blob: 3c716989cfb4fd85f247b03dac53f9ccf99562c7 [file] [log] [blame] [raw]
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<link href="style.css" type="text/css" rel="stylesheet">
<title>PADDB/PADDW/PADDD—Add Packed Integers </title></head>
<body>
<h1>PADDB/PADDW/PADDD—Add Packed Integers</h1>
<table>
<tr>
<th>Opcode/Instruction</th>
<th>Op/En</th>
<th>64/32 bit Mode Support</th>
<th>CPUID Feature Flag</th>
<th>Description</th></tr>
<tr>
<td>
<p>0F FC /<em>r</em><sup>1</sup></p>
<p>PADDB <em>mm, mm/m64</em></p></td>
<td>RM</td>
<td>V/V</td>
<td>MMX</td>
<td>Add packed byte integers from <em>mm/m64</em> and <em>mm</em>.</td></tr>
<tr>
<td>
<p>66 0F FC /<em>r</em></p>
<p>PADDB<em> xmm1, xmm2/m128</em></p></td>
<td>RM</td>
<td>V/V</td>
<td>SSE2</td>
<td>Add packed byte integers from<em> xmm2/m128 </em>and <em>xmm1</em>.</td></tr>
<tr>
<td>
<p>0F FD /<em>r</em><sup>1</sup></p>
<p>PADDW <em>mm, mm/m64</em></p></td>
<td>RM</td>
<td>V/V</td>
<td>MMX</td>
<td>Add packed word integers from <em>mm/m64</em> and <em>mm</em>.</td></tr>
<tr>
<td>
<p>66 0F FD /<em>r</em></p>
<p>PADDW <em>xmm1, xmm2/m128</em></p></td>
<td>RM</td>
<td>V/V</td>
<td>SSE2</td>
<td>Add packed word integers from<em> xmm2/m128 </em>and <em>xmm1</em>.</td></tr>
<tr>
<td>
<p>0F FE /<em>r</em><sup>1</sup></p>
<p>PADDD <em>mm, mm/m64</em></p></td>
<td>RM</td>
<td>V/V</td>
<td>MMX</td>
<td>Add packed doubleword integers from <em>mm/m64</em> and <em>mm</em>.</td></tr>
<tr>
<td>
<p>66 0F FE /<em>r</em></p>
<p>PADDD <em>xmm1, xmm2/m128</em></p></td>
<td>RM</td>
<td>V/V</td>
<td>SSE2</td>
<td>Add packed doubleword integers from <em>xmm2/m128</em> and <em>xmm1</em>.</td></tr>
<tr>
<td>
<p>VEX.NDS.128.66.0F.WIG FC /r</p>
<p>VPADDB <em>xmm1, xmm2, xmm3/m128</em></p></td>
<td>RVM</td>
<td>V/V</td>
<td>AVX</td>
<td>Add packed byte integers from <em>xmm3/m128 </em>and <em>xmm2</em>.</td></tr>
<tr>
<td>
<p>VEX.NDS.128.66.0F.WIG FD /r</p>
<p>VPADDW <em>xmm1, xmm2, xmm3/m128</em></p></td>
<td>RVM</td>
<td>V/V</td>
<td>AVX</td>
<td>Add packed word integers from <em>xmm3/m128 </em>and <em>xmm2</em>.</td></tr>
<tr>
<td>
<p>VEX.NDS.128.66.0F.WIG FE /r</p>
<p>VPADDD <em>xmm1, xmm2, xmm3/m128</em></p></td>
<td>RVM</td>
<td>V/V</td>
<td>AVX</td>
<td>Add packed doubleword integers from <em>xmm3/m128</em> and <em>xmm2</em>.</td></tr>
<tr>
<td>
<p>VEX.NDS.256.66.0F.WIG FC /r</p>
<p>VPADDB<em> ymm1, ymm2, ymm3/m256</em></p></td>
<td>RVM</td>
<td>V/V</td>
<td>AVX2</td>
<td>Add packed byte integers from<em> ymm2, and ymm3/m256</em> and store in <em>ymm1.</em></td></tr>
<tr>
<td>
<p>VEX.NDS.256.66.0F.WIG FD /r</p>
<p>VPADDW<em> ymm1, ymm2, ymm3/m256</em></p></td>
<td>RVM</td>
<td>V/V</td>
<td>AVX2</td>
<td>Add packed word integers from<em> ymm2, ymm3/m256 </em>and <em>store in ymm1.</em></td></tr>
<tr>
<td>
<p>VEX.NDS.256.66.0F.WIG FE /r</p>
<p>VPADDD<em> ymm1, ymm2, ymm3/m256</em></p></td>
<td>RVM</td>
<td>V/V</td>
<td>AVX2</td>
<td>Add packed doubleword integers from<em> ymm2, ymm3/m256 </em>and <em>store in ymm1.</em></td></tr></table>
<p>NOTES:</p>
