &dpc_load_unload, NULL, NULL },
{ UNIT_UNLOAD, 0, "heads loaded", "LOADED", &dpc_load_unload, NULL, NULL },
{ UNIT_WLK, UNIT_WLK, "protected", "PROTECT", NULL, NULL, NULL },
{ UNIT_WLK, 0, "unprotected", "UNPROTECT", NULL, NULL, NULL },
{ UNIT_WLK, UNIT_WLK, NULL, "LOCKED", NULL, NULL, NULL },
{ UNIT_WLK, 0, NULL, "WRITEENABLED", NULL, NULL, NULL },
/* Entry Flags Value Print String Match String Validation Display Descriptor */
/* ------------------- ----- ------------ ------------ ------------ ------------- ---------------- */
{ MTAB_XDV, 1, NULL, "13210A", &dp_settype, NULL, NULL },
{ MTAB_XDV, 0, NULL, "12557A", &dp_settype, NULL, NULL },
{ MTAB_XDV, 0, "TYPE", NULL, NULL, &dp_showtype, NULL },
{ MTAB_XDV, 2u, "SC", "SC", &hp_set_dib, &hp_show_dib, (void *) &dp_dib },
{ MTAB_XDV | MTAB_NMO, ~2u, "DEVNO", "DEVNO", &hp_set_dib, &hp_show_dib, (void *) &dp_dib },
{ 0 }
};
/* Debugging trace list */
static DEBTAB dpc_deb [] = {
{ "IOBUS", TRACE_IOBUS }, /* trace I/O bus signals and data words received and returned */
{ NULL, 0 }
};
/* Device descriptor */
DEVICE dpc_dev = {
"DPC", /* device name */
dpc_unit, /* unit array */
dpc_reg, /* register array */
dpc_mod, /* modifier array */
DP_NUMDRV, /* number of units */
8, /* address radix */
24, /* address width = 4 GB */
1, /* address increment */
8, /* data radix */
16, /* data width */
NULL, /* examine routine */
NULL, /* deposit routine */
&dpc_reset, /* reset routine */
&dpc_boot, /* boot routine */
&dpc_attach, /* attach routine */
&dpc_detach, /* detach routine */
&dpc_dib, /* device information block pointer */
DEV_DISABLE | DEV_DEBUG, /* device flags */
0, /* debug control flags */
dpc_deb, /* debug flag name array */
NULL, /* memory size change routine */
NULL /* logical device name */
};
/* Data channel I/O signal handler.
For the 12557A, the card contains the usual control, flag, and flag buffer
flip-flops. PRL, IRQ, and SRQ are standard. A command flip-flop indicates
that data is available.
For the 13210A, the card has a flag and a flag buffer flip-flop, but no
control or interrupt flip-flop. SRQ is standard. IRQ and PRL are not
driven, and the card does not respond to IAK. STC sets the command flip-flop
to initiate a data transfer. CLC has no effect.
Implementation notes:
1. The CRS signal clears the drive attention register. Under simulation,
drive attention status is generated dynamically, so there is no attention
register.
*/
uint32 dpdio (DIB *dibptr, IOCYCLE signal_set, uint32 stat_data)
{
IOSIGNAL signal;
IOCYCLE working_set = IOADDSIR (signal_set); /* add ioSIR if needed */
while (working_set) {
signal = IONEXT (working_set); /* isolate next signal */
switch (signal) { /* dispatch I/O signal */
case ioCLF: /* clear flag flip-flop */
dpd.flag = dpd.flagbuf = CLEAR;
break;
case ioSTF: /* set flag flip-flop */
case ioENF: /* enable flag */
dpd.flag = dpd.flagbuf = SET;
break;
case ioSFC: /* skip if flag is clear */
setstdSKF (dpd);
break;
case ioSFS: /* skip if flag is set */
setstdSKF (dpd);
break;
case ioIOI: /* I/O data input */
stat_data = IORETURN (SCPE_OK, dpd_ibuf); /* merge in return status */
break;
case ioIOO: /* I/O data output */
dpd_obuf = IODATA (stat_data); /* clear supplied status */
if (!dpc_busy || dpd_xfer) /* if !overrun */
dpd_wval = 1; /* valid */
break;
case ioPOPIO: /* power-on preset to I/O */
dpd.flag = dpd.flagbuf = SET; /* set flag buffer and flag */
if (dp_ctype == A12557) /* 12557? */
dpd_obuf = 0; /* clear output buffer */
break;
case ioCRS: /* control reset */
dpd.command = CLEAR; /* clear command */
if (dp_ctype == A12557) /* 12557? */
dpd.control = CLEAR; /* clear control */
else { /* 13210 */
dpc_rarc = 0; /* clear controller cylinder address */
dpc_ucyl [CW_GETDRV (dpc_obuf)] = 0; /* clear last drive addressed cylinder */
}
break;
case ioCLC: /* clear control flip-flop */
if (dp_ctype == A12557) /* 12557? */
dpd.control = CLEAR; /* clear control */
dpd_xfer = 0; /* clr xfer in progress */
break;
case ioSTC: /* set control flip-flop */
if (dp_ctype == A12557) /* 12557? */
dpd.control = SET; /* set control */
dpd.command = SET; /* set cmd */
if (dpc_busy && !dpd_xfer) /* overrun? */
dpc_sta[dpc_busy - 1] |= STA_OVR;
break;
case ioSIR: /* set interrupt request */
if (dp_ctype == A12557) { /* 12557? */
setstdPRL (dpd); /* set standard PRL signal */
setstdIRQ (dpd); /* set standard IRQ signal */
}
setstdSRQ (dpd); /* set standard SRQ signal */
break;
case ioIAK: /* interrupt acknowledge */
if (dp_ctype == A12557) /* 12557? */
dpd.flagbuf = CLEAR; /* clear flag buffer */
break;
default: /* all other signals */
break; /* are ignored */
}
working_set = working_set & ~signal; /* remove current signal from set */
}
return stat_data;
}
/* Command channel I/O signal handler.
