blob: a9b44f83c649300ef2f5f391dcdec7874645551d [file] [log] [blame] [raw]
// Copyright (c) 2022, Compiler Explorer Authors
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
import {AnnotatedCfgDescriptor, AnnotatedNodeDescriptor} from '../types/compilation/cfg.interfaces';
import IntervalTree, {Node} from '@flatten-js/interval-tree';
// Much of the algorithm is inspired from
// https://cutter.re/docs/api/widgets/classGraphGridLayout.html
// Thanks to the cutter team for their great documentation!
// TODO(jeremy-rifkin)
function assert(condition: boolean, message?: string, ...args: any[]): asserts condition {
if (!condition) {
const stack = new Error('Assertion Error').stack;
throw (
(message
? `Assertion error in llvm-print-after-all-parser: ${message}`
: `Assertion error in llvm-print-after-all-parser`) +
(args.length > 0 ? `\n${JSON.stringify(args)}\n` : '') +
`\n${stack}`
);
}
}
enum SegmentType {
Horizontal,
Vertical,
}
type Coordinate = {
x: number;
y: number;
};
type GridCoordinate = {
row: number;
col: number;
};
type EdgeCoordinate = Coordinate & GridCoordinate;
type EdgeSegment = {
start: EdgeCoordinate;
end: EdgeCoordinate;
horizontalOffset: number;
verticalOffset: number;
type: SegmentType; // is this point the end of a horizontal or vertical segment
};
type Edge = {
color: string;
dest: number;
mainColumn: number;
path: EdgeSegment[];
};
type BoundingBox = {
rows: number;
cols: number;
};
type Block = {
data: AnnotatedNodeDescriptor;
edges: Edge[];
dagEdges: number[];
treeEdges: number[];
treeParent: number | null;
row: number;
col: number;
boundingBox: BoundingBox;
coordinates: Coordinate;
incidentEdgeCount: number;
};
enum DfsState {
NotVisited,
Pending,
Visited,
}
type ColumnDescriptor = {
width: number;
totalOffset: number;
};
type RowDescriptor = {
height: number;
totalOffset: number;
};
type EdgeColumnMetadata = {
subcolumns: number;
intervals: IntervalTree<EdgeSegment>[]; // pointers to segments
};
type EdgeRowMetadata = {
subrows: number;
intervals: IntervalTree<EdgeSegment>[]; // pointers to segments
};
const EDGE_SPACING = 10;
export class GraphLayoutCore {
// We use an adjacency list here
blocks: Block[] = [];
columnCount: number;
rowCount: number;
blockColumns: ColumnDescriptor[];
blockRows: RowDescriptor[];
edgeColumns: (ColumnDescriptor & EdgeColumnMetadata)[];
edgeRows: (RowDescriptor & EdgeRowMetadata)[];
readonly layoutTime: number;
constructor(cfg: AnnotatedCfgDescriptor) {
// block id -> block
const blockMap: Record<string, number> = {};
for (const node of cfg.nodes) {
const block = {
data: node,
edges: [],
dagEdges: [],
treeEdges: [],
treeParent: null,
row: 0,
col: 0,
boundingBox: {rows: 0, cols: 0},
coordinates: {x: 0, y: 0},
incidentEdgeCount: 0,
};
this.blocks.push(block);
blockMap[node.id] = this.blocks.length - 1;
}
for (const {from, to, color} of cfg.edges) {
// TODO: Backend can return dest: "null"
// e.g. for the simple program
// void baz(int n) {
// if(n % 2 == 0) {
// foo();
// } else {
// bar();
// }
// }
if (from in blockMap && to in blockMap) {
this.blocks[blockMap[from]].edges.push({
color,
dest: blockMap[to],
mainColumn: -1,
path: [],
});
}
}
//console.log(this.blocks);
const start = performance.now();
this.layout();
const end = performance.now();
this.layoutTime = end - start;
}
dfs(visited: DfsState[], order: number[], node: number) {
if (visited[node] === DfsState.Visited) {
return;
}
if (visited[node] === DfsState.NotVisited) {
visited[node] = DfsState.Pending;
const block = this.blocks[node];
for (const edge of block.edges) {
this.blocks[edge.dest].incidentEdgeCount++;
// If we reach another pending node it's a loop edge.
