blob: aec8fd4b4f245e122943a0ec3a6bc5791c28b8dc [file] [log] [blame] [raw]
/* A part of the Native C Library for Windows NT
Copyright 2026 Rivoreo
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
*/
/*
* A part of this file comes from public domain source, so
* clarified as of June 5, 1996 by Arthur David Olson.
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <stdint.h>
#include <string.h>
#include <limits.h>
#include <time.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <float.h>
#include <stdio.h>
#include <windows.h>
#include <nt.h>
#define PCTS
#define USG_COMPAT
/* Unlike <ctype.h>'s isdigit, this also works if c < 0 | c > UCHAR_MAX. */
#define is_digit(c) ((unsigned)(c) - '0' <= 9)
#ifndef TYPE_BIT
#define TYPE_BIT(T) (sizeof(T) * CHAR_BIT)
#endif
#ifndef TYPE_SIGNED
#define TYPE_SIGNED(T) (((T)-1) < 0)
#endif
#ifndef TYPE_INTEGRAL
#define TYPE_INTEGRAL(T) (((T)0.5) != 0.5)
#endif
#ifndef YEARSPERREPEAT
#define YEARSPERREPEAT 400
#endif
#ifndef AVGSECSPERYEAR
#define AVGSECSPERYEAR 31556952L
#endif
#ifndef SECSPERREPEAT
#define SECSPERREPEAT ((int_fast64_t)YEARSPERREPEAT * (int_fast64_t)AVGSECSPERYEAR)
#endif
#ifndef SECSPERREPEAT_BITS
#define SECSPERREPEAT_BITS 34
#endif
#ifndef TZDIR
#define TZDIR "/SystemRoot/zoneinfo"
#endif
#ifndef TZDEFRULES
#define TZDEFRULES "posixrules"
#endif
#define TZ_MAGIC "TZif"
struct tzhead {
char tzh_magic[4]; /* TZ_MAGIC */
char tzh_version[1]; /* '\0' or '2' as of 2005 */
char tzh_reserved[15]; /* reserved--must be zero */
char tzh_ttisgmtcnt[4]; /* coded number of trans. time flags */
char tzh_ttisstdcnt[4]; /* coded number of trans. time flags */
char tzh_leapcnt[4]; /* coded number of leap seconds */
char tzh_timecnt[4]; /* coded number of transition times */
char tzh_typecnt[4]; /* coded number of local time types */
char tzh_charcnt[4]; /* coded number of abbr. chars */
};
#ifndef TZ_MAX_TIMES
#define TZ_MAX_TIMES 1200
#endif
#ifndef TZ_MAX_TYPES
#define TZ_MAX_TYPES 256 /* UINT8_MAX + 1 */
#endif
#ifndef TZ_MAX_CHARS
#define TZ_MAX_CHARS 50
#endif
#ifndef TZ_MAX_LEAPS
#define TZ_MAX_LEAPS 50
#endif
#define SECSPERMIN 60
#define MINSPERHOUR 60
#define HOURSPERDAY 24
#define DAYSPERWEEK 7
#define DAYSPERNYEAR 365
#define DAYSPERLYEAR 366
#define SECSPERHOUR (SECSPERMIN * MINSPERHOUR)
#define SECSPERDAY ((long int)SECSPERHOUR * HOURSPERDAY)
#define MONSPERYEAR 12
#define TM_SUNDAY 0
#define TM_MONDAY 1
#define TM_TUESDAY 2
#define TM_WEDNESDAY 3
#define TM_THURSDAY 4
#define TM_FRIDAY 5
#define TM_SATURDAY 6
#define TM_JANUARY 0
#define TM_FEBRUARY 1
#define TM_MARCH 2
#define TM_APRIL 3
#define TM_MAY 4
#define TM_JUNE 5
#define TM_JULY 6
#define TM_AUGUST 7
#define TM_SEPTEMBER 8
#define TM_OCTOBER 9
#define TM_NOVEMBER 10
#define TM_DECEMBER 11
#define TM_YEAR_BASE 1900
#define EPOCH_YEAR 1970
#define EPOCH_WDAY TM_THURSDAY
#ifndef TZ_ABBR_MAX_LEN
#define TZ_ABBR_MAX_LEN 16
#endif /* !defined TZ_ABBR_MAX_LEN */
#ifndef TZ_ABBR_CHAR_SET
#define TZ_ABBR_CHAR_SET \
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
#endif /* !defined TZ_ABBR_CHAR_SET */
#ifndef TZ_ABBR_ERR_CHAR
#define TZ_ABBR_ERR_CHAR '_'
#endif /* !defined TZ_ABBR_ERR_CHAR */
#define _RWLOCK_RDLOCK(L)
#define _RWLOCK_WRLOCK(L)
#define _RWLOCK_UNLOCK(L)
#ifndef WILDABBR
/*
** Someone might make incorrect use of a time zone abbreviation:
** 1. They might reference tzname[0] before calling tzset (explicitly
** or implicitly).
** 2. They might reference tzname[1] before calling tzset (explicitly
** or implicitly).
** 3. They might reference tzname[1] after setting to a time zone
** in which Daylight Saving Time is never observed.
** 4. They might reference tzname[0] after setting to a time zone
** in which Standard Time is never observed.
** 5. They might reference tm.TM_ZONE after calling offtime.
** What's best to do in the above cases is open to debate;
** for now, we just set things up so that in any of the five cases
** WILDABBR is used. Another possibility: initialize tzname[0] to the
** string "tzname[0] used before set", and similarly for the other cases.
** And another: initialize tzname[0] to "ERA", with an explanation in the
** manual page of what this "time zone abbreviation" means (doing this so
** that tzname[0] has the "normal" length of three characters).
*/
#define WILDABBR " "
#endif /* !defined WILDABBR */
#define GMT "UTC"