The 12557A and 13210A have the usual control, flag, and flag buffer
flip-flops. Only the 12557A has a command flip-flop. IRQ, PRL, and SRQ are
standard.
Implementation notes:
1. In hardware, the command channel card passes PRH to PRL. The data card
actually drives PRL with the command channel's control and flag states,
even though the command channel's control, flag, and flag buffer drive
IRQH. That is, the priority chain is broken at the data card, although
the command card is interrupting. This works in hardware, but we must
break PRL at the command card under simulation to allow the command card
to interrupt.
2. The 13210 manual says that a Check Status command clears the status
register, which consists of status word bits 14, 13, 11, 10, 8, 5, 4, 3,
1, and 0, i.e., all except bit 6 "Not Ready" and bit 2 "Drive Busy",
which are direct pass-throughs from the drive. However, the schematic
shows that the register is cleared on STC assertion for any command
OTHER than Check Status. In other words, every command except Check
Status clears the old status in order to assert new status (so two
successive Check Status commands will return the same status word,
contrary to the manual). The simulator implements the schematic
behavior.
3. The schematics contained in 13210A manuals dated November 1974 and
earlier show that CRS does not clear the status register, but examining
the hardware PCA shows that it does. The simulator implements the
hardware behavior.
4. The schematics contained in 13210A manuals dated November 1974 and
earlier show that CRS clears the attention register, but examining the
hardware PCA shows that it does not. The signal marked CRS is actually
the XFER CYL signal from the sequencer, so the register is actually
cleared when a Check Status or Seek command is issued. However, later
PCAs did add CRS to the other two clearing conditions. The simulator
implements this later behavior.
*/
uint32 dpcio (DIB *dibptr, IOCYCLE signal_set, uint32 stat_data)
{
uint16 data;
int32 i, fnc, drv;
IOSIGNAL signal;
IOCYCLE working_set = IOADDSIR (signal_set); /* add ioSIR if needed */
while (working_set) {
signal = IONEXT (working_set); /* isolate next signal */
switch (signal) { /* dispatch I/O signal */
case ioCLF: /* clear flag flip-flop */
dpc.flag = dpc.flagbuf = CLEAR;
break;
case ioSTF: /* set flag flip-flop */
case ioENF: /* enable flag */
dpc.flag = dpc.flagbuf = SET;
break;
case ioSFC: /* skip if flag is clear */
setstdSKF (dpc);
break;
case ioSFS: /* skip if flag is set */
setstdSKF (dpc);
break;
case ioIOI: /* I/O data input */
data = 0;
for (i = 0; i < DP_NUMDRV; i++) /* form attention register value */
if (dpc_sta[i] & STA_ATN)
data = data | (uint16) (1 << i);
stat_data = IORETURN (SCPE_OK, data); /* merge in return status */
break;
case ioIOO: /* I/O data output */
dpc_obuf = IODATA (stat_data); /* clear supplied status */
if (dp_ctype == A13210) /* 13210? */
dpcio (dibptr, ioCLC, 0); /* OTx causes CLC */
break;
case ioPOPIO: /* power-on preset to I/O */
dpc.flag = dpc.flagbuf = SET; /* set flag buffer and flag */
if (dp_ctype == A12557) /* 12557? */
dpd_obuf = 0; /* clear output buffer */
break;
case ioCRS: /* control reset */
dpc.control = CLEAR; /* clear control */
if (dp_ctype == A12557) /* 12557? */
dpc.command = CLEAR; /* clear command */
for (drv = 0; drv < DP_NUMDRV; drv++) /* clear drive status */
dpc_sta [drv] &= /* for each drive */
~(STA_1ST | STA_OVR | STA_RWU | STA_ACU | STA_EOC
| STA_AER | STA_FLG | STA_DTE);
break;
case ioCLC: /* clear control flip-flop */
dpc.control = CLEAR; /* clr ctl */
if (dp_ctype == A12557) /* 12557? */
dpc.command = CLEAR; /* cancel non-seek */
if (dpc_busy)
sim_cancel (&dpc_unit[dpc_busy - 1]);
sim_cancel (&dpd_unit); /* cancel dch */
dpd_xfer = 0; /* clr dch xfer */
dpc_busy = 0; /* clr cch busy */
dpc_poll = 0; /* clr cch poll */
break;
case ioSTC: /* set control flip-flop */