// If we reach an unvisited node it's fine, if we reach a visited node that's also part of the dag
if (visited[edge.dest] !== DfsState.Pending) {
block.dagEdges.push(edge.dest);
}
this.dfs(visited, order, edge.dest);
}
visited[node] = DfsState.Visited;
order.push(node);
} else {
// visited[node] == DfsState.Pending
// If we reach a node in the stack then this is a loop edge; we do nothing
}
}
computeDag() {
// Returns a topological order of blocks
// Breaks loop edges with DFS
// Can consider doing non-recursive dfs later if needed
const visited = Array(this.blocks.length).fill(DfsState.NotVisited);
const order: number[] = [];
// TODO: Need an actual function entry point from the backend, or will it always be at index 0?
this.dfs(visited, order, 0);
for (let i = 0; i < this.blocks.length; i++) {
this.dfs(visited, order, i);
}
// we've computed a post-DFS ordering which is always a reverse topological ordering
return order.reverse();
}
assignRows(topologicalOrder) {
for (const i of topologicalOrder) {
const block = this.blocks[i];
//console.log(block);
for (const j of block.dagEdges) {
const target = this.blocks[j];
target.row = Math.max(target.row, block.row + 1);
}
}
}
computeTree(topologicalOrder) {
// DAG is reduced to a tree based on what's vertically adjacent
//
// For something like
//
// +-----+
// | A |
// +-----+
// / \
// +-----+ +-----+
// | B | | C |
// +-----+ +-----+
// \ /
// +-----+
// | D |
// +-----+
//
// The tree is chosen to be either of the following depending on what the topological order happens to be
// This doesn't matter too much as far as readability goes
//
// A A
// / \ / \
// B C or B C
// | |
// D D
for (const i of topologicalOrder) {
// Only dag edges are considered
// Edges - dag edges = the set of back edges
const block = this.blocks[i];
for (const j of block.dagEdges) {
const target = this.blocks[j];
if (target.treeParent === null && target.row === block.row + 1) {
block.treeEdges.push(j);
target.treeParent = i;
}
}
}
}
adjustSubtree(root: number, rowShift: number, columnShift: number) {
const block = this.blocks[root];
block.row += rowShift;
block.col += columnShift;
for (const j of block.treeEdges) {
this.adjustSubtree(j, rowShift, columnShift);
}
}
// Note: Currently O(n^2)
computeTreeColumnPositions(node: number) {
const block = this.blocks[node];
if (block.treeEdges.length === 0) {
block.row = 0;
block.col = 0;
block.boundingBox = {
rows: 1,
cols: 2,
};
} else if (block.treeEdges.length === 1) {
const childIndex = block.treeEdges[0];
const child = this.blocks[childIndex];
block.row = 0;
block.col = child.col;
block.boundingBox = {
rows: 1 + child.boundingBox.rows,
cols: child.boundingBox.cols,
};
this.adjustSubtree(childIndex, 1, 0);
} else {
// If the node has more than two children we'll just center between the
//let selectedTreeEdges = block.treeEdges.slice(0, 2);
const boundingBox = {
rows: 0,
cols: 0,
};
// Compute bounding box of all the subtrees and adjust
for (const i of block.treeEdges) {
const child = this.blocks[i];
this.adjustSubtree(i, 1, boundingBox.cols);
boundingBox.rows += child.boundingBox.rows;
boundingBox.cols += child.boundingBox.cols;
}
// Position parent
boundingBox.rows++;
block.boundingBox = boundingBox;
block.row = 0;
// between immediate children
const [left, right] = [this.blocks[block.treeEdges[0]], this.blocks[block.treeEdges[1]]];
block.col = Math.floor((left.col + right.col) / 2); // TODO
}
}
assignColumns(topologicalOrder) {
// Note: Currently not taking shape into account like Cutter does.