/*
** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
** We default to US rules as of 1999-08-17.
** POSIX 1003.1 section 8.1.1 says that the default DST rules are
** implementation dependent; for historical reasons, US rules are a
** common default.
*/
#ifndef TZDEFRULESTRING
#define TZDEFRULESTRING ",M4.1.0,M10.5.0"
#endif
struct ttinfo { /* time type information */
long tt_gmtoff; /* UTC offset in seconds */
int tt_isdst; /* used to set tm_isdst */
int tt_abbrind; /* abbreviation list index */
int tt_ttisstd; /* TRUE if transition is std time */
int tt_ttisgmt; /* TRUE if transition is UTC */
};
struct lsinfo { /* leap second information */
time_t ls_trans; /* transition time */
long ls_corr; /* correction to apply */
};
#define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
#ifdef TZNAME_MAX
#define MY_TZNAME_MAX TZNAME_MAX
#endif /* defined TZNAME_MAX */
#ifndef TZNAME_MAX
#define MY_TZNAME_MAX 255
#endif /* !defined TZNAME_MAX */
struct state {
int leapcnt;
int timecnt;
int typecnt;
int charcnt;
int goback;
int goahead;
time_t ats[TZ_MAX_TIMES];
unsigned char types[TZ_MAX_TIMES];
struct ttinfo ttis[TZ_MAX_TYPES];
char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof GMT),
(2 * (MY_TZNAME_MAX + 1)))];
struct lsinfo lsis[TZ_MAX_LEAPS];
};
struct rule {
int r_type; /* type of rule--see below */
int r_day; /* day number of rule */
int r_week; /* week number of rule */
int r_mon; /* month number of rule */
long r_time; /* transition time of rule */
};
#define JULIAN_DAY 0 /* Jn - Julian day */
#define DAY_OF_YEAR 1 /* n - day of year */
#define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
static int tzload(const char *, struct state *,int);
static struct tm * gmtsub(const time_t *, long int, struct tm *);
static struct tm * localsub(const time_t *, long int, struct tm *);
#ifdef ALL_STATE
static struct state * lclptr;
static struct state * gmtptr;
#else
static struct state lclmem;
static struct state gmtmem;
#define lclptr (&lclmem)
#define gmtptr (&gmtmem)
#endif
#ifndef TZ_STRLEN_MAX
#define TZ_STRLEN_MAX 255
#endif
static char lcl_TZname[TZ_STRLEN_MAX + 1];
static int lcl_is_set;
char * tzname[2] = { WILDABBR, WILDABBR };
#ifdef USG_COMPAT
long int timezone = 0;
int daylight = 0;
#endif /* defined USG_COMPAT */
#ifdef ALTZONE
time_t altzone = 0;
#endif /* defined ALTZONE */
static const int mon_lengths[2][MONSPERYEAR] = {
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
};
static const int year_lengths[2] = {
DAYSPERNYEAR, DAYSPERLYEAR
};
static int32_t detzcode(const char *const codep)
{
int32_t result;
int i;
result = (codep[0] & 0x80) ? ~0 : 0;
for (i = 0; i < 4; ++i) result = (result << 8) | (codep[i] & 0xff);
return result;
}
static time_t detzcode64(const char *const codep)
{
time_t result;
int i;
result = (codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0;
for (i = 0; i < 8; ++i)
result = result * 256 + (codep[i] & 0xff);
return result;
}
/*
** Adapted from code provided by Robert Elz, who writes:
** The "best" way to do mktime I think is based on an idea of Bob
** Kridle's (so its said...) from a long time ago.
** It does a binary search of the time_t space. Since time_t's are
** just 32 bits, its a max of 32 iterations (even at 64 bits it
** would still be very reasonable).
*/
#ifndef WRONG
#define WRONG (-1)
#endif
static int typesequiv(const struct state *const sp, const int a, const int b)
{
if(!sp) return 0;
if(a < 0 || a >= sp->typecnt) return 0;
if(b < 0 || b >= sp->typecnt) return 0;
const struct ttinfo *ap = sp->ttis + a;
const struct ttinfo *bp = sp->ttis + b;
return ap->tt_gmtoff == bp->tt_gmtoff &&
ap->tt_isdst == bp->tt_isdst &&
ap->tt_ttisstd == bp->tt_ttisstd &&
ap->tt_ttisgmt == bp->tt_ttisgmt &&
strcmp(sp->chars + ap->tt_abbrind, sp->chars + bp->tt_abbrind) == 0;
}
/*
** Given a pointer into a time zone string, scan until a character that is not
** a valid character in a zone name is found. Return a pointer to that
** character.
*/
static const char *getzname(const char *strp)
{
char c;
while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && c != '+') ++strp;
return strp;
}
/*
** Given a pointer into an extended time zone string, scan until the ending
** delimiter of the zone name is located. Return a pointer to the delimiter.
**
** As with getzname above, the legal character set is actually quite
** restricted, with other characters producing undefined results.
** We don't do any checking here; checking is done later in common-case code.
*/
static const char *getqzname(register const char *strp, const int delim)
{
register int c;
while ((c = *strp) != '\0' && c != delim) ++strp;
return strp;
}
/*
** Given a pointer into a time zone string, extract a number from that string.
** Check that the number is within a specified range; if it is not, return
** NULL.
** Otherwise, return a pointer to the first character not part of the number.
*/
static const char *getnum(const char *strp, int *const nump, const int min, const int max)
{
char c;
int num;
if (strp == NULL || !is_digit(c = *strp))
return NULL;
num = 0;
do {
num = num * 10 + (c - '0');
if (num > max) return NULL; /* illegal value */
c = *++strp;
} while (is_digit(c));
if (num < min) return NULL; /* illegal value */
*nump = num;
return strp;
}
/*
** Given a pointer into a time zone string, extract a number of seconds,
** in hh[:mm[:ss]] form, from the string.
** If any error occurs, return NULL.
** Otherwise, return a pointer to the first character not part of the number
** of seconds.
*/
static const char *getsecs(const char *strp, long int *const secsp)
{
int num;
/*
** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
** "M10.4.6/26", which does not conform to Posix,
** but which specifies the equivalent of
** ``02:00 on the first Sunday on or after 23 Oct''.
*/
strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
if (strp == NULL)
return NULL;
*secsp = num * (long) SECSPERHOUR;
if (*strp == ':') {
++strp;
strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
if (strp == NULL)
return NULL;
*secsp += num * SECSPERMIN;
if (*strp == ':') {
++strp;
/* `SECSPERMIN' allows for leap seconds. */
strp = getnum(strp, &num, 0, SECSPERMIN);
if (strp == NULL)
return NULL;
*secsp += num;
}
}
return strp;
}
/*
** Given a pointer into a time zone string, extract an offset, in
** [+-]hh[:mm[:ss]] form, from the string.
** If any error occurs, return NULL.
** Otherwise, return a pointer to the first character not part of the time.
*/
static const char *getoffset(const char *strp, long int *const offsetp)
{
int neg = 0;
if (*strp == '-') {
neg = 1;
++strp;
} else if (*strp == '+')
++strp;
strp = getsecs(strp, offsetp);
if (strp == NULL)
return NULL; /* illegal time */
if (neg)
*offsetp = -*offsetp;
return strp;
}
/*
** Given a pointer into a time zone string, extract a rule in the form
** date[/time]. See POSIX section 8 for the format of "date" and "time".
** If a valid rule is not found, return NULL.
** Otherwise, return a pointer to the first character not part of the rule.
*/
static const char *getrule(const char *strp, struct rule *const rulep)
{
if (*strp == 'J') {
/*
** Julian day.
*/
rulep->r_type = JULIAN_DAY;
++strp;
strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
} else if (*strp == 'M') {
/*
** Month, week, day.
*/
rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
++strp;
strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
if (strp == NULL)
return NULL;
if (*strp++ != '.')
