| /* |
| * Elliptic curves over GF(p) |
| * |
| * Copyright (C) 2012, Brainspark B.V. |
| * |
| * This file is part of PolarSSL (http://www.polarssl.org) |
| * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org> |
| * |
| * All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| */ |
| |
| /* |
| * References: |
| * |
| * SEC1 http://www.secg.org/index.php?action=secg,docs_secg |
| * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone |
| * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf |
| */ |
| |
| #include "polarssl/config.h" |
| |
| #if defined(POLARSSL_ECP_C) |
| |
| #include "polarssl/ecp.h" |
| #include <limits.h> |
| |
| #if defined(POLARSSL_SELF_TEST) |
| /* |
| * Counts of point addition and doubling operations. |
| * Used to test resistance of point multiplication to SPA/timing attacks. |
| */ |
| unsigned long add_count, dbl_count; |
| #endif |
| |
| /* |
| * Initialize (the components of) a point |
| */ |
| void ecp_point_init( ecp_point *pt ) |
| { |
| if( pt == NULL ) |
| return; |
| |
| mpi_init( &pt->X ); |
| mpi_init( &pt->Y ); |
| mpi_init( &pt->Z ); |
| } |
| |
| /* |
| * Initialize (the components of) a group |
| */ |
| void ecp_group_init( ecp_group *grp ) |
| { |
| if( grp == NULL ) |
| return; |
| |
| mpi_init( &grp->P ); |
| mpi_init( &grp->B ); |
| ecp_point_init( &grp->G ); |
| mpi_init( &grp->N ); |
| |
| grp->pbits = 0; |
| grp->nbits = 0; |
| |
| grp->modp = NULL; |
| } |
| |
| /* |
| * Unallocate (the components of) a point |
| */ |
| void ecp_point_free( ecp_point *pt ) |
| { |
| if( pt == NULL ) |
| return; |
| |
| mpi_free( &( pt->X ) ); |
| mpi_free( &( pt->Y ) ); |
| mpi_free( &( pt->Z ) ); |
| } |
| |
| /* |
| * Unallocate (the components of) a group |
| */ |
| void ecp_group_free( ecp_group *grp ) |
| { |
| if( grp == NULL ) |
| return; |
| |
| mpi_free( &grp->P ); |
| mpi_free( &grp->B ); |
| ecp_point_free( &grp->G ); |
| mpi_free( &grp->N ); |
| } |
| |
| /* |
| * Set point to zero |
| */ |
| int ecp_set_zero( ecp_point *pt ) |
| { |
| int ret; |
| |
| MPI_CHK( mpi_lset( &pt->X , 1 ) ); |
| MPI_CHK( mpi_lset( &pt->Y , 1 ) ); |
| MPI_CHK( mpi_lset( &pt->Z , 0 ) ); |
| |
| cleanup: |
| return( ret ); |
| } |
| |
| /* |
| * Copy the contents of Q into P |
| */ |
| int ecp_copy( ecp_point *P, const ecp_point *Q ) |
| { |
| int ret; |
| |
| MPI_CHK( mpi_copy( &P->X, &Q->X ) ); |
| MPI_CHK( mpi_copy( &P->Y, &Q->Y ) ); |
| MPI_CHK( mpi_copy( &P->Z, &Q->Z ) ); |
| |
| cleanup: |
| return( ret ); |
| } |
| |
| /* |
| * Import a non-zero point from ASCII strings |
| */ |
| int ecp_point_read_string( ecp_point *P, int radix, |
| const char *x, const char *y ) |
| { |
| int ret; |
| |
| MPI_CHK( mpi_read_string( &P->X, radix, x ) ); |
| MPI_CHK( mpi_read_string( &P->Y, radix, y ) ); |
| MPI_CHK( mpi_lset( &P->Z, 1 ) ); |
| |
| cleanup: |
| return( ret ); |
| } |
| |
| /* |
| * Import an ECP group from ASCII strings |
| */ |
| int ecp_group_read_string( ecp_group *grp, int radix, |
| const char *p, const char *b, |
| const char *gx, const char *gy, const char *n) |
| { |
| int ret; |
| |
| MPI_CHK( mpi_read_string( &grp->P, radix, p ) ); |
| MPI_CHK( mpi_read_string( &grp->B, radix, b ) ); |
| MPI_CHK( ecp_point_read_string( &grp->G, radix, gx, gy ) ); |
| MPI_CHK( mpi_read_string( &grp->N, radix, n ) ); |
| |
| grp->pbits = mpi_msb( &grp->P ); |
| grp->nbits = mpi_msb( &grp->N ); |
| |
| cleanup: |
| return( ret ); |
| } |
| |
| /* |
| * Wrapper around fast quasi-modp functions, with fall-back to mpi_mod_mpi. |
| * See the documentation of struct ecp_group. |
| */ |
| static int ecp_modp( mpi *N, const ecp_group *grp ) |
| { |
| int ret; |
| |
| if( grp->modp == NULL ) |
| return( mpi_mod_mpi( N, N, &grp->P ) ); |
| |
| if( mpi_cmp_int( N, 0 ) < 0 || mpi_msb( N ) > 2 * grp->pbits ) |
| return( POLARSSL_ERR_ECP_GENERIC ); |
| |
| MPI_CHK( grp->modp( N ) ); |
| |
| while( mpi_cmp_int( N, 0 ) < 0 ) |
| MPI_CHK( mpi_add_mpi( N, N, &grp->P ) ); |
| |
| while( mpi_cmp_mpi( N, &grp->P ) >= 0 ) |
| MPI_CHK( mpi_sub_mpi( N, N, &grp->P ) ); |
| |
| cleanup: |
| return( ret ); |
| } |
| |
| /* |
| * 192 bits in terms of t_uint |
| */ |
| #define P192_SIZE_INT ( 192 / CHAR_BIT / sizeof( t_uint ) ) |
| |
| /* |
| * Table to get S1, S2, S3 of FIPS 186-3 D.2.1: |