// Post DFS order means we compute all children before their parents
for (const i of topologicalOrder.slice().reverse()) {
this.computeTreeColumnPositions(i);
}
// We have a forrest, CFGs can have multiple source nodes
const trees = Array.from(this.blocks.entries()).filter(([_, block]) => block.treeParent === null);
// Place trees next to each other
let offset = 0;
for (const [i, tree] of trees) {
this.adjustSubtree(i, 0, offset);
offset += tree.boundingBox.cols;
}
}
setupRowsAndColumns() {
//console.log(this.blocks);
this.rowCount = Math.max(...this.blocks.map(block => block.row)) + 1; // one more row for zero offset
this.columnCount = Math.max(...this.blocks.map(block => block.col)) + 2; // blocks are two-wide
this.blockRows = Array(this.rowCount)
.fill(0)
.map(() => ({
height: 0,
totalOffset: 0,
}));
this.blockColumns = Array(this.columnCount)
.fill(0)
.map(() => ({
width: 0,
totalOffset: 0,
}));
this.edgeRows = Array(this.rowCount + 1)
.fill(0)
.map(() => ({
height: 2 * EDGE_SPACING,
totalOffset: 0,
subrows: 0,
intervals: [],
}));
this.edgeColumns = Array(this.columnCount + 1)
.fill(0)
.map(() => ({
width: 2 * EDGE_SPACING,
totalOffset: 0,
subcolumns: 0,
intervals: [],
}));
}
computeEdgeMainColumns() {
// This is heavily inspired by Cutter
// We use a sweep line algorithm processing the CFG top to bottom keeping track of when columns are most
// recently blocked. Cutter uses an augmented binary tree to assist with finding empty columns, for now this
// just naively iterates.
enum EventType {
Edge = 0,
Block = 1,
}
type Event = {
blockIndex: number;
edgeIndex: number;
row: number;
type: EventType;
};
const events: Event[] = [];
for (const [i, block] of this.blocks.entries()) {
events.push({
blockIndex: i,
edgeIndex: -1,
row: block.row,
type: EventType.Block,
});
for (const [j, edge] of block.edges.entries()) {
events.push({
blockIndex: i,
edgeIndex: j,
row: Math.max(block.row + 1, this.blocks[edge.dest].row),
type: EventType.Edge,
});
}
}
// Sort by row (max(src row, target row) for edges), edge row n is before block row n
events.sort((a: Event, b: Event) => {
if (a.row === b.row) {
return a.type - b.type;
} else {
return a.row - b.row;
}
});
//
const blockedColumns = Array(this.columnCount + 1).fill(-1);
for (const event of events) {
if (event.type === EventType.Block) {
const block = this.blocks[event.blockIndex];
blockedColumns[block.col + 1] = block.row;
} else {
const source = this.blocks[event.blockIndex];
const edge = source.edges[event.edgeIndex];
const target = this.blocks[edge.dest];
const sourceColumn = source.col + 1;
const targetColumn = target.col + 1;
const topRow = Math.min(source.row + 1, target.row);
if (blockedColumns[sourceColumn] < topRow) {
// use column under source block
edge.mainColumn = sourceColumn;
} else if (blockedColumns[targetColumn] < topRow) {
// use column of the target
edge.mainColumn = targetColumn;
} else {
const leftCandidate =
sourceColumn -
1 -
blockedColumns
.slice(0, sourceColumn)
.reverse()
.findIndex(v => v < topRow);
const rightCandidate = sourceColumn + blockedColumns.slice(sourceColumn).findIndex(v => v < topRow);
// hamming distance
const distanceLeft =
Math.abs(sourceColumn - leftCandidate) + Math.abs(targetColumn - leftCandidate);
const distanceRight =
Math.abs(sourceColumn - rightCandidate) + Math.abs(targetColumn - rightCandidate);
// "figure 8" logic from cutter
// Takes a longer path that produces less crossing
if (target.row < source.row) {
if (
targetColumn < sourceColumn &&
blockedColumns[sourceColumn + 1] < topRow &&
sourceColumn - targetColumn <= distanceLeft + 2
) {
edge.mainColumn = sourceColumn + 1;
continue;
} else if (
targetColumn > sourceColumn &&
blockedColumns[sourceColumn - 1] < topRow &&
targetColumn - sourceColumn <= distanceRight + 2
) {
edge.mainColumn = sourceColumn - 1;