return NULL;
strp = getnum(strp, &rulep->r_week, 1, 5);
if (strp == NULL)
return NULL;
if (*strp++ != '.')
return NULL;
strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
} else if (is_digit(*strp)) {
/*
** Day of year.
*/
rulep->r_type = DAY_OF_YEAR;
strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
} else return NULL; /* invalid format */
if (strp == NULL)
return NULL;
if (*strp == '/') {
/*
** Time specified.
*/
++strp;
strp = getsecs(strp, &rulep->r_time);
} else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
return strp;
}
static void settzname(void)
{
struct state * sp = lclptr;
int i;
tzname[0] = WILDABBR;
tzname[1] = WILDABBR;
#ifdef USG_COMPAT
daylight = 0;
timezone = 0;
#endif /* defined USG_COMPAT */
#ifdef ALTZONE
altzone = 0;
#endif /* defined ALTZONE */
#ifdef ALL_STATE
if (sp == NULL) {
tzname[0] = tzname[1] = gmt;
return;
}
#endif /* defined ALL_STATE */
/*
** And to get the latest zone names into tzname. . .
*/
for (i = 0; i < sp->typecnt; ++i) {
const struct ttinfo * const ttisp = &sp->ttis[sp->types[i]];
tzname[ttisp->tt_isdst] =
&sp->chars[ttisp->tt_abbrind];
#ifdef USG_COMPAT
if (ttisp->tt_isdst)
daylight = 1;
if (!ttisp->tt_isdst)
timezone = -(ttisp->tt_gmtoff);
#endif /* defined USG_COMPAT */
#ifdef ALTZONE
if (ttisp->tt_isdst)
altzone = -(ttisp->tt_gmtoff);
#endif /* defined ALTZONE */
}
/*
** Finally, scrub the abbreviations.
** First, replace bogus characters.
*/
for (i = 0; i < sp->charcnt; ++i) {
if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL) {
sp->chars[i] = TZ_ABBR_ERR_CHAR;
}
}
/*
** Second, truncate long abbreviations.
*/
for (i = 0; i < sp->typecnt; ++i) {
register const struct ttinfo * const ttisp = &sp->ttis[i];
register char * cp = &sp->chars[ttisp->tt_abbrind];
if (strlen(cp) > TZ_ABBR_MAX_LEN) {
cp[TZ_ABBR_MAX_LEN] = 0;
}
}
}
static int tz_name_contains_unsafe_path(const char *name) {
if(name[0] == ':' && name[1] == '/') return 1;
if(name[0] == '/') return 1;
if(strstr(name, "../")) return 1;
return 0;
}
/*
** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
** year, a rule, and the offset from UTC at the time that rule takes effect,
** calculate the Epoch-relative time that rule takes effect.
*/
static time_t transtime(const time_t janfirst, const int year, const struct rule *const rulep, const long int offset)
{
int leapyear;
time_t value;
int i;
int d, m1, yy0, yy1, yy2, dow;
leapyear = __isleap(year);
switch (rulep->r_type) {
case JULIAN_DAY:
/*
** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
** years.
** In non-leap years, or if the day number is 59 or less, just
** add SECSPERDAY times the day number-1 to the time of
** January 1, midnight, to get the day.
*/
value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
if (leapyear && rulep->r_day >= 60)
value += SECSPERDAY;
break;
case DAY_OF_YEAR:
/*
** n - day of year.
** Just add SECSPERDAY times the day number to the time of
** January 1, midnight, to get the day.
*/
value = janfirst + rulep->r_day * SECSPERDAY;
break;
case MONTH_NTH_DAY_OF_WEEK:
/*
** Mm.n.d - nth "dth day" of month m.
*/
value = janfirst;
for (i = 0; i < rulep->r_mon - 1; ++i)
value += mon_lengths[leapyear][i] * SECSPERDAY;
/*
** Use Zeller's Congruence to get day-of-week of first day of
** month.
*/
m1 = (rulep->r_mon + 9) % 12 + 1;
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
yy1 = yy0 / 100;
yy2 = yy0 % 100;
dow = ((26 * m1 - 2) / 10 +
1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
if (dow < 0)
dow += DAYSPERWEEK;
/*
** "dow" is the day-of-week of the first day of the month. Get
** the day-of-month (zero-origin) of the first "dow" day of the
** month.
*/
d = rulep->r_day - dow;
if (d < 0)
d += DAYSPERWEEK;
for (i = 1; i < rulep->r_week; ++i) {
if (d + DAYSPERWEEK >=
mon_lengths[leapyear][rulep->r_mon - 1])
break;
d += DAYSPERWEEK;
}
/*
** "d" is the day-of-month (zero-origin) of the day we want.
*/
value += d * SECSPERDAY;
break;
default:
return -1;
}
/*
** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
** question. To get the Epoch-relative time of the specified local
** time on that day, add the transition time and the current offset
** from UTC.
*/
return value + rulep->r_time + offset;
}
/*
** Given a POSIX section 8-style TZ string, fill in the rule tables as
** appropriate.
*/
static int tzparse(const char *name, struct state *const sp, const int lastditch)
{
const char * stdname;
const char * dstname;
size_t stdlen;
size_t dstlen;
long stdoffset;
long dstoffset;
time_t * atp;
unsigned char * typep;
char * cp;
int load_result;
stdname = name;
if (lastditch) {
stdlen = strlen(name); /* length of standard zone name */
name += stdlen;
if (stdlen >= sizeof sp->chars)
stdlen = (sizeof sp->chars) - 1;
stdoffset = 0;
} else {
if (*name == '<') {
name++;
stdname = name;
name = getqzname(name, '>');
if (*name != '>')
return (-1);
stdlen = name - stdname;
name++;
} else {
name = getzname(name);
stdlen = name - stdname;
}
if (*name == '\0')
return -1; /* was "stdoffset = 0;" */
else {
name = getoffset(name, &stdoffset);
if (name == NULL)
return -1;
}
}
load_result = tzload(TZDEFRULES, sp, 0);
if (load_result != 0)
sp->leapcnt = 0; /* so, we're off a little */
if (*name != '\0') {
if (*name == '<') {
dstname = ++name;
name = getqzname(name, '>');
if (*name != '>')
return -1;
dstlen = name - dstname;
name++;
} else {
dstname = name;
name = getzname(name);
dstlen = name - dstname; /* length of DST zone name */
}
if (*name != '\0' && *name != ',' && *name != ';') {
name = getoffset(name, &dstoffset);
if (name == NULL)
return -1;
} else dstoffset = stdoffset - SECSPERHOUR;
if (*name == '\0' && load_result != 0)
name = TZDEFRULESTRING;
if (*name == ',' || *name == ';') {
struct rule start;
struct rule end;
int year;
time_t janfirst;
time_t starttime;
time_t endtime;
++name;
if ((name = getrule(name, &start)) == NULL)
return -1;
if (*name++ != ',')
return -1;
if ((name = getrule(name, &end)) == NULL)
return -1;
if (*name != '\0')
return -1;
