| <!DOCTYPE html> |
| |
| <html> |
| <head> |
| <meta charset="UTF-8"> |
| <link href="style.css" type="text/css" rel="stylesheet"> |
| <title>RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values </title></head> |
| <body> |
| <h1>RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values</h1> |
| <table> |
| <tr> |
| <th>Opcode*/Instruction</th> |
| <th>Op/En</th> |
| <th>64/32 bit Mode Support</th> |
| <th>CPUID Feature Flag</th> |
| <th>Description</th></tr> |
| <tr> |
| <td> |
| <p>0F 53 /<em>r</em></p> |
| <p>RCPPS<em> xmm1</em>,<em> xmm2/m128</em></p></td> |
| <td>RM</td> |
| <td>V/V</td> |
| <td>SSE</td> |
| <td>Computes the approximate reciprocals of the packed single-precision floating-point values in <em>xmm2/m128</em> and stores the results in <em>xmm1</em>.</td></tr> |
| <tr> |
| <td> |
| <p>VEX.128.0F.WIG 53 /r</p> |
| <p>VRCPPS <em>xmm1, xmm2/m128</em></p></td> |
| <td>RM</td> |
| <td>V/V</td> |
| <td>AVX</td> |
| <td>Computes the approximate reciprocals of packed single-precision values in <em>xmm2/mem </em>and stores the results in <em>xmm1</em>.</td></tr> |
| <tr> |
| <td> |
| <p>VEX.256.0F.WIG 53 /r</p> |
| <p>VRCPPS <em>ymm1, ymm2/m256</em></p></td> |
| <td>RM</td> |
| <td>V/V</td> |
| <td>AVX</td> |
| <td>Computes the approximate reciprocals of packed single-precision values in <em>ymm2/mem </em>and stores the results in <em>ymm1</em>.</td></tr></table> |
| <h3>Instruction Operand Encoding</h3> |
| <table> |
| <tr> |
| <td>Op/En</td> |
| <td>Operand 1</td> |
| <td>Operand 2</td> |
| <td>Operand 3</td> |
| <td>Operand 4</td></tr> |
| <tr> |
| <td>RM</td> |
| <td>ModRM:reg (w)</td> |
| <td>ModRM:r/m (r)</td> |
| <td>NA</td> |
| <td>NA</td></tr></table> |
| <h2>Description</h2> |
| <p>Performs a SIMD computation of the approximate reciprocals of the four packed single-precision floating-point values in the source operand (second operand) stores the packed single-precision floating-point results in the destination operand. The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM register. See Figure 10-5 in the <em>Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1</em>, for an illustration of a SIMD single-precision floating-point operation.</p> |
| <p>The relative error for this approximation is:</p> |
| <p>|Relative Error| ≤ 1.5 ∗ 2<sup>−12</sup></p> |
| <p>The RCPPS instruction is not affected by the rounding control bits in the MXCSR register. When a source value is a 0.0, an ∞ of the sign of the source value is returned. A denormal source value is treated as a 0.0 (of the same sign). Tiny results are always flushed to 0.0, with the sign of the operand. (Input values greater than or equal to |1.11111111110100000000000B∗2<sup>125</sup>| are guaranteed to not produce tiny results; input values less than or equal to |1.00000000000110000000001B*2<sup>126</sup>| are guaranteed to produce tiny results, which are in turn flushed to 0.0; and input values in between this range may or may not produce tiny results, depending on the implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the source QNaN is returned.</p> |
| <p>In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).</p> |
| <p>128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.</p> |
| <p>VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed.</p> |
| <p>VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register.</p> |
| <p>Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.</p> |
| <h2>Operation</h2> |
| <p><strong>RCPPS (128-bit Legacy SSE version)</strong></p> |
| <pre>DEST[31:0] ← APPROXIMATE(1/SRC[31:0]) |
| DEST[63:32] ← APPROXIMATE(1/SRC[63:32]) |
| DEST[95:64] ← APPROXIMATE(1/SRC[95:64]) |
| DEST[127:96] ← APPROXIMATE(1/SRC[127:96]) |
| DEST[VLMAX-1:128] (Unmodified)</pre> |
| <p><strong>VRCPPS (VEX.128 encoded version)</strong></p> |
| <pre>DEST[31:0] ← APPROXIMATE(1/SRC[31:0]) |
| DEST[63:32] ← APPROXIMATE(1/SRC[63:32]) |
| DEST[95:64] ← APPROXIMATE(1/SRC[95:64]) |
| DEST[127:96] ← APPROXIMATE(1/SRC[127:96]) |
| DEST[VLMAX-1:128] ← 0</pre> |
| <p><strong>VRCPPS (VEX.256 encoded version)</strong></p> |
| <pre>DEST[31:0] ← APPROXIMATE(1/SRC[31:0]) |
| DEST[63:32] ← APPROXIMATE(1/SRC[63:32]) |
| DEST[95:64] ← APPROXIMATE(1/SRC[95:64]) |
| DEST[127:96] ← APPROXIMATE(1/SRC[127:96]) |
| DEST[159:128] ← APPROXIMATE(1/SRC[159:128]) |
| DEST[191:160] ← APPROXIMATE(1/SRC[191:160]) |
| DEST[223:192] ← APPROXIMATE(1/SRC[223:192]) |
| DEST[255:224] ← APPROXIMATE(1/SRC[255:224])</pre> |
| <h2>Intel C/C++ Compiler Intrinsic Equivalent</h2> |
| <p>RCCPS:</p> |
| <p>__m128 _mm_rcp_ps(__m128 a)</p> |
| <p>RCPPS:</p> |
| <p> __m256 _mm256_rcp_ps (__m256 a);</p> |
| <h2>SIMD Floating-Point Exceptions</h2> |
| <p>None.</p> |
| <h2>Other Exceptions</h2> |
| <p>See Exceptions Type 4; additionally</p> |
| <table class="exception-table"> |
| <tr> |
| <td>#UD</td> |
| <td>If VEX.vvvv ≠ 1111B.</td></tr></table></body></html> |