continue;
}
}
if (distanceLeft === distanceRight) {
// TODO: Could also try this
/*if(target.row <= source.row) {
if(leftCandidate === sourceColumn - 1) {
edge.mainColumn = leftCandidate;
continue;
} else if(rightCandidate === sourceColumn + 1) {
edge.mainColumn = rightCandidate;
continue;
}
}*/
// Place true branches on the left
// TODO: Need to investigate further block placement stuff here
// TODO: Need to investigate further offset placement stuff for the start segments
if (edge.color === 'green') {
edge.mainColumn = leftCandidate;
} else {
edge.mainColumn = rightCandidate;
}
} else if (distanceLeft < distanceRight) {
edge.mainColumn = leftCandidate;
} else {
edge.mainColumn = rightCandidate;
}
}
}
}
}
// eslint-disable-next-line max-statements
addEdgePaths() {
// (start: GridCoordinate, end: GridCoordinate) => ({
const makeSegment = (start: [number, number], end: [number, number]): EdgeSegment => ({
start: {
//...start,
row: start[0],
col: start[1],
x: 0,
y: 0,
},
end: {
//...end,
row: end[0],
col: end[1],
x: 0,
y: 0,
},
horizontalOffset: 0,
verticalOffset: 0,
type: start[1] === end[1] ? SegmentType.Vertical : SegmentType.Horizontal,
});
for (const block of this.blocks) {
for (const edge of block.edges) {
const target = this.blocks[edge.dest];
// start just below the source block
edge.path.push(makeSegment([block.row + 1, block.col + 1], [block.row + 1, block.col + 1]));
// horizontal segment over to main column
edge.path.push(makeSegment([block.row + 1, block.col + 1], [block.row + 1, edge.mainColumn]));
// vertical segment down the main column
edge.path.push(makeSegment([block.row + 1, edge.mainColumn], [target.row, edge.mainColumn]));
// horizontal segment over to the target column
edge.path.push(makeSegment([target.row, edge.mainColumn], [target.row, target.col + 1]));
// finish at the target block
edge.path.push(makeSegment([target.row, target.col + 1], [target.row, target.col + 1]));
// Simplify segments
// Simplifications performed are eliminating (non-sentinel) edges which don't move anywhere and folding
// VV -> V and HH -> H.
let movement;
do {
movement = false;
// i needs to start one into the range since we compare with i - 1
for (let i = 1; i < edge.path.length; i++) {
const prevSegment = edge.path[i - 1];
const segment = edge.path[i];
// sanity checks
for (let j = 0; j < edge.path.length; j++) {
const segment = edge.path[j];
if (
(segment.type === SegmentType.Vertical && segment.start.col !== segment.end.col) ||
(segment.type === SegmentType.Horizontal && segment.start.row !== segment.end.row)
) {
throw Error("Segment type doesn't match coordinates");
}
if (j > 0) {
const prev = edge.path[j - 1];
if (prev.end.row !== segment.start.row || prev.end.col !== segment.start.col) {
throw Error("Adjacent segment start/endpoints don't match");
}
}
if (j < edge.path.length - 1) {
const next = edge.path[j + 1];
if (segment.end.row !== next.start.row || segment.end.col !== next.start.col) {
throw Error("Adjacent segment start/endpoints don't match");
}
}
}
// If a segment doesn't go anywhere and is not a sentinel it can be eliminated
if (
segment.start.col === segment.end.col &&
segment.start.row === segment.end.row &&
i !== edge.path.length - 1
) {
edge.path.splice(i, 1);
movement = true;
continue;
}
// VV -> V
// HH -> H
if (prevSegment.type === segment.type) {
if (
(prevSegment.type === SegmentType.Vertical &&
prevSegment.start.col !== segment.start.col) ||
(prevSegment.type === SegmentType.Horizontal &&
prevSegment.start.row !== segment.start.row)
) {
throw Error(
"Adjacent horizontal or vertical segments don't share a common row or column"
);
}
prevSegment.end = segment.end;
edge.path.splice(i, 1);
movement = true;
continue;
}
}
} while (movement);
// sanity checks
for (let j = 0; j < edge.path.length; j++) {