sp->typecnt = 2; /* standard time and DST */
/*
** Two transitions per year, from EPOCH_YEAR forward.
*/
sp->ttis[0].tt_gmtoff = -dstoffset;
sp->ttis[0].tt_isdst = 1;
sp->ttis[0].tt_abbrind = stdlen + 1;
sp->ttis[1].tt_gmtoff = -stdoffset;
sp->ttis[1].tt_isdst = 0;
sp->ttis[1].tt_abbrind = 0;
atp = sp->ats;
typep = sp->types;
janfirst = 0;
sp->timecnt = 0;
for (year = EPOCH_YEAR;
sp->timecnt + 2 <= TZ_MAX_TIMES;
++year) {
time_t newfirst;
starttime = transtime(janfirst, year, &start,
stdoffset);
endtime = transtime(janfirst, year, &end,
dstoffset);
if (starttime > endtime) {
*atp++ = endtime;
*typep++ = 1; /* DST ends */
*atp++ = starttime;
*typep++ = 0; /* DST begins */
} else {
*atp++ = starttime;
*typep++ = 0; /* DST begins */
*atp++ = endtime;
*typep++ = 1; /* DST ends */
}
sp->timecnt += 2;
newfirst = janfirst;
newfirst += year_lengths[__isleap(year)] *
SECSPERDAY;
if (newfirst <= janfirst)
break;
janfirst = newfirst;
}
} else {
long theirstdoffset;
long theirdstoffset;
long theiroffset;
int isdst;
int i;
int j;
if (*name != '\0')
return -1;
/*
** Initial values of theirstdoffset and theirdstoffset.
*/
theirstdoffset = 0;
for (i = 0; i < sp->timecnt; ++i) {
j = sp->types[i];
if (!sp->ttis[j].tt_isdst) {
theirstdoffset =
-sp->ttis[j].tt_gmtoff;
break;
}
}
theirdstoffset = 0;
for (i = 0; i < sp->timecnt; ++i) {
j = sp->types[i];
if (sp->ttis[j].tt_isdst) {
theirdstoffset =
-sp->ttis[j].tt_gmtoff;
break;
}
}
/*
** Initially we're assumed to be in standard time.
*/
isdst = 0;
theiroffset = theirstdoffset;
/*
** Now juggle transition times and types
** tracking offsets as you do.
*/
for (i = 0; i < sp->timecnt; ++i) {
j = sp->types[i];
sp->types[i] = sp->ttis[j].tt_isdst;
if (sp->ttis[j].tt_ttisgmt) {
/* No adjustment to transition time */
} else {
/*
** If summer time is in effect, and the
** transition time was not specified as
** standard time, add the summer time
** offset to the transition time;
** otherwise, add the standard time
** offset to the transition time.
*/
/*
** Transitions from DST to DDST
** will effectively disappear since
** POSIX provides for only one DST
** offset.
*/
if (isdst && !sp->ttis[j].tt_ttisstd) {
sp->ats[i] += dstoffset -
theirdstoffset;
} else {
sp->ats[i] += stdoffset -
theirstdoffset;
}
}
theiroffset = -sp->ttis[j].tt_gmtoff;
if (sp->ttis[j].tt_isdst)
theirdstoffset = theiroffset;
else theirstdoffset = theiroffset;
}
/*
** Finally, fill in ttis.
** ttisstd and ttisgmt need not be handled.
*/
sp->ttis[0].tt_gmtoff = -stdoffset;
sp->ttis[0].tt_isdst = 0;
sp->ttis[0].tt_abbrind = 0;
sp->ttis[1].tt_gmtoff = -dstoffset;
sp->ttis[1].tt_isdst = 1;
sp->ttis[1].tt_abbrind = stdlen + 1;
sp->typecnt = 2;
}
} else {
dstlen = 0;
sp->typecnt = 1; /* only standard time */
sp->timecnt = 0;
sp->ttis[0].tt_gmtoff = -stdoffset;
sp->ttis[0].tt_isdst = 0;
sp->ttis[0].tt_abbrind = 0;
}
sp->charcnt = stdlen + 1;
if (dstlen != 0)
sp->charcnt += dstlen + 1;
if ((size_t) sp->charcnt > sizeof sp->chars)
return -1;
cp = sp->chars;
(void) strncpy(cp, stdname, stdlen);
cp += stdlen;
*cp++ = '\0';
if (dstlen != 0) {
(void) strncpy(cp, dstname, dstlen);
*(cp + dstlen) = '\0';
}
return 0;
}
static int differ_by_repeat(const time_t t1, const time_t t0)
{
int_fast64_t _t0 = t0;
int_fast64_t _t1 = t1;
if (TYPE_INTEGRAL(time_t) && TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) {
return 0;
}
return _t1 - _t0 == SECSPERREPEAT;
}
static int tzload(const char *name, struct state *const sp, const int doextend)
{
const char * p;
int i;
int stored;
int nread;
int res;
union {
struct tzhead tzhead;
char buf[2 * sizeof(struct tzhead) +
2 * sizeof *sp +
4 * TZ_MAX_TIMES];
} *u;
u = NULL;
res = -1;
sp->goback = sp->goahead = 0;
if (name && tz_name_contains_unsafe_path(name)) name = NULL;
if(!name) {
TIME_ZONE_INFORMATION tzi;
long int status = RtlQueryTimeZoneInformation(&tzi);
if(status >= 0) {
char tzname[128];
int stdname_len = wcstombs(tzname, tzi.StandardName, sizeof tzname);
int dstname_len = stdname_len < 0 ? -1 : wcstombs(tzname + stdname_len + 1, tzi.DaylightName, sizeof tzname - stdname_len);
if(tzi.DaylightBias) {
sp->typecnt = 2;
sp->ttis[0].tt_gmtoff = -(tzi.Bias * 60);
sp->ttis[0].tt_isdst = 0;
sp->ttis[0].tt_abbrind = 0;
sp->ttis[1].tt_gmtoff = -((tzi.Bias + tzi.DaylightBias) * 60);
sp->ttis[1].tt_isdst = 1;
sp->ttis[1].tt_abbrind = stdname_len < 0 ? 0 : stdname_len + 1;
sp->timecnt = 0;
} else {
sp->typecnt = 1;
sp->ttis[0].tt_gmtoff = -(tzi.Bias * 60);
sp->ttis[0].tt_isdst = 0;
sp->ttis[0].tt_abbrind = 0;
sp->timecnt = 0;
}
if(stdname_len > 0) {
size_t len = stdname_len + 1;
if(dstname_len > 0) len += dstname_len + 1;
if(len > sizeof sp->chars) {
len = sizeof sp->chars - 1;
sp->chars[len] = 0;
}
memcpy(sp->chars, tzname, len);
sp->charcnt = len;
}
return 0;
}
}
int doaccess;
struct stat stab;