<p>1. See note in Section 2.4, “Instruction Exception Specification” in the <em>Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A</em> and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the <em>Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A</em>.</p>
<h3>Instruction Operand Encoding</h3>
<table>
<tr>
<td>Op/En</td>
<td>Operand 1</td>
<td>Operand 2</td>
<td>Operand 3</td>
<td>Operand 4</td></tr>
<tr>
<td>RM</td>
<td>ModRM:reg (r, w)</td>
<td>ModRM:r/m (r)</td>
<td>NA</td>
<td>NA</td></tr>
<tr>
<td>RVM</td>
<td>ModRM:reg (w)</td>
<td>VEX.vvvv (r)</td>
<td>ModRM:r/m (r)</td>
<td>NA</td></tr></table>
<h2>Description</h2>
<p>Performs a SIMD add of the packed integers from the source operand (second operand) and the destination operand (first operand), and stores the packed integer results in the destination operand. See Figure 9-4 in the <em>Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1</em>, for an illustration of a SIMD operation. Overflow is handled with wraparound, as described in the following paragraphs.</p>
<p>Adds the packed byte, word, doubleword, or quadword integers in the first source operand to the second source operand and stores the result in the destination operand. When a result is too large to be represented in the</p>
<p>8/16/32 integer (overflow), the result is wrapped around and the low bits are written to the destination element (that is, the carry is ignored).</p>
<p>Note that these instructions can operate on either unsigned or signed (two’s complement notation) integers; however, it does not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent undetected overflow conditions, software must control the ranges of the values operated on.</p>
<p>These instructions can operate on either 64-bit, 128-bit or 256-bit operands. When operating on 64-bit operands, the destination operand must be an MMX technology register and the source operand can be either an MMX tech-nology register or a 64-bit memory location. In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).</p>
<p>128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.</p>
<p>VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed.</p>
<p>VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register.</p>
<p>Note: VEX.L must be 0, otherwise the instruction will #UD.</p>
<h2>Operation</h2>
<p><strong>PADDB (with 64-bit operands)</strong></p>
<pre> DEST[7:0] ← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 7th byte *)
DEST[63:56] ← DEST[63:56] + SRC[63:56];</pre>
<p><strong>PADDB (with 128-bit operands)</strong></p>
<pre> DEST[7:0] ← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 14th byte *)
DEST[127:120] ← DEST[111:120] + SRC[127:120];</pre>
<p><strong>VPADDB (VEX.128 encoded version)</strong></p>
<pre> DEST[7:0] ← SRC1[7:0]+SRC2[7:0]
DEST[15:8] ← SRC1[15:8]+SRC2[15:8]
DEST[23:16] ← SRC1[23:16]+SRC2[23:16]
DEST[31:24] ← SRC1[31:24]+SRC2[31:24]
DEST[39:32] ← SRC1[39:32]+SRC2[39:32]
DEST[47:40] ← SRC1[47:40]+SRC2[47:40]
DEST[55:48] ← SRC1[55:48]+SRC2[55:48]
DEST[63:56] ← SRC1[63:56]+SRC2[63:56]
DEST[71:64] ← SRC1[71:64]+SRC2[71:64]
DEST[79:72] ← SRC1[79:72]+SRC2[79:72]