const segment = edge.path[j];
if (
(segment.type === SegmentType.Vertical && segment.start.col !== segment.end.col) ||
(segment.type === SegmentType.Horizontal && segment.start.row !== segment.end.row)
) {
throw Error("Segment type doesn't match coordinates (post-simplification)");
}
if (j > 0) {
const prev = edge.path[j - 1];
if (prev.end.row !== segment.start.row || prev.end.col !== segment.start.col) {
throw Error("Adjacent segment start/endpoints don't match (post-simplification)");
}
}
if (j < edge.path.length - 1) {
const next = edge.path[j + 1];
if (segment.end.row !== next.start.row || segment.end.col !== next.start.col) {
throw Error("Adjacent segment start/endpoints don't match (post-simplification)");
}
}
}
// Compute subrows/subcolumns
for (const segment of edge.path) {
if (segment.type === SegmentType.Vertical) {
if (segment.start.col !== segment.end.col) {
throw Error('Vertical segment changes column');
}
const col = this.edgeColumns[segment.start.col];
let inserted = false;
for (const tree of col.intervals) {
if (!tree.intersect_any([segment.start.row, segment.end.row])) {
tree.insert([segment.start.row, segment.end.row], segment);
inserted = true;
break;
}
}
if (!inserted) {
const tree = new IntervalTree<EdgeSegment>();
col.intervals.push(tree);
col.subcolumns++;
tree.insert([segment.start.row, segment.end.row], segment);
}
} else {
// horizontal
if (segment.start.row !== segment.end.row) {
throw Error('Horizontal segment changes row');
}
const row = this.edgeRows[segment.start.row];
let inserted = false;
for (const tree of row.intervals) {
if (!tree.intersect_any([segment.start.col, segment.end.col])) {
tree.insert([segment.start.col, segment.end.col], segment);
inserted = true;
break;
}
}
if (!inserted) {
const tree = new IntervalTree<EdgeSegment>();
row.intervals.push(tree);
row.subrows++;
tree.insert([segment.start.col, segment.end.col], segment);
}
}
}
}
}
// Throw everything away and do it all again, but smarter
for (const edgeColumn of this.edgeColumns) {
for (const intervalTree of edgeColumn.intervals) {
intervalTree.root = null as unknown as Node<EdgeSegment>;
}
}
for (const edgeRow of this.edgeRows) {
for (const intervalTree of edgeRow.intervals) {
intervalTree.root = null as unknown as Node<EdgeSegment>;
}
}
// Edge kind is the primary heuristic for subrow/column assignment
// For horizontal edges, think of left/vertical/right terminology rotated 90 degrees right
enum EdgeKind {
LEFTU = -2,
LEFTCORNER = -1,
VERTICAL = 0,
RIGHTCORNER = 1,
RIGHTU = 2,
NULL = NaN,
}
const segments: {
segment: EdgeSegment;
length: number;
kind: EdgeKind;
tiebreaker: number;
}[] = [];
for (const block of this.blocks) {
for (const edge of block.edges) {
const edgeLength = edge.path
.map(({start, end}) => Math.abs(start.col - end.col) + Math.abs(start.row - end.row))
.reduce((A, x) => A + x);
const target = this.blocks[edge.dest];
for (const [i, segment] of edge.path.entries()) {
let kind = EdgeKind.NULL;
if (i === 0) {
// segment will be vertical
if (edge.path.length === 1) {
kind = EdgeKind.VERTICAL;
} else {
const next = edge.path[i + 1];
if (next.end.col > segment.end.col) {
kind = EdgeKind.RIGHTCORNER;
} else {
kind = EdgeKind.LEFTCORNER;
}
}
} else if (i === edge.path.length - 1) {
// segment will be vertical
// there will be a previous segment, i !== 0
const previous = edge.path[i - 1];
if (previous.start.col > segment.end.col) {
kind = EdgeKind.RIGHTCORNER;
} else {
kind = EdgeKind.LEFTCORNER;
}
} else {
// there will be both a previous and a next
const next = edge.path[i + 1];
const previous = edge.path[i - 1];
if (segment.type === SegmentType.Vertical) {
if (previous.start.col < segment.start.col && next.end.col < segment.start.col) {
kind = EdgeKind.LEFTU;
} else if (previous.start.col > segment.start.col && next.end.col > segment.start.col) {