/*
** Section 4.9.1 of the C standard says that
** "FILENAME_MAX expands to an integral constant expression
** that is the size needed for an array of char large enough
** to hold the longest file name string that the implementation
** guarantees can be opened."
*/
char *fullname = malloc(FILENAME_MAX + 1);
if (fullname == NULL) goto out;
if (name[0] == ':') ++name;
doaccess = name[0] == '/';
if (!doaccess) {
if ((p = TZDIR) == NULL) {
free(fullname);
return -1;
}
if (strlen(p) + 1 + strlen(name) >= FILENAME_MAX) {
free(fullname);
return -1;
}
(void) strcpy(fullname, p);
(void) strcat(fullname, "/");
(void) strcat(fullname, name);
/*
** Set doaccess if '.' (as in "../") shows up in name.
*/
if (strchr(name, '.')) doaccess = 1;
name = fullname;
}
if (doaccess && access(name, R_OK) != 0) {
free(fullname);
return -1;
}
int fd = open(name, O_RDONLY);
if (fd == -1) {
free(fullname);
return -1;
}
if (fstat(fd, &stab) < 0 || !S_ISREG(stab.st_mode)) {
free(fullname);
close(fd);
return -1;
}
free(fullname);
u = malloc(sizeof(*u));
if (!u) goto out;
nread = read(fd, u->buf, sizeof u->buf);
if (close(fd) < 0 || nread <= 0) goto out;
for (stored = 4; stored <= 8; stored *= 2) {
int ttisstdcnt;
int ttisgmtcnt;
ttisstdcnt = (int) detzcode(u->tzhead.tzh_ttisstdcnt);
ttisgmtcnt = (int) detzcode(u->tzhead.tzh_ttisgmtcnt);
sp->leapcnt = (int) detzcode(u->tzhead.tzh_leapcnt);
sp->timecnt = (int) detzcode(u->tzhead.tzh_timecnt);
sp->typecnt = (int) detzcode(u->tzhead.tzh_typecnt);
sp->charcnt = (int) detzcode(u->tzhead.tzh_charcnt);
p = u->tzhead.tzh_charcnt + sizeof u->tzhead.tzh_charcnt;
if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
goto out;
if (nread - (p - u->buf) <
sp->timecnt * stored + /* ats */
sp->timecnt + /* types */
sp->typecnt * 6 + /* ttinfos */
sp->charcnt + /* chars */
sp->leapcnt * (stored + 4) + /* lsinfos */
ttisstdcnt + /* ttisstds */
ttisgmtcnt) /* ttisgmts */
goto out;
for (i = 0; i < sp->timecnt; ++i) {
sp->ats[i] = (stored == 4) ?
detzcode(p) : detzcode64(p);
p += stored;
}
for (i = 0; i < sp->timecnt; ++i) {
sp->types[i] = (unsigned char) *p++;
if (sp->types[i] >= sp->typecnt)
goto out;
}
for (i = 0; i < sp->typecnt; ++i) {
struct ttinfo * ttisp;
ttisp = &sp->ttis[i];
ttisp->tt_gmtoff = detzcode(p);
p += 4;
ttisp->tt_isdst = (unsigned char) *p++;
if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
goto out;
ttisp->tt_abbrind = (unsigned char) *p++;
if (ttisp->tt_abbrind < 0 ||
ttisp->tt_abbrind > sp->charcnt)
goto out;
}
for (i = 0; i < sp->charcnt; ++i)
sp->chars[i] = *p++;
sp->chars[i] = '\0'; /* ensure '\0' at end */
for (i = 0; i < sp->leapcnt; ++i) {
struct lsinfo * lsisp;
lsisp = &sp->lsis[i];
lsisp->ls_trans = (stored == 4) ?
detzcode(p) : detzcode64(p);
p += stored;
lsisp->ls_corr = detzcode(p);
p += 4;
}
for (i = 0; i < sp->typecnt; ++i) {
struct ttinfo *ttisp = sp->ttis + i;
if (ttisstdcnt == 0) {
ttisp->tt_ttisstd = 0;
} else {
ttisp->tt_ttisstd = *p++;
if (!ttisp->tt_ttisstd && ttisp->tt_ttisstd) {
goto out;
}
}
}
for (i = 0; i < sp->typecnt; ++i) {
struct ttinfo *ttisp = sp->ttis + i;;
if (ttisgmtcnt == 0) {
ttisp->tt_ttisgmt = 0;
} else {
ttisp->tt_ttisgmt = *p++;
if (!ttisp->tt_ttisgmt && ttisp->tt_ttisgmt) {
goto out;
}
}
}
/*
** Out-of-sort ats should mean we're running on a
** signed time_t system but using a data file with
** unsigned values (or vice versa).
*/
for (i = 0; i < sp->timecnt - 2; ++i)
if (sp->ats[i] > sp->ats[i + 1]) {
++i;
if (TYPE_SIGNED(time_t)) {
/*
** Ignore the end (easy).
*/
sp->timecnt = i;
} else {
/*
** Ignore the beginning (harder).
*/
register int j;
for (j = 0; j + i < sp->timecnt; ++j) {
sp->ats[j] = sp->ats[j + i];
sp->types[j] = sp->types[j + i];
}
sp->timecnt = j;
}
break;
}
/*
** If this is an old file, we're done.
*/
if (u->tzhead.tzh_version[0] == '\0')
break;
nread -= p - u->buf;
for (i = 0; i < nread; ++i)
u->buf[i] = p[i];