dpc.control = SET; /* set ctl */
if ((dp_ctype == A13210) || !dpc.command) { /* 13210 or command is clear? */
if (dp_ctype == A12557) /* 12557? */
dpc.command = SET; /* set command */
drv = CW_GETDRV (dpc_obuf); /* get fnc, drv */
fnc = CW_GETFNC (dpc_obuf); /* from cmd word */
if (fnc != FNC_STA) /* if this is not a status command */
dpc_sta [drv] &= /* then clear the status register */
~(STA_OVR | STA_RWU | STA_ACU | STA_EOC
| STA_AER | STA_FLG | STA_DTE);
switch (fnc) { /* case on fnc */
case FNC_SEEK: /* seek */
dpc_poll = 1; /* enable polling */
dp_god (fnc, drv, dpc_dtime); /* sched dch xfr */
break;
case FNC_STA: /* rd sta */
if (dp_ctype == A13210) /* 13210? clr dch flag */
dpdio (&dpd_dib, ioCLF, 0);
/* fall into FNC_CHK and FNC_AR cases */
case FNC_CHK: /* check */
case FNC_AR: /* addr rec */
dp_god (fnc, drv, dpc_dtime); /* sched dch xfr */
break;
case FNC_RD: case FNC_WD: /* read, write */
case FNC_REF: case FNC_INIT: /* refine, init */
dp_goc (fnc, drv, dpc_ctime); /* sched drive */
break;
} /* end case */
} /* end if */
break;
case ioSIR: /* set interrupt request */
setstdPRL (dpc); /* set standard PRL signal */
setstdIRQ (dpc); /* set standard IRQ signal */
setstdSRQ (dpc); /* set standard SRQ signal */
break;
case ioIAK: /* interrupt acknowledge */
dpc.flagbuf = CLEAR; /* clear flag buffer */
break;
default: /* all other signals */
break; /* are ignored */
}
working_set = working_set & ~signal; /* remove current signal from set */
}
return stat_data;
}
/* Start data channel operation */
void dp_god (int32 fnc, int32 drv, int32 time)
{
dpd_unit.DRV = drv; /* save unit */
dpd_unit.FNC = fnc; /* save function */
sim_activate (&dpd_unit, time);
return;
}
/* Start controller operation */
void dp_goc (int32 fnc, int32 drv, int32 time)
{
int32 t;
t = sim_activate_time (&dpc_unit[drv]);
if (t) { /* still seeking? */
sim_cancel (&dpc_unit[drv]); /* stop seek */
dpc_sta[drv] = dpc_sta[drv] & ~STA_BSY; /* clear busy */
time = time + t; /* include seek time */
}
dp_ptr = 0; /* init buf ptr */
dpc_eoc = 0; /* clear end cyl */
dpc_busy = drv + 1; /* set busy */
dpd_xfer = 1; /* xfer in prog */
dpc_unit[drv].FNC = fnc; /* save function */
dpc_sta[drv] &= ~(STA_ATN | STA_1ST); /* clear Attention and First Status */
sim_activate (&dpc_unit[drv], time); /* activate unit */
return;
}
/* Data channel unit service
This routine handles the data channel transfers. It also handles
data transfers that are blocked by seek in progress.
uptr->DRV = target drive
uptr->FNC = target function
Seek substates
seek - transfer cylinder
seek1 - transfer head/surface
Address record
ar - transfer cylinder
ar1 - transfer head/surface, finish operation
Status check - transfer status, finish operation
Check data
chk - transfer sector count
The 12557A clears status after a Check Status command. The 13210A does not.
*/
t_stat dpd_svc (UNIT *uptr)
{
int32 i, drv, st;
drv = uptr->DRV; /* get drive no */
switch (uptr->FNC) { /* case function */
case FNC_AR: /* arec, need cyl */
case FNC_SEEK: /* seek, need cyl */
if (dpd.command) { /* dch active? */
dpc_rarc = DA_GETCYL (dpd_obuf); /* set RAR from cyl word */
dpd_wval = 0; /* clr data valid */
dpd.command = CLEAR; /* clr dch cmd */
dpdio (&dpd_dib, ioENF, 0); /* set dch flg */
if (uptr->FNC == FNC_AR) uptr->FNC = FNC_AR1;
else uptr->FNC = FNC_SEEK1; /* advance state */
}
sim_activate (uptr, dpc_xtime); /* no, wait more */
break;
case FNC_AR1: /* arec, need hd/sec */
case FNC_SEEK1: /* seek, need hd/sec */
if (dpd.command) { /* dch active? */
dpc_rarh = DA_GETHD (dpd_obuf); /* set RAR from head */
dpc_rars = DA_GETSC (dpd_obuf); /* set RAR from sector */
dpd_wval = 0; /* clr data valid */
dpd.command = CLEAR; /* clr dch cmd */
dpdio (&dpd_dib, ioENF, 0); /* set dch flg */
if (uptr->FNC == FNC_AR1) {
dpc.command = CLEAR; /* clr cch cmd */
dpcio (&dpc_dib, ioENF, 0); /* set cch flg */
dpc_sta[drv] = dpc_sta[drv] | STA_ATN; /* set drv attn */