kind = EdgeKind.RIGHTU;
} else if (previous.start.col > segment.end.col) {
kind = EdgeKind.RIGHTCORNER;
} else {
kind = EdgeKind.LEFTCORNER;
}
} else {
// horizontal
// Same logic, think rotated 90 degrees right
if (previous.start.row <= segment.start.row && next.end.row < segment.start.row) {
kind = EdgeKind.LEFTU;
} else if (previous.start.row > segment.start.row && next.end.row > segment.start.row) {
kind = EdgeKind.RIGHTU;
} else if (previous.start.row > segment.end.row) {
kind = EdgeKind.RIGHTCORNER;
} else {
kind = EdgeKind.LEFTCORNER;
}
}
}
assert((kind as any) !== EdgeKind.NULL);
segments.push({
segment,
kind,
length:
Math.abs(segment.start.col - segment.end.col) +
Math.abs(segment.start.row - segment.end.row),
tiebreaker: 2 * edgeLength + (target.row >= block.row ? 1 : 0),
});
}
}
}
segments.sort((a, b) => {
if (a.kind !== b.kind) {
return a.kind - b.kind;
} else {
const kind = a.kind; // a.kind == b.kind
if (a.length !== b.length) {
if (kind <= 0) {
// shortest first if coming from the left
return a.length - b.length;
} else {
// coming from the right, shortest last
// reverse edge length order
return b.length - a.length;
}
} else {
if (kind <= 0) {
return a.tiebreaker - b.tiebreaker;
} else {
// coming from the right, reverse
return b.tiebreaker - a.tiebreaker;
}
}
}
});
///console.log(segments);
for (const segmentEntry of segments) {
const {segment} = segmentEntry;
if (segment.type === SegmentType.Vertical) {
const col = this.edgeColumns[segment.start.col];
let inserted = false;
for (const tree of col.intervals) {
if (!tree.intersect_any([segment.start.row, segment.end.row])) {
tree.insert([segment.start.row, segment.end.row], segment);
inserted = true;
break;
}
}
if (!inserted) {
throw Error("Vertical segment couldn't be inserted");
}
} else {
// Horizontal
const row = this.edgeRows[segment.start.row];
let inserted = false;
for (const tree of row.intervals) {
if (!tree.intersect_any([segment.start.col, segment.end.col])) {
tree.insert([segment.start.col, segment.end.col], segment);
inserted = true;
break;
}
}
if (!inserted) {
throw Error("Horizontal segment couldn't be inserted");
}
}
}
// Assign offsets
for (const edgeColumn of this.edgeColumns) {
edgeColumn.width = Math.max(EDGE_SPACING + edgeColumn.intervals.length * EDGE_SPACING, 2 * EDGE_SPACING);
for (const [i, intervalTree] of edgeColumn.intervals.entries()) {
for (const segment of intervalTree.values) {
segment.horizontalOffset = EDGE_SPACING * (i + 1);
}
}
}
for (const edgeRow of this.edgeRows) {
edgeRow.height = Math.max(EDGE_SPACING + edgeRow.intervals.length * EDGE_SPACING, 2 * EDGE_SPACING);
for (const [i, intervalTree] of edgeRow.intervals.entries()) {
for (const segment of intervalTree.values) {
segment.verticalOffset = EDGE_SPACING * (i + 1);
}
}
}
}
// eslint-disable-next-line max-statements
computeCoordinates() {
// Compute block row widths and heights
for (const block of this.blocks) {
// Update block width if it has a ton of incoming edges
block.data.width = Math.max(block.data.width, (block.incidentEdgeCount - 1) * EDGE_SPACING);
//console.log(this.blockRows[block.row].height, block.data.height, block.row);
//console.log(this.blockRows);
const halfWidth = (block.data.width - this.edgeColumns[block.col + 1].width) / 2;
//console.log("--->", block.col, this.columnCount);
this.blockRows[block.row].height = Math.max(this.blockRows[block.row].height, block.data.height);
this.blockColumns[block.col].width = Math.max(this.blockColumns[block.col].width, halfWidth);
this.blockColumns[block.col + 1].width = Math.max(this.blockColumns[block.col + 1].width, halfWidth);
}
// Compute row total offsets
for (let i = 0; i < this.rowCount; i++) {
// edge row 0 is already at the correct offset, this iteration will set the offset for block row 0 and edge
// row 1.