/*
** If this is a narrow integer time_t system, we're done.
*/
if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
break;
}
if (doextend && nread > 2 &&
u->buf[0] == '\n' && u->buf[nread - 1] == '\n' &&
sp->typecnt + 2 <= TZ_MAX_TYPES) {
struct state *ts;
register int result;
ts = malloc(sizeof(*ts));
if (ts == NULL)
goto out;
u->buf[nread - 1] = '\0';
result = tzparse(&u->buf[1], ts, 0);
if (result == 0 && ts->typecnt == 2 &&
sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
for (i = 0; i < 2; ++i)
ts->ttis[i].tt_abbrind +=
sp->charcnt;
for (i = 0; i < ts->charcnt; ++i)
sp->chars[sp->charcnt++] =
ts->chars[i];
i = 0;
while (i < ts->timecnt &&
ts->ats[i] <=
sp->ats[sp->timecnt - 1])
++i;
while (i < ts->timecnt &&
sp->timecnt < TZ_MAX_TIMES) {
sp->ats[sp->timecnt] =
ts->ats[i];
sp->types[sp->timecnt] =
sp->typecnt +
ts->types[i];
++sp->timecnt;
++i;
}
sp->ttis[sp->typecnt++] = ts->ttis[0];
sp->ttis[sp->typecnt++] = ts->ttis[1];
}
free(ts);
}
if (sp->timecnt > 1) {
for (i = 1; i < sp->timecnt; ++i) {
if (typesequiv(sp, sp->types[i], sp->types[0]) && differ_by_repeat(sp->ats[i], sp->ats[0])) {
sp->goback = 1;
break;
}
}
for (i = sp->timecnt - 2; i >= 0; --i) {
if (typesequiv(sp, sp->types[sp->timecnt - 1],
sp->types[i]) &&
differ_by_repeat(sp->ats[sp->timecnt - 1],
sp->ats[i])) {
sp->goahead = 1;
break;
}
}
}
res = 0;
out:
free(u);
return (res);
}
static void gmtload(struct state *const sp)
{
if (tzload(GMT, sp, 1) < 0) tzparse(GMT, sp, 1);
}
void tzsetwall() {
_RWLOCK_RDLOCK(&lcl_rwlock);
if (lcl_is_set < 0) {
_RWLOCK_UNLOCK(&lcl_rwlock);
return;
}
_RWLOCK_UNLOCK(&lcl_rwlock);
_RWLOCK_WRLOCK(&lcl_rwlock);
lcl_is_set = -1;
#ifdef ALL_STATE
if (lclptr == NULL) {
lclptr = calloc(1, sizeof *lclptr);
if (lclptr == NULL) {
settzname(); /* all we can do */
_RWLOCK_UNLOCK(&lcl_rwlock);
return;
}
}
#endif /* defined ALL_STATE */
if (tzload((char *) NULL, lclptr, 1) < 0) gmtload(lclptr);
settzname();
_RWLOCK_UNLOCK(&lcl_rwlock);
}
void tzset() {
const char *name = getenv("TZ");
if(!name) return tzsetwall();
_RWLOCK_RDLOCK(&lcl_rwlock);
if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) {
_RWLOCK_UNLOCK(&lcl_rwlock);
return;
}
_RWLOCK_UNLOCK(&lcl_rwlock);
_RWLOCK_WRLOCK(&lcl_rwlock);
lcl_is_set = strlen(name) < sizeof lcl_TZname;
if (lcl_is_set) strcpy(lcl_TZname, name);
#ifdef ALL_STATE
if (lclptr == NULL) {
lclptr = (struct state *) calloc(1, sizeof *lclptr);
if (lclptr == NULL) {
settzname(); /* all we can do */
_RWLOCK_UNLOCK(&lcl_rwlock);
return;
}
}
#endif /* defined ALL_STATE */
if (*name == '\0') {
/*
** User wants it fast rather than right.
*/
lclptr->leapcnt = 0; /* so, we're off a little */
lclptr->timecnt = 0;
lclptr->typecnt = 0;
lclptr->ttis[0].tt_isdst = 0;
lclptr->ttis[0].tt_gmtoff = 0;
lclptr->ttis[0].tt_abbrind = 0;
strcpy(lclptr->chars, GMT);
} else if (tzload(name, lclptr, 1) != 0) {
if (name[0] == ':' || tzparse(name, lclptr, 0) < 0) gmtload(lclptr);
}
settzname();
_RWLOCK_UNLOCK(&lcl_rwlock);
}
/*
** Simplified normalize logic courtesy Paul Eggert.
*/
static int increment_overflow(int *number, int delta)
{
int number0 = *number;
*number += delta;
return (*number < number0) != (delta < 0);
}
static int normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
{
int tensdelta = (*unitsptr >= 0) ?
(*unitsptr / base) :
(-1 - (-1 - *unitsptr) / base);
*unitsptr -= tensdelta * base;
return increment_overflow(tensptr, tensdelta);
}
static int tmcomp(const struct tm *a, const struct tm *b)
{
int diff = a->tm_year - b->tm_year;
if(diff) return diff;
diff = a->tm_mon - b->tm_mon;
if(diff) return diff;
diff = a->tm_mday - b->tm_mday;
if(diff) return diff;
diff = a->tm_hour - b->tm_hour;
if(diff) return diff;
diff = a->tm_min - b->tm_min;
if(diff) return diff;
return a->tm_sec - b->tm_sec;
}
static time_t time2sub(struct tm *const tmp, struct tm *(*const funcp)(const time_t *, long, struct tm *), const long int offset, int *const okayp, const int do_norm_secs)
{
const struct state * sp;
int dir;
int i, j;
int saved_seconds;
int li;
time_t lo;
time_t hi;
int y;
time_t newt;
time_t t;
struct tm yourtm, mytm;
*okayp = 0;
yourtm = *tmp;
if (do_norm_secs) {
if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
SECSPERMIN))
return WRONG;
}
if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
return WRONG;
if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
return WRONG;
y = yourtm.tm_year;
if (normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR)) return WRONG;
/*
** Turn y into an actual year number for now.
** It is converted back to an offset from TM_YEAR_BASE later.
*/
if (increment_overflow(&y, TM_YEAR_BASE)) return WRONG;
while (yourtm.tm_mday <= 0) {
if (increment_overflow(&y, -1)) return WRONG;
li = y + (1 < yourtm.tm_mon);
yourtm.tm_mday += year_lengths[__isleap(li)];
}
while (yourtm.tm_mday > DAYSPERLYEAR) {
li = y + (1 < yourtm.tm_mon);
yourtm.tm_mday -= year_lengths[__isleap(li)];
if (increment_overflow(&y, 1)) return WRONG;
}
for ( ; ; ) {
i = mon_lengths[__isleap(y)][yourtm.tm_mon];
if (yourtm.tm_mday <= i)
break;
yourtm.tm_mday -= i;
if (++yourtm.tm_mon >= MONSPERYEAR) {
yourtm.tm_mon = 0;
if (increment_overflow(&y, 1)) return WRONG;
}
}
if (increment_overflow(&y, -TM_YEAR_BASE)) return WRONG;
yourtm.tm_year = y;
if (yourtm.tm_year != y)
return WRONG;
/* Don't go below 1900 for POLA */
if (yourtm.tm_year < 0)
return WRONG;
if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
saved_seconds = 0;