DEST[87:80] ← SRC1[87:80]+SRC2[87:80]
DEST[95:88] ← SRC1[95:88]+SRC2[95:88]
DEST[103:96] ← SRC1[103:96]+SRC2[103:96]
DEST[111:104] ← SRC1[111:104]+SRC2[111:104]
DEST[119:112] ← SRC1[119:112]+SRC2[119:112]
DEST[127:120] ← SRC1[127:120]+SRC2[127:120]
DEST[VLMAX-1:128] ← 0</pre>
<p><strong>VPADDB (VEX.256 encoded instruction)</strong></p>
<pre> DEST[7:0]← SRC1[7:0] + SRC2[7:0];
(* Repeat add operation for 2nd through 31th byte *)
DEST[255:248]← SRC1[255:248] + SRC2[255:248];</pre>
<p><strong>PADDW (with 64-bit operands)</strong></p>
<pre> DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] ← DEST[63:48] + SRC[63:48];</pre>
<p><strong>PADDW (with 128-bit operands)</strong></p>
<pre> DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] ← DEST[127:112] + SRC[127:112];</pre>
<p><strong>VPADDW (VEX.128 encoded version)</strong></p>
<pre> DEST[15:0] ← SRC1[15:0]+SRC2[15:0]
DEST[31:16] ← SRC1[31:16]+SRC2[31:16]
DEST[47:32] ← SRC1[47:32]+SRC2[47:32]
DEST[63:48] ← SRC1[63:48]+SRC2[63:48]
DEST[79:64] ← SRC1[79:64]+SRC2[79:64]
DEST[95:80] ← SRC1[95:80]+SRC2[95:80]
DEST[111:96] ← SRC1[111:96]+SRC2[111:96]
DEST[127:112] ← SRC1[127:112]+SRC2[127:112]
DEST[VLMAX-1:128] ← 0</pre>
<p><strong>VPADDW (VEX.256 encoded instruction)</strong></p>
<pre> DEST[15:0] ← SRC1[15:0] + SRC2[15:0];
(* Repeat add operation for 2nd through 15th word *)
DEST[255:240]← SRC1[255:240] + SRC2[255:240];</pre>
<p><strong>PADDD (with 64-bit operands)</strong></p>
<pre> DEST[31:0] ← DEST[31:0] + SRC[31:0];
DEST[63:32] ← DEST[63:32] + SRC[63:32];</pre>
<p><strong>PADDD (with 128-bit operands)</strong></p>
<pre> DEST[31:0] ← DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] ← DEST[127:96] + SRC[127:96];</pre>
<p><strong>VPADDD (VEX.128 encoded version)</strong></p>
<pre> DEST[31:0] ← SRC1[31:0]+SRC2[31:0]
DEST[63:32] ← SRC1[63:32]+SRC2[63:32]
DEST[95:64] ← SRC1[95:64]+SRC2[95:64]
DEST[127:96] ← SRC1[127:96]+SRC2[127:96]
DEST[VLMAX-1:128] ← 0</pre>
<p><strong>VPADDD (VEX.256 encoded instruction)</strong></p>
<pre> DEST[31:0]← SRC1[31:0] + SRC2[31:0];
(* Repeat add operation for 2nd and 7th doubleword *)
DEST[255:224] ← SRC1[255:224] + SRC2[255:224];</pre>
<h2>Intel C/C++ Compiler Intrinsic Equivalents</h2>
<p>PADDB:</p>
<p> __m64 _mm_add_pi8(__m64 m1, __m64 m2)</p>
<p>(V)PADDB:</p>
<p> __m128i _mm_add_epi8 (__m128ia,__m128ib )</p>
<p>VPADDB:</p>
<p>__m256i _mm256_add_epi8 (__m256ia,__m256i b )</p>
<p>PADDW:</p>
<p> __m64 _mm_add_pi16(__m64 m1, __m64 m2)</p>
<p>(V)PADDW:</p>
<p> __m128i _mm_add_epi16 ( __m128i a, __m128i b)</p>
<p>VPADDW:</p>
<p>__m256i _mm256_add_epi16 ( __m256i a, __m256i b)</p>
<p>PADDD:</p>
<p> __m64 _mm_add_pi32(__m64 m1, __m64 m2)</p>
<p>(V)PADDD:</p>
<p> __m128i _mm_add_epi32 ( __m128i a, __m128i b)</p>
<p>VPADDD:</p>
<p>__m256i _mm256_add_epi32 ( __m256i a, __m256i b)</p>
<h2>Flags Affected</h2>
<p>None.</p>
<h2>SIMD Floating-Point Exceptions</h2>
<p>None.</p>
<h2>Other Exceptions</h2>
<p>See Exceptions Type 4; additionally</p>
<table class="exception-table">
<tr>
<td>#UD</td>
<td>If VEX.L = 1.</td></tr></table></body></html>