break; /* done if Address Record */
}
if (sim_is_active (&dpc_unit[drv])) { /* if busy, */
dpc_sta[drv] = dpc_sta[drv] | STA_SKE; /* seek check */
break; /* allow prev seek to cmpl */
}
if ((dpc_rarc >= DP_NUMCY) || /* invalid cyl? */
((dp_ctype == A13210) && /* or 13210A */
(dpc_rars >= DP_NUMSC3))) { /* and invalid sector? */
dpc_sta[drv] = dpc_sta[drv] | STA_SKE; /* seek check */
sim_activate (&dpc_unit[drv], 1); /* schedule drive no-wait */
dpc_unit[drv].FNC = FNC_SEEK3; /* do immed compl w/poll */
break;
}
st = abs (dpc_rarc - dpc_ucyl[drv]) * dpc_stime;
if (st == 0) st = dpc_stime; /* min time */
dpc_ucyl[drv] = dpc_rarc; /* transfer RAR */
sim_activate (&dpc_unit[drv], st); /* schedule drive */
dpc_sta[drv] = (dpc_sta[drv] | STA_BSY) &
~(STA_SKE | STA_SKI | STA_HUNT);
dpc_unit[drv].FNC = FNC_SEEK2; /* set operation */
}
else sim_activate (uptr, dpc_xtime); /* no, wait more */
break;
case FNC_STA: /* read status */
if (dpd.command || (dp_ctype == A13210)) { /* dch act or 13210? */
if ((dpc_unit[drv].flags & UNIT_UNLOAD) == 0) { /* drive up? */
dpd_ibuf = dpc_sta[drv] & ~STA_ERR; /* clear err */
if (dp_ctype == A13210) dpd_ibuf = /* 13210? */
(dpd_ibuf & ~(STA_MBZ13 | STA_PROT)) |
(dpc_unit[drv].flags & UNIT_WPRT? STA_PROT: 0);
}
else dpd_ibuf = STA_UNLOADED; /* not ready */
if (dpd_ibuf & STA_ANYERR) /* errors? set flg */
dpd_ibuf = dpd_ibuf | STA_ERR;
dpc.command = CLEAR; /* clr cch cmd */
dpd.command = CLEAR; /* clr dch cmd */
dpdio (&dpd_dib, ioENF, 0); /* set dch flg */
}
if (dp_ctype == A13210)
dpc_sta [drv] &= ~STA_ATN; /* clear the current drive's attention bit */
else
dpc_sta[drv] &=
~(STA_ATN | STA_1ST | STA_OVR |
STA_RWU | STA_ACU | STA_EOC |
STA_AER | STA_FLG | STA_DTE);
dpc_poll = 1; /* enable polling */
for (i = 0; i < DP_NUMDRV; i++) { /* loop thru drives */
if (dpc_sta[i] & STA_ATN) { /* any ATN set? */
dpcio (&dpc_dib, ioENF, 0); /* set cch flg */
break;
}
}
break;
case FNC_CHK: /* check, need cnt */
if (dpd.command) { /* dch active? */
dpc_cnt = dpd_obuf & DA_CKMASK; /* get count */
dpd_wval = 0; /* clr data valid */
dp_goc (FNC_CHK1, drv, dpc_xtime); /* sched drv */
}
else sim_activate (uptr, dpc_xtime); /* wait more */
break;
default:
return SCPE_IERR;
}
return SCPE_OK;
}
/* Drive unit service
This routine handles the data transfers.
Seek substates
seek2 - done
Refine sector - erase sector, finish operation
Check data
chk1 - finish operation
Read
Write
*/
#define GETDA(x,y,z) \
(((((x) * DP_NUMSF) + (y)) * DP_NUMSC) + (z)) * DP_NUMWD
t_stat dpc_svc (UNIT *uptr)
{
int32 da, drv, err;
err = 0; /* assume no err */
drv = uptr - dpc_unit; /* get drive no */
if (uptr->flags & UNIT_UNLOAD) { /* drive down? */
dpc.command = CLEAR; /* clr cch cmd */
dpcio (&dpc_dib, ioENF, 0); /* set cch flg */
dpc_sta[drv] = 0; /* clr status */
dpc_busy = 0; /* ctlr is free */
dpc_poll = 0; /* polling disabled */
dpd_xfer = 0;
dpd_wval = 0;
return SCPE_OK;
}
switch (uptr->FNC) { /* case function */
case FNC_SEEK2: /* positioning done */
dpc_sta[drv] = (dpc_sta[drv] | STA_ATN) & ~STA_BSY; /* fall into cmpl */
case FNC_SEEK3: /* seek complete */
if (dpc_poll) { /* polling enabled? */
dpc.command = CLEAR; /* clr cch cmd */
dpcio (&dpc_dib, ioENF, 0); /* set cch flg */
}
return SCPE_OK;
case FNC_REF: /* refine sector */
break; /* just a NOP */
case FNC_RD: /* read */
case FNC_CHK1: /* check */
if (dp_ptr == 0) { /* new sector? */
if (!dpd.command && (uptr->FNC != FNC_CHK1)) break;
if (dpc_rarc != dpc_ucyl[drv]) /* RAR cyl miscompare? */
dpc_sta[drv] = dpc_sta[drv] | STA_AER; /* set flag, read */
if (dpc_rars >= DP_NUMSC) { /* bad sector? */
dpc_sta[drv] = dpc_sta[drv] | STA_AER; /* set flag, stop */
break;
}
if (dpc_eoc) { /* end of cyl? */
dpc_sta[drv] = dpc_sta[drv] | STA_EOC;
break;
}
da = GETDA (dpc_rarc, dpc_rarh, dpc_rars); /* calc disk addr */
dpc_rars = (dpc_rars + 1) % DP_NUMSC; /* incr sector */
if (dpc_rars == 0) { /* wrap? */