else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
/*
** We can't set tm_sec to 0, because that might push the
** time below the minimum representable time.
** Set tm_sec to 59 instead.
** This assumes that the minimum representable time is
** not in the same minute that a leap second was deleted from,
** which is a safer assumption than using 58 would be.
*/
if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
return WRONG;
saved_seconds = yourtm.tm_sec;
yourtm.tm_sec = SECSPERMIN - 1;
} else {
saved_seconds = yourtm.tm_sec;
yourtm.tm_sec = 0;
}
/*
** Do a binary search (this works whatever time_t's type is).
*/
if (!TYPE_SIGNED(time_t)) {
lo = 0;
hi = lo - 1;
} else if (!TYPE_INTEGRAL(time_t)) {
if (sizeof(time_t) > sizeof(float))
hi = (time_t) DBL_MAX;
else hi = (time_t) FLT_MAX;
lo = -hi;
} else {
lo = 1;
for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
lo *= 2;
hi = -(lo + 1);
}
for ( ; ; ) {
t = lo / 2 + hi / 2;
if (t < lo)
t = lo;
else if (t > hi)
t = hi;
if (!funcp(&t, offset, &mytm)) {
/*
** Assume that t is too extreme to be represented in
** a struct tm; arrange things so that it is less
** extreme on the next pass.
*/
dir = (t > 0) ? 1 : -1;
} else dir = tmcomp(&mytm, &yourtm);
if (dir != 0) {
if (t == lo) {
++t;
if (t <= lo)
return WRONG;
++lo;
} else if (t == hi) {
--t;
if (t >= hi)
return WRONG;
--hi;
}
if (lo > hi)
return WRONG;
if (dir > 0)
hi = t;
else lo = t;
continue;
}
if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
break;
/*
** Right time, wrong type.
** Hunt for right time, right type.
** It's okay to guess wrong since the guess
** gets checked.
*/
sp = (const struct state *)
((funcp == localsub) ? lclptr : gmtptr);
#ifdef ALL_STATE
if (sp == NULL)
return WRONG;
#endif /* defined ALL_STATE */
for (i = sp->typecnt - 1; i >= 0; --i) {
if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
continue;
for (j = sp->typecnt - 1; j >= 0; --j) {
if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
continue;
newt = t + sp->ttis[j].tt_gmtoff -
sp->ttis[i].tt_gmtoff;
if (!funcp(&newt, offset, &mytm)) continue;
if (tmcomp(&mytm, &yourtm) != 0)
continue;
if (mytm.tm_isdst != yourtm.tm_isdst)
continue;
/*
** We have a match.
*/
t = newt;
goto label;
}
}
return WRONG;
}
label:
newt = t + saved_seconds;
if ((newt < t) != (saved_seconds < 0))
return WRONG;
t = newt;
if (funcp(&t, offset, tmp)) *okayp = 1;
return t;
}
static time_t time2(struct tm *const tmp, struct tm *(*const funcp)(const time_t *, long, struct tm *), const long offset, int *const okayp)
{
/*
** First try without normalization of seconds
** (in case tm_sec contains a value associated with a leap second).
** If that fails, try with normalization of seconds.
*/
time_t t = time2sub(tmp, funcp, offset, okayp, 0);
if(*okayp) return t;
return time2sub(tmp, funcp, offset, okayp, 1);
}
/*
** Return the number of leap years through the end of the given year
** where, to make the math easy, the answer for year zero is defined as zero.
*/
static int leaps_thru_end_of(const int y)
{
return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
-(leaps_thru_end_of(-(y + 1)) + 1);
}
static struct tm *timesub(const time_t *const timep, const long int offset, const struct state *const sp, struct tm *const tmp)
{
const struct lsinfo * lp;
time_t tdays;
int idays; /* unsigned would be so 2003 */
long rem;
int y;
const int * ip;
long corr;
int hit;
int i;
corr = 0;
hit = 0;
#ifdef ALL_STATE
i = (sp == NULL) ? 0 : sp->leapcnt;
#else
i = sp->leapcnt;
#endif
while (--i >= 0) {
lp = &sp->lsis[i];
if (*timep >= lp->ls_trans) {
if (*timep == lp->ls_trans) {
hit = ((i == 0 && lp->ls_corr > 0) ||
lp->ls_corr > sp->lsis[i - 1].ls_corr);
if (hit)
while (i > 0 &&
sp->lsis[i].ls_trans ==
sp->lsis[i - 1].ls_trans + 1 &&
sp->lsis[i].ls_corr ==
sp->lsis[i - 1].ls_corr + 1) {
++hit;
--i;
}
}
corr = lp->ls_corr;
break;
}
}
y = EPOCH_YEAR;
tdays = *timep / SECSPERDAY;
rem = *timep - tdays * SECSPERDAY;
while (tdays < 0 || tdays >= year_lengths[__isleap(y)]) {
int newy;
register time_t tdelta;
register int idelta;
register int leapdays;
tdelta = tdays / DAYSPERLYEAR;
idelta = tdelta;
if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
return NULL;
if (idelta == 0)
idelta = (tdays < 0) ? -1 : 1;
newy = y;
if (increment_overflow(&newy, idelta))
return NULL;
leapdays = leaps_thru_end_of(newy - 1) -
leaps_thru_end_of(y - 1);
tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
tdays -= leapdays;
y = newy;
}
{
register long seconds;
seconds = tdays * SECSPERDAY + 0.5;
tdays = seconds / SECSPERDAY;
rem += seconds - tdays * SECSPERDAY;
}
/*
** Given the range, we can now fearlessly cast...
*/
idays = tdays;
rem += offset - corr;
while (rem < 0) {
rem += SECSPERDAY;
--idays;
}
while (rem >= SECSPERDAY) {
rem -= SECSPERDAY;
++idays;
}
while (idays < 0) {
if (increment_overflow(&y, -1))
return NULL;
idays += year_lengths[__isleap(y)];
}
while (idays >= year_lengths[__isleap(y)]) {
idays -= year_lengths[__isleap(y)];
if (increment_overflow(&y, 1))
return NULL;
}
tmp->tm_year = y;
if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
return NULL;
tmp->tm_yday = idays;
/*
** The "extra" mods below avoid overflow problems.
*/
tmp->tm_wday = EPOCH_WDAY +
((y - EPOCH_YEAR) % DAYSPERWEEK) *
(DAYSPERNYEAR % DAYSPERWEEK) +
leaps_thru_end_of(y - 1) -
leaps_thru_end_of(EPOCH_YEAR - 1) +
idays;
tmp->tm_wday %= DAYSPERWEEK;
if (tmp->tm_wday < 0)
tmp->tm_wday += DAYSPERWEEK;
tmp->tm_hour = (int) (rem / SECSPERHOUR);
rem %= SECSPERHOUR;
tmp->tm_min = (int) (rem / SECSPERMIN);