this.blockRows[i].totalOffset = this.edgeRows[i].totalOffset + this.edgeRows[i].height;
this.edgeRows[i + 1].totalOffset = this.blockRows[i].totalOffset + this.blockRows[i].height;
}
// Compute column total offsets
for (let i = 0; i < this.columnCount; i++) {
// same deal here
this.blockColumns[i].totalOffset = this.edgeColumns[i].totalOffset + this.edgeColumns[i].width;
this.edgeColumns[i + 1].totalOffset = this.blockColumns[i].totalOffset + this.blockColumns[i].width;
}
// Compute block coordinates and edge paths
for (const block of this.blocks) {
block.coordinates.x =
this.edgeColumns[block.col + 1].totalOffset -
(block.data.width - this.edgeColumns[block.col + 1].width) / 2;
block.coordinates.y = this.blockRows[block.row].totalOffset;
for (const edge of block.edges) {
if (edge.path.length === 1) {
// Special case: Direct dropdown
const segment = edge.path[0];
const target = this.blocks[edge.dest];
segment.start.x = this.edgeColumns[segment.start.col].totalOffset + segment.horizontalOffset;
segment.start.y = block.coordinates.y + block.data.height;
segment.end.x = this.edgeColumns[segment.end.col].totalOffset + segment.horizontalOffset;
segment.end.y = this.edgeRows[target.row].totalOffset + this.edgeRows[target.row].height;
} else {
// push initial point
{
const segment = edge.path[0];
segment.start.x = this.edgeColumns[segment.start.col].totalOffset + segment.horizontalOffset;
segment.start.y = block.coordinates.y + block.data.height;
segment.end.x = this.edgeColumns[segment.end.col].totalOffset + segment.horizontalOffset;
segment.end.y = 0; // this is something we need from the next segment
}
// first and last handled specially
for (const segment of edge.path.slice(1, edge.path.length - 1)) {
segment.start.x = this.edgeColumns[segment.start.col].totalOffset + segment.horizontalOffset;
segment.start.y = this.edgeRows[segment.start.row].totalOffset + segment.verticalOffset;
segment.end.x = this.edgeColumns[segment.end.col].totalOffset + segment.horizontalOffset;
segment.end.y = this.edgeRows[segment.end.row].totalOffset + segment.verticalOffset;
}
// push final point
{
const target = this.blocks[edge.dest];
const segment = edge.path[edge.path.length - 1];
segment.start.x = this.edgeColumns[segment.start.col].totalOffset + segment.horizontalOffset;
segment.start.y = 0; // something we need from the previous segment
segment.end.x = this.edgeColumns[segment.start.col].totalOffset + segment.horizontalOffset;
segment.end.y = this.edgeRows[target.row].totalOffset + this.edgeRows[target.row].height;
}
// apply offsets to neighbor segments
for (let i = 0; i < edge.path.length; i++) {
const segment = edge.path[i];
if (segment.type === SegmentType.Vertical) {
if (i > 0) {
const prev = edge.path[i - 1];
prev.end.x = segment.start.x;
}
if (i < edge.path.length - 1) {
const next = edge.path[i + 1];
next.start.x = segment.end.x;
}
} else {
// Horizontal
if (i > 0) {
const prev = edge.path[i - 1];
prev.end.y = segment.start.y;
}
if (i < edge.path.length - 1) {
const next = edge.path[i + 1];
next.start.y = segment.end.y;
}
}
}
}
}
}
}
layout() {
const topologicalOrder = this.computeDag();
//console.log(topologicalOrder);
this.assignRows(topologicalOrder);
//console.log(this.blocks);
this.computeTree(topologicalOrder);
//console.log(this.blocks);
this.assignColumns(topologicalOrder);
//console.log(this.blocks);
this.setupRowsAndColumns();
// Edge routing
this.computeEdgeMainColumns();
this.addEdgePaths();
// -- Nothing is pixel aware above this line ---
// Add pixel coordinates
this.computeCoordinates();
//
///console.log(this);
}
getWidth() {
const lastCol = this.edgeColumns[this.edgeColumns.length - 1];
return lastCol.totalOffset + lastCol.width;
}
getHeight() {
const lastRow = this.edgeRows[this.edgeRows.length - 1];
return lastRow.totalOffset + lastRow.height;
}
}