dpc_rarh = dpc_rarh ^ 1; /* incr head */
dpc_eoc = ((dpc_rarh & 1) == 0); /* calc eoc */
}
err = fseek (uptr->fileref, da * sizeof (int16), SEEK_SET);
if (err) /* error? */
break;
fxread (dpxb, sizeof (int16), DP_NUMWD, uptr->fileref);
err = ferror (uptr->fileref);
if (err) /* error? */
break;
}
dpd_ibuf = dpxb[dp_ptr++]; /* get word */
if (dp_ptr >= DP_NUMWD) { /* end of sector? */
if (uptr->FNC == FNC_CHK1) { /* check? */
dpc_cnt = (dpc_cnt - 1) & DA_CKMASK; /* decr count */
if (dpc_cnt == 0) break; /* stop at zero */
}
dp_ptr = 0; /* wrap buf ptr */
}
if (dpd.command && dpd_xfer) /* dch on, xfer? */
dpdio (&dpd_dib, ioENF, 0); /* set dch flg */
dpd.command = CLEAR; /* clr dch cmd */
sim_activate (uptr, dpc_xtime); /* sched next word */
return SCPE_OK;
case FNC_INIT: /* init */
case FNC_WD: /* write */
if (dp_ptr == 0) { /* start sector? */
if (!dpd.command && !dpd_wval) break; /* xfer done? */
if (uptr->flags & UNIT_WPRT) { /* wr prot? */
dpc_sta[drv] = dpc_sta[drv] | STA_FLG; /* set status */
break; /* done */
}
if ((dpc_rarc != dpc_ucyl[drv]) || /* RAR cyl miscompare? */
(dpc_rars >= DP_NUMSC)) { /* bad sector? */
dpc_sta[drv] = dpc_sta[drv] | STA_AER; /* address error */
break;
}
if (dpc_eoc) { /* end of cyl? */
dpc_sta[drv] = dpc_sta[drv] | STA_EOC; /* set status */
break; /* done */
}
}
dpxb[dp_ptr++] = dpd_wval ? (uint16) dpd_obuf : 0; /* store word/fill */
dpd_wval = 0; /* clr data valid */
if (dp_ptr >= DP_NUMWD) { /* buffer full? */
da = GETDA (dpc_rarc, dpc_rarh, dpc_rars); /* calc disk addr */
dpc_rars = (dpc_rars + 1) % DP_NUMSC; /* incr sector */
if (dpc_rars == 0) { /* wrap? */
dpc_rarh = dpc_rarh ^ 1; /* incr head */
dpc_eoc = ((dpc_rarh & 1) == 0); /* calc eoc */
}
err = fseek (uptr->fileref, da * sizeof (int16), SEEK_SET);
if (err) /* error? */
break;
fxwrite (dpxb, sizeof (int16), DP_NUMWD, uptr->fileref);
err = ferror (uptr->fileref);
if (err) /* error? */
break;
dp_ptr = 0; /* next sector */
}
if (dpd.command && dpd_xfer) /* dch on, xfer? */
dpdio (&dpd_dib, ioENF, 0); /* set dch flg */
dpd.command = CLEAR; /* clr dch cmd */
sim_activate (uptr, dpc_xtime); /* sched next word */
return SCPE_OK;
default:
return SCPE_IERR;
} /* end case fnc */
dpc_sta[drv] = dpc_sta[drv] | STA_ATN; /* set ATN */
dpc.command = CLEAR; /* clr cch cmd */
dpcio (&dpc_dib, ioENF, 0); /* set cch flg */
dpc_busy = 0; /* ctlr is free */
dpd_xfer = dpd_wval = 0;
if (err != 0) { /* error? */
cprintf ("%s simulator DP disc I/O error: %s\n", /* then report the error to the console */
sim_name, strerror (errno));
clearerr (uptr->fileref); /* clear the error */
return SCPE_IOERR;
}
return SCPE_OK;
}
/* Reset routine */
t_stat dpc_reset (DEVICE *dptr)
{
int32 drv;
DIB *dibptr = (DIB *) dptr->ctxt; /* DIB pointer */
hp_enbdis_pair (dptr, /* make pair cons */
(dptr == &dpd_dev) ? &dpc_dev : &dpd_dev);
if (sim_switches & SWMASK ('P')) { /* initialization reset? */
dpd_ibuf = dpd_obuf = 0; /* clear buffers */
dpc_obuf = 0; /* clear buffer */
dpc_rarc = dpc_rarh = dpc_rars = 0; /* clear RAR */
}
IOPRESET (dibptr); /* PRESET device (does not use PON) */
dpc_busy = 0; /* reset controller state */
dpc_poll = 0;
dpd_xfer = 0;
dpd_wval = 0;
dpc_eoc = 0;
dp_ptr = 0;
sim_cancel (&dpd_unit); /* cancel dch */
for (drv = 0; drv < DP_NUMDRV; drv++) { /* loop thru drives */
sim_cancel (&dpc_unit[drv]); /* cancel activity */
dpc_unit[drv].FNC = 0; /* clear function */
dpc_ucyl[drv] = 0; /* clear drive pos */
if (dpc_unit[drv].flags & UNIT_ATT)
dpc_sta[drv] = dpc_sta[drv] & STA_1ST; /* first seek status */
else dpc_sta[drv] = 0; /* clear status */
}
return SCPE_OK;
}
/* Attach a drive unit.
The specified file is attached to the indicated drive unit, and the heads are
loaded, which will will set the First Status and Attention bits in the drive
status. If a new file is specified, the file is initialized to its capacity
by writing a zero to the last byte in the file.