/*
** A positive leap second requires a special
** representation. This uses "... ??:59:60" et seq.
*/
tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
ip = mon_lengths[__isleap(y)];
for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
idays -= ip[tmp->tm_mon];
tmp->tm_mday = (int) (idays + 1);
tmp->tm_isdst = 0;
return tmp;
}
/*
** The easy way to behave "as if no library function calls" localtime
** is to not call it--so we drop its guts into "localsub", which can be
** freely called. (And no, the PANS doesn't require the above behavior--
** but it *is* desirable.)
**
** The unused offset argument is for the benefit of mktime variants.
*/
/*ARGSUSED*/
static struct tm *localsub(const time_t *const timep, const long offset, struct tm *const tmp)
{
struct state * sp;
const struct ttinfo * ttisp;
int i;
struct tm * result;
const time_t t = *timep;
sp = lclptr;
#ifdef ALL_STATE
if (sp == NULL)
return gmtsub(timep, offset, tmp);
#endif /* defined ALL_STATE */
if ((sp->goback && t < sp->ats[0]) ||
(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
time_t newt = t;
register time_t seconds;
register time_t tcycles;
register int_fast64_t icycles;
if (t < sp->ats[0])
seconds = sp->ats[0] - t;
else seconds = t - sp->ats[sp->timecnt - 1];
--seconds;
tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
++tcycles;
icycles = tcycles;
if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
return NULL;
seconds = icycles;
seconds *= YEARSPERREPEAT;
seconds *= AVGSECSPERYEAR;
if (t < sp->ats[0])
newt += seconds;
else newt -= seconds;
if (newt < sp->ats[0] ||
newt > sp->ats[sp->timecnt - 1])
return NULL; /* "cannot happen" */
result = localsub(&newt, offset, tmp);
if (result == tmp) {
register time_t newy;
newy = tmp->tm_year;
if (t < sp->ats[0])
newy -= icycles * YEARSPERREPEAT;
else newy += icycles * YEARSPERREPEAT;
tmp->tm_year = newy;
if (tmp->tm_year != newy)
return NULL;
}
return result;
}
if (sp->timecnt == 0 || t < sp->ats[0]) {
i = 0;
while (sp->ttis[i].tt_isdst)
if (++i >= sp->typecnt) {
i = 0;
break;
}
} else {
register int lo = 1;
register int hi = sp->timecnt;
while (lo < hi) {
register int mid = (lo + hi) >> 1;
if (t < sp->ats[mid])
hi = mid;
else lo = mid + 1;
}
i = (int) sp->types[lo - 1];
}
ttisp = &sp->ttis[i];
/*
** To get (wrong) behavior that's compatible with System V Release 2.0
** you'd replace the statement below with
** t += ttisp->tt_gmtoff;
** timesub(&t, 0L, sp, tmp);
*/
result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
tmp->tm_isdst = ttisp->tt_isdst;
tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
return result;
}
/*
** gmtsub is to gmtime as localsub is to localtime.
*/
static struct tm *gmtsub(const time_t *const timep, const long int offset, struct tm *const tmp)
{
return timesub(timep, offset, gmtptr, tmp);
}
static time_t time1(struct tm *const tmp, struct tm *(*const funcp)(const time_t *, long, struct tm *), const long int offset)
{
time_t t;
const struct state * sp;
int samei, otheri;
int sameind, otherind;
int i;
int nseen;
int seen[TZ_MAX_TYPES];
int types[TZ_MAX_TYPES];
int okay;
if (tmp == NULL) {
errno = EINVAL;
return WRONG;
}
if (tmp->tm_isdst > 1)
tmp->tm_isdst = 1;
t = time2(tmp, funcp, offset, &okay);
#ifdef PCTS
/*
** PCTS code courtesy Grant Sullivan.
*/
if (okay)
return t;
if (tmp->tm_isdst < 0)
tmp->tm_isdst = 0; /* reset to std and try again */
#else
if (okay || tmp->tm_isdst < 0)
return t;
#endif /* !defined PCTS */
/*
** We're supposed to assume that somebody took a time of one type
** and did some math on it that yielded a "struct tm" that's bad.
** We try to divine the type they started from and adjust to the
** type they need.
*/
sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr);
#ifdef ALL_STATE
if (sp == NULL)
return WRONG;
#endif /* defined ALL_STATE */
for (i = 0; i < sp->typecnt; ++i) seen[i] = 0;
nseen = 0;
for (i = sp->timecnt - 1; i >= 0; --i) {
if (!seen[sp->types[i]]) {
seen[sp->types[i]] = 1;
types[nseen++] = sp->types[i];
}
}
for (sameind = 0; sameind < nseen; ++sameind) {
samei = types[sameind];
if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
continue;
for (otherind = 0; otherind < nseen; ++otherind) {
otheri = types[otherind];
if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
continue;
tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
sp->ttis[samei].tt_gmtoff;
tmp->tm_isdst = !tmp->tm_isdst;
t = time2(tmp, funcp, offset, &okay);
if (okay)
return t;
tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
sp->ttis[samei].tt_gmtoff;
tmp->tm_isdst = !tmp->tm_isdst;
}
}
return WRONG;
}
struct tm *localtime(const time_t *t) {
static struct tm buffer;
tzset();
_RWLOCK_RDLOCK(&lcl_rwlock);
struct tm *tm = localsub(t, 0, &buffer);
_RWLOCK_UNLOCK(&lcl_rwlock);
return tm;
}
struct tm *localtime_r(const time_t *t, struct tm *tm) {
tzset();
_RWLOCK_RDLOCK(&lcl_rwlock);
tm = localsub(t, 0, tm);
_RWLOCK_UNLOCK(&lcl_rwlock);
return tm;
}
struct tm *gmtime(const time_t *t) {
static struct tm buffer;
return gmtsub(t, 0, &buffer);
}
struct tm *gmtime_r(const time_t *t, struct tm *tm) {
return gmtsub(t, 0, tm);
}
time_t mktime(struct tm *const tmp)
{
tzset();
_RWLOCK_RDLOCK(&lcl_rwlock);
time_t t = time1(tmp, localsub, 0L);
_RWLOCK_UNLOCK(&lcl_rwlock);
return t;
}
time_t timelocal(struct tm *const tmp)
{
if (tmp != NULL)
tmp->tm_isdst = -1; /* in case it wasn't initialized */
return mktime(tmp);
}
time_t timegm(struct tm *const tmp)
{
if (tmp != NULL)
tmp->tm_isdst = 0;
return time1(tmp, gmtsub, 0L);
}