| * -1 means let this chunk be 0 |
| * a positive value i means A_i. |
| */ |
| #define P192_CHUNKS 3 |
| #define P192_CHUNK_CHAR ( 64 / CHAR_BIT ) |
| #define P192_CHUNK_INT ( P192_CHUNK_CHAR / sizeof( t_uint ) ) |
| |
| const signed char p192_tbl[][P192_CHUNKS] = { |
| { -1, 3, 3 }, /* S1 */ |
| { 4, 4, -1 }, /* S2 */ |
| { 5, 5, 5 }, /* S3 */ |
| }; |
| |
| /* |
| * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1) |
| */ |
| static int ecp_mod_p192( mpi *N ) |
| { |
| int ret; |
| unsigned char i, j, offset; |
| signed char chunk; |
| mpi tmp, acc; |
| t_uint tmp_p[P192_SIZE_INT], acc_p[P192_SIZE_INT + 1]; |
| |
| tmp.s = 1; |
| tmp.n = sizeof( tmp_p ) / sizeof( tmp_p[0] ); |
| tmp.p = tmp_p; |
| |
| acc.s = 1; |
| acc.n = sizeof( acc_p ) / sizeof( acc_p[0] ); |
| acc.p = acc_p; |
| |
| MPI_CHK( mpi_grow( N, P192_SIZE_INT * 2 ) ); |
| |
| /* |
| * acc = T |
| */ |
| memset( acc_p, 0, sizeof( acc_p ) ); |
| memcpy( acc_p, N->p, P192_CHUNK_CHAR * P192_CHUNKS ); |
| |
| for( i = 0; i < sizeof( p192_tbl ) / sizeof( p192_tbl[0] ); i++) |
| { |
| /* |
| * tmp = S_i |
| */ |
| memset( tmp_p, 0, sizeof( tmp_p ) ); |
| for( j = 0, offset = P192_CHUNKS - 1; j < P192_CHUNKS; j++, offset-- ) |
| { |
| chunk = p192_tbl[i][j]; |
| if( chunk >= 0 ) |
| memcpy( tmp_p + offset * P192_CHUNK_INT, |
| N->p + chunk * P192_CHUNK_INT, |
| P192_CHUNK_CHAR ); |
| } |
| |
| /* |
| * acc += tmp |
| */ |
| MPI_CHK( mpi_add_abs( &acc, &acc, &tmp ) ); |
| } |
| |
| MPI_CHK( mpi_copy( N, &acc ) ); |
| |
| cleanup: |
| return( ret ); |
| } |
| |
| /* |
| * Size of p521 in terms of t_uint |
| */ |
| #define P521_SIZE_INT ( 521 / CHAR_BIT / sizeof( t_uint ) + 1 ) |
| |
| /* |
| * Bits to keep in the most significant t_uint |
| */ |
| #if defined(POLARSS_HAVE_INT8) |
| #define P521_MASK 0x01 |
| #else |
| #define P521_MASK 0x01FF |
| #endif |
| |
| /* |
| * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5) |
| */ |
| static int ecp_mod_p521( mpi *N ) |
| { |
| int ret; |
| t_uint Mp[P521_SIZE_INT]; |
| mpi M; |
| |
| if( N->n < P521_SIZE_INT ) |
| return( 0 ); |
| |
| memset( Mp, 0, P521_SIZE_INT * sizeof( t_uint ) ); |
| memcpy( Mp, N->p, P521_SIZE_INT * sizeof( t_uint ) ); |
| Mp[P521_SIZE_INT - 1] &= P521_MASK; |
| |
| M.s = 1; |
| M.n = P521_SIZE_INT; |
| M.p = Mp; |
| |
| MPI_CHK( mpi_shift_r( N, 521 ) ); |
| |
| MPI_CHK( mpi_add_abs( N, N, &M ) ); |
| |
| cleanup: |
| return( ret ); |
| } |
| |
| /* |
| * Domain parameters for secp192r1 |
| */ |
| #define SECP192R1_P \ |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF" |
| #define SECP192R1_B \ |
| "64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1" |
| #define SECP192R1_GX \ |
| "188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012" |
| #define SECP192R1_GY \ |
| "07192B95FFC8DA78631011ED6B24CDD573F977A11E794811" |
| #define SECP192R1_N \ |
| "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831" |
| |
| /* |
| * Domain parameters for secp224r1 |
| */ |
| #define SECP224R1_P \ |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001" |
| #define SECP224R1_B \ |
| "B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4" |
| #define SECP224R1_GX \ |
| "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21" |
| #define SECP224R1_GY \ |
| "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34" |
| #define SECP224R1_N \ |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D" |
| |
| /* |
| * Domain parameters for secp256r1 |
| */ |
| #define SECP256R1_P \ |
| "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF" |
| #define SECP256R1_B \ |
| "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B" |
| #define SECP256R1_GX \ |
| "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296" |
| #define SECP256R1_GY \ |
| "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5" |
| #define SECP256R1_N \ |
| "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551" |
| |
| /* |
| * Domain parameters for secp384r1 |
| */ |
| #define SECP384R1_P \ |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \ |
| "FFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF" |
| #define SECP384R1_B \ |
| "B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE814112" \ |
| "0314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF" |
| #define