Implementation notes:
1. The C standard says, "A binary stream need not meaningfully support fseek
calls with a whence value of SEEK_END," so instead we determine the
offset from the start of the file to the last byte and seek there.
*/
t_stat dpc_attach (UNIT *uptr, CONST char *cptr)
{
t_stat result;
t_addr offset;
const uint8 zero = 0;
result = attach_unit (uptr, cptr); /* attach the drive */
if (result == SCPE_OK) { /* if the attach was successful */
dpc_load_unload (uptr, 0, NULL, NULL); /* then load the heads */
if (sim_switches & SWMASK ('N')) { /* if this is a new disc image */
offset = (t_addr) /* then determine the offset of */
(uptr->capac * sizeof (int16) - sizeof zero); /* the last byte in a full-sized file */
if (sim_fseek (uptr->fileref, offset, SEEK_SET) != 0 /* seek to the last byte */
|| fwrite (&zero, sizeof zero, 1, uptr->fileref) == 0 /* and write a zero to fill */
|| fflush (uptr->fileref) != 0) /* the file to its capacity */
clearerr (uptr->fileref); /* clear and ignore any errors */
}
}
return result; /* return the result of the attach */
}
/* Detach routine */
t_stat dpc_detach (UNIT* uptr)
{
dpc_load_unload (uptr, UNIT_UNLOAD, NULL, NULL); /* unload heads */
return detach_unit (uptr); /* detach unit */
}
/* Load and unload heads */
t_stat dpc_load_unload (UNIT *uptr, int32 value, CONST char *cptr, void *desc)
{
int32 drv;
if ((uptr->flags & UNIT_ATT) == 0) return SCPE_UNATT; /* must be attached to load */
if (value == UNIT_UNLOAD) /* unload heads? */
uptr->flags = uptr->flags | UNIT_UNLOAD; /* indicate unload */
else { /* load heads */
uptr->flags = uptr->flags & ~UNIT_UNLOAD; /* indicate load */
drv = uptr - dpc_unit; /* get drive no */
dpc_sta[drv] = dpc_sta[drv] | STA_ATN | STA_1ST; /* update status */
if (dpc_poll) /* polling enabled? */
dpcio (&dpc_dib, ioENF, 0); /* set flag */
}
return SCPE_OK;
}
/* Set controller type */
t_stat dp_settype (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
int32 i;
if ((val < 0) || (val > 1) || (cptr != NULL))
return SCPE_ARG;
for (i = 0; i < DP_NUMDRV; i++) {
if (dpc_unit[i].flags & UNIT_ATT)
return SCPE_ALATT;
}
for (i = 0; i < DP_NUMDRV; i++)
dpc_unit[i].capac = (val? DP_SIZE3: DP_SIZE2);
dp_ctype = (CNTLR_TYPE) val;
return SCPE_OK;
}
/* Show controller type */
t_stat dp_showtype (FILE *st, UNIT *uptr, int32 val, CONST void *desc)
{
if (dp_ctype == A13210)
fprintf (st, "13210A");
else
fprintf (st, "12557A");
return SCPE_OK;
}
/* 7900/2870 disc bootstrap loaders (BMDL and 12992F).
The Basic Moving-Head Disc Loader (BMDL) consists of two programs. The
program starting at address x7700 loads absolute paper tapes into memory.
The program starting at address x7750 loads a disc-resident bootstrap from
the 7900 or 2870 disc drive into memory. The S register setting does not
affect loader operation.
For a 2100/14/15/16 CPU, entering a LOAD DPC or BOOT DPC command loads the
BMDL into memory and executes the disc portion starting at x7750. The
bootstrap reads 6144 (for a 7900) or 3072 (for a 2870) words from cylinder 0,
head 0, sector 0 into memory starting at location 2011 octal. Loader
execution ends with the following instruction:
* JSB 2055,I - the disc read completed.
The BMDL configures DMA for an oversize (~32000 word) transfer and expects
the disc to terminate the operation with End of Cylinder (EOC) status.
The HP 1000 uses the 12992F boot loader ROM to bootstrap the 7900 disc. Bit
0 of the S register determines whether the boot extension is read from
subchannel 0 (the fixed platter) or subchannel 1 (the removable platter).
The loader reads 6144 words from cylinder 0 sector 0 of the specified
subchannel into memory starting at location 2011 octal. Loader execution
ends with one of the following instructions:
* HLT 30 - a drive fault occurred.
* JSB 2055,I - the disc read succeeded.
The loader automatically retries the operations for all disc errors other
than a drive fault.
Implementation notes:
1. After the BMDL has been loaded into memory, the paper tape portion may be
executed manually by setting the P register to the starting address
(x7700).
2. For compatibility with the "cpu_copy_loader" routine, the BMDL device I/O
instructions address select codes 10 and 11.
3. As published, the BMDL is configured to read from head 0 (the removable
platter, a.k.a. subchannel 1). To read from head 2 (the fixed platter,
subchannel 0), the head/sector control word must be changed.
