blob: f1a5f9c15208a83d4379287bbf9c9a8bc8ec99c5 [file] [log] [blame] [raw]
#include "Audio.h"
#include "Tedmem.h"
#include "Filter.h"
#include <math.h>
#ifdef _DEBUG
#include <cstdio>
#endif
#define PRECISION 0
#define OSCRELOADVAL (0x3FF << PRECISION)
static unsigned int masterVolume;
static int Volume;
static int Snd1Status;
static int Snd2Status;
static int SndNoiseStatus;
static int DAStatus;
static unsigned short Freq1;
static unsigned short Freq2;
static int NoiseCounter;
static int FlipFlop[2];
static int dcOutput[2];
static int oscCount1;
static int oscCount2;
static int OscReload[2];
static int oscStep;
static unsigned char noise[256]; // 0-8
inline void TED::setFreq(unsigned int channel, int freq)
{
dcOutput[channel] = (freq == 0x3FE) ? 1 : 0;
OscReload[channel] = ((freq + 1)&0x3FF) << PRECISION;
}
void TED::oscillatorReset()
{
FlipFlop[0] = dcOutput[0] = 0;
FlipFlop[1] = dcOutput[1] = 0;
oscCount1 = 0;
oscCount2 = 0;
NoiseCounter = 0;
Freq1 = Freq2 = 0;
DAStatus = 0;
}
// call only once!
void TED::oscillatorInit()
{
oscillatorReset();
/* initialise im with 0xa8 */
int im = 0xa8;
for (unsigned int i = 0; i<256; i++) {
noise[i] = im & 1;
im = (im<<1)+(1^((im>>7)&1)^((im>>5)&1)^((im>>4)&1)^((im>>1)&1));
}
oscStep = (1 << PRECISION) << 0;
// set player specific parameters
waveForm = 0;
masterVolume = 8;
setplaybackSpeed(3);
enableChannel(0, true);
enableChannel(1, true);
}
void TED::writeSoundReg(ClockCycle cycle, unsigned int reg, unsigned char value)
{
#if defined(_DEBUG) && 1
static FILE *f = std::fopen("freqlog.txt", "a");
if (f)
std::fprintf(f, "%04X <- %02X in cycle %u", 0xff0e + reg, value, cycle);
fprintf(f, "\n");
#endif
switch (reg) {
case 0:
Freq1 = (Freq1 & 0x300) | value;
setFreq(0, Freq1);
break;
case 1:
Freq2 = (Freq2 & 0x300) | value;
setFreq(1, Freq2);
break;
case 2:
Freq2 = (Freq2 & 0xFF) | (value << 8);
setFreq(1, Freq2);
break;
case 3:
if (DAStatus = value & 0x80) {
FlipFlop[0] = 1;
FlipFlop[1] = 1;
oscCount1 = OscReload[0];
oscCount2 = OscReload[1];
NoiseCounter = 0x100;
}
Volume = value & 0x0F;
if (Volume > 8) Volume = 8;
Volume = (Volume << 10) * masterVolume / 10;
setMasterVolume(masterVolume);
Snd1Status = value & 0x10;
Snd2Status = value & 0x20;
SndNoiseStatus = value & 0x40;
break;
case 4:
Freq1 = (Freq1 & 0xFF) | (value << 8);
setFreq(0, Freq1);
break;
}
}
inline void TED::storeToBuffer(short *buffer, short sample)
{
static double lp_accu = 0;
static double hp_accu = 0;
const double hptc=4000.0/1000000; // 6000us (est) maybe 7000 ?
const double hpc=1.0/(hptc * sampleRate * 2.0); // 2*pi*fc=1/tau..
// TODO: a proper windowed lowpass FIR filter
#if 1
const double lpc = 1.0 - exp( - double(sampleRate) / 2.0 / double(TED_SOUND_CLOCK));
double accu = (double) sample;
// apply low pass filter -> lp_accu = lpc*accu + (1-lpc)*lp_accu
lp_accu += lpc * (accu - lp_accu);
accu = lp_accu - hp_accu;
// update hp filter pole
hp_accu += hpc * accu;
// fill the buffer
*buffer = ((short)accu);
#else
//*buffer = sample;
double accu = (double) filter->lowPass(sample);
accu = accu - hp_accu;
// update hp filter pole
hp_accu += hpc * accu;
// fill the buffer
*buffer = ((short)accu);
#endif
}
void TED::renderSound(unsigned int nrsamples, short *buffer)
{
unsigned int mod1, mod2, msb;
switch (waveForm) {
default:
mod1 = channelMask[0];
mod2 = channelMask[1];
break;
case 1: // sawtooth
mod1 = ((OscReload[0] - oscCount1) << 3) & channelMask[0];
mod2 = ((OscReload[1] - oscCount2) << 3) & channelMask[1];
break;
case 2: // triangle
msb = 1 << 9;
mod1 = (OscReload[0] - oscCount1) << 3;
if (mod1 & msb) mod1 = ~mod1;
mod2 = (OscReload[1] - oscCount2) << 3;
if (mod2 & msb) mod2 = ~mod2;
mod1 &= channelMask[0];
mod2 &= channelMask[1];
break;
}
// Calculate the buffer...
if (DAStatus) {// digi?
short sample = 0;//audiohwspec->silence;
if (Snd1Status) sample = Volume & mod1;
if (Snd2Status) sample += Volume & mod2;
for (;nrsamples--;) {
storeToBuffer(buffer++, sample);
}
} else {
unsigned int result;
for (;nrsamples--;) {
// Channel 1
if (dcOutput[0]) {
FlipFlop[0] = 1;
} else if ((oscCount1 += oscStep) >= OSCRELOADVAL) {
FlipFlop[0] ^= 1;
oscCount1 = OscReload[0] + (oscCount1 - OSCRELOADVAL);
}
// Channel 2
if (dcOutput[1]) {
FlipFlop[1] = 1;
} else if ((oscCount2 += oscStep) >= OSCRELOADVAL) {
NoiseCounter = (NoiseCounter + 1) & 0xFF;
oscCount2 = OscReload[1] + (oscCount2 - OSCRELOADVAL);
}
result = (FlipFlop[0] && Snd1Status) ? Volume & mod1 : 0;
if (Snd2Status && FlipFlop[1]) {
result += Volume & mod2;
} else if (SndNoiseStatus && noise[NoiseCounter]) {
result += Volume;
}
storeToBuffer(buffer++, result);
} // for
}
}
void TED::setMasterVolume(unsigned int shift)
{
unsigned int vol = Ram[0xFF11] & 0x0f;
if (vol > 8) vol = 8;
Volume = (vol << 10) * shift / 10;
masterVolume = shift;
}
void TED::selectWaveForm(unsigned int wave)
{
waveForm = wave;
}
void TED::setplaybackSpeed(unsigned int speed)
{
unsigned int speeds[] = { 16, 8, 4, 3, 2 };
playbackSpeed = speeds[(speed - 1) % 5];
}
void TED::getTimeSinceLastReset(int hour, int min, int sec)
{
ClockCycle elapsedCycles = CycleCounter - lastResetCycle;
int secondsPlayed = int(double(elapsedCycles) / double(TED_SOUND_CLOCK * 4) + 0.5);
}
void TED::setSampleRate(unsigned int value)
{
if (value != sampleRate) {
if (filter)
delete filter;
filter = new Filter(value / 2, TED_SOUND_CLOCK, 24);
//filter = new Filter(TED_SOUND_CLOCK / 16, TED_SOUND_CLOCK, 16);
//filter = new Filter(460, 2000, 20);
filter->reCalcWindowTable();
sampleRate = value;
}
}