*/
#define BMDL_SUBCHANNEL_0 031000 /* BMDL control word to address subchannel 0 instead of 1 */
static const LOADER_ARRAY dp_loaders = {
{ /* HP 21xx Basic Moving-Head Disc Loader (BMDL-7900) */
050, /* loader starting index */
077, /* DMA index */
034, /* FWA index */
{ 0002401, /* 77700: PTAPE CLA,RSS Paper Tape start */
0063721, /* 77701: LDA 77721 */
0107700, /* 77702: CLC 0,C */
0002307, /* 77703: CCE,INA,SZA,RSS */
0102077, /* 77704: HLT 77 */
0017735, /* 77705: JSB 77735 */
0007307, /* 77706: CMB,CCE,INB,SZB,RSS */
0027702, /* 77707: JMP 77702 */
0077733, /* 77710: STB 77733 */
0017735, /* 77711: JSB 77735 */
0017735, /* 77712: JSB 77735 */
0074000, /* 77713: STB 0 */
0077747, /* 77714: STB 77747 */
0047734, /* 77715: ADB 77734 */
0002140, /* 77716: SEZ,CLE */
0102055, /* 77717: HLT 55 */
0017735, /* 77720: JSB 77735 */
0177747, /* 77721: STB 77747,I */
0040001, /* 77722: ADA 1 */
0067747, /* 77723: LDB 77747 */
0006104, /* 77724: CLE,INB */
0037733, /* 77725: ISZ 77733 */
0027714, /* 77726: JMP 77714 */
0017735, /* 77727: JSB 77735 */
0054000, /* 77730: CPB 0 */
0027701, /* 77731: JMP 77701 */
0102011, /* 77732: HLT 11 */
0000000, /* 77733: OCT 000000 */
0100100, /* 77734: OCT 1n0100 */
0000000, /* 77735: NOP */
0006400, /* 77736: CLB */
0103710, /* 77737: STC 10,C */
0102310, /* 77740: SFS 10 */
0027740, /* 77741: JMP 77740 */
0107410, /* 77742: MIB 10,C */
0002240, /* 77743: SEZ,CME */
0127735, /* 77744: JMP 77735,I */
0005727, /* 77745: BLF,BLF */
0027737, /* 77746: JMP 77737 */
0000000, /* 77747: OCT 000000 */
0030000, /* 77750: DISC IOR 0 Disc start */
0067741, /* 77751: LDB 77741 */
0106611, /* 77752: OTB 11 */
0103711, /* 77753: STC 11,C */
0063750, /* 77754: LDA 77750 */
0102610, /* 77755: OTA 10 */
0103710, /* 77756: STC 10,C */
0102611, /* 77757: OTA 11 */
0103711, /* 77760: STC 11,C */
0063777, /* 77761: LDA 77777 */
0102606, /* 77762: OTA 6 */
0063732, /* 77763: LDA 77732 */
0102602, /* 77764: OTA 2 */
0103710, /* 77765: STC 10,C */
0102702, /* 77766: STC 2 */
0102602, /* 77767: OTA 2 */
0106611, /* 77770: OTB 11 */
0103710, /* 77771: STC 10,C */
0103706, /* 77772: STC 6,C */
0103711, /* 77773: STC 11,C */
0102311, /* 77774: SFS 11 */
0027774, /* 77775: JMP 77774 */
0117717, /* 77776: JSB 77717,I */
0120010 } }, /* 77777: OCT 120010 */
{ /* HP 1000 Loader ROM (12992F) */
IBL_START, /* loader starting index */
IBL_DMA, /* DMA index */
IBL_FWA, /* FWA index */
{ 0106710, /* 77700: ST CLC DC ; clr dch */
0106711, /* 77701: CLC CC ; clr cch */
0017757, /* 77702: JSB STAT ; get status */
0067746, /* 77703: SK LDB SKCMD ; seek cmd */
0106610, /* 77704: OTB DC ; cyl # */
0103710, /* 77705: STC DC,C ; to dch */
0106611, /* 77706: OTB CC ; seek cmd */
0103711, /* 77707: STC CC,C ; to cch */
0102310, /* 77710: SFS DC ; addr wd ok? */
0027710, /* 77711: JMP *-1 ; no, wait */
0006400, /* 77712: CLB */
0102501, /* 77713: LIA 1 ; read switches */
0002011, /* 77714: SLA,RSS ; <0> set? */
0047747, /* 77715: ADB BIT9 ; head 2 = removable */
0106610, /* 77716: OTB DC ; head/sector */
0103710, /* 77717: STC DC,C ; to dch */
0102311, /* 77720: SFS CC ; seek done? */
0027720, /* 77721: JMP *-1 ; no, wait */
0017757, /* 77722: JSB STAT ; get status */
0067776, /* 77723: LDB DMACW ; DMA control */
0106606, /* 77724: OTB 6 */
0067750, /* 77725: LDB ADDR1 ; memory addr */
0106602, /* 77726: OTB 2 */
0102702, /* 77727: STC 2 ; flip DMA ctrl */
0067752, /* 77730: LDB CNT ; word count */
0106602, /* 77731: OTB 2 */
0063745, /* 77732: LDB RDCMD ; read cmd */
0102611, /* 77733: OTA CC ; to cch */
0103710, /* 77734: STC DC,C ; start dch */
0103706, /* 77735: STC 6,C ; start DMA */
0103711, /* 77736: STC CC,C ; start cch */
0102311, /* 77737: SFS CC ; done? */
0027737, /* 77740: JMP *-1 ; no, wait */
0017757, /* 77741: JSB STAT ; get status */
0027775, /* 77742: JMP XT ; done */
0037766, /* 77743: FSMSK OCT 037766 ; status mask */
0004000, /* 77744: STMSK OCT 004000 ; unsafe mask */
0020000, /* 77745: RDCMD OCT 020000 ; read cmd */
0030000, /* 77746: SKCMD OCT 030000 ; seek cmd */
0001000, /* 77747: BIT9 OCT 001000 ; head 2 select */
0102011, /* 77750: ADDR1 OCT 102011 */
0102055, /* 77751: ADDR2 OCT 102055 */
0164000, /* 77752: CNT DEC -6144. */
0000000, /* 77753: NOP */
0000000, /* 77754: NOP */
0000000, /* 77755: NOP */
0000000, /* 77756: NOP */
0000000, /* 77757: STAT NOP */
0002400, /* 77760: CLA ; status request */
0102611, /* 77761: OTC CC ; to cch */
0103711, /* 77762: STC CC,C ; start cch */
0102310, /* 77763: SFS DC ; done? */
0027763, /* 77764: JMP *-1 */
0102510, /* 77765: LIA DC ; get status */
0013743, /* 77766: AND FSMSK ; mask 15,14,3,0 */
0002003, /* 77767: SZA,RSS ; drive ready? */
0127757, /* 77770: JMP STAT,I ; yes */
0013744, /* 77771: AND STMSK ; fault? */
0002002, /* 77772: SZA */
0102030, /* 77773: HLT 30 ; yes */
0027700, /* 77774: JMP ST ; no, retry */
0117751, /* 77775: XT JSB ADDR2,I ; start program */
0120010, /* 77776: DMACW ABS 120000+DC */
0000000 } } /* 77777: ABS -ST */
};
/* Device boot routine.
This routine is called directly by the BOOT DPC and LOAD DPC commands to copy
the device bootstrap into the upper 64 words of the logical address space.
It is also called indirectly by a BOOT CPU or LOAD CPU command when the
specified HP 1000 loader ROM socket contains a 12992F ROM.
When called in response to a BOOT DPC or LOAD DPC command, the "unitno"
parameter indicates the unit number specified in the BOOT command or is zero
for the LOAD command, and "dptr" points at the DPC device structure. The
bootstrap supports loading only from unit 0, and the command will be rejected
if another unit is specified (e.g., BOOT DPC1). Otherwise, depending on the
current CPU model, the BMDL or 12992F loader ROM will be copied into memory
and configured for the DPD/DPC select code pair. If the CPU is a 1000, the S
register will be set as it would be by the front-panel microcode.
When called for a BOOT/LOAD CPU command, the "unitno" parameter indicates the
select code to be used for configuration, and "dptr" will be NULL. As above,
the BMDL or 12992F loader ROM will be copied into memory and configured for
the specified select code. The S register is assumed to be set correctly on
entry and is not modified.
In either case, if the CPU is a 21xx model, the paper tape portion of the
BMDL will be automatically configured for the select code of the paper tape
reader.
For the 12992F boot loader ROM for the HP 1000, the S register is set as
follows:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| ROM # | 0 0 | select code | reserved | 0 0 | S |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Where:
S = the subchannel number
Bit 0 specifies the subchannel containing the operating system. For the
7900, either the fixed (0) or removable (1) platter may be specified. For
the 7901, bit 0 must be 1. If the -R switch is specified for the BOOT or
LOAD command, the loader ROM will be configured to boot from the removable
platter instead of the fixed platter.
Bits 5-3 are nominally zero but are reserved for the target operating system.
For example, RTE uses bit 5 to indicate whether a standard (0) or
reconfiguration (1) boot is desired.
Implementation notes:
1. In hardware, the BMDL was hand-configured for the disc and paper tape
reader select codes when it was installed on a given system. Under
simulation, the LOAD and BOOT commands automatically configure the BMDL
to the current select codes of the PTR and DP devices.
2. As installed, the BMDL is configured to read from the removable platter
(a.k.a. subchannel 1). If the -R switch is specified to read from the
fixed platter (subchannel 0), the head number in the head/sector control
word in memory is changed from 0 to 2.
*/
t_stat dpc_boot (int32 unitno, DEVICE *dptr)
{
static const HP_WORD dp_preserved = 0000070u; /* S-register bits 5-3 are preserved */
const uint32 subchannel = sim_switches & SWMASK ('R') ? 1 : 0; /* the selected boot subchannel */
t_stat status;
if (dptr == NULL) /* if we are being called for a BOOT/LOAD CPU */
status = cpu_copy_loader (dp_loaders, unitno, /* then copy the boot loader to memory */
IBL_S_NOCLEAR, IBL_S_NOSET); /* but do not alter the S register */
else if (unitno != 0) /* otherwise a BOOT DPC for a non-zero unit */
return SCPE_NOFNC; /* is rejected as unsupported */
else /* otherwise this is a BOOT/LOAD DPC */
status = cpu_copy_loader (dp_loaders, dpd_dib.select_code, /* so copy the boot loader to memory */
dp_preserved, subchannel); /* and configure the S register if 1000 CPU */
if (status == SCPE_OK && subchannel == 0 /* if loader installed OK and boot is from subchan 0 */
&& (PR & IBL_MASK) == dp_loaders [0].start_index) /* and the BMDL was installed */
mem_deposit (PR, BMDL_SUBCHANNEL_0); /* then change the control word to use head 2 */
return status; /* return the status of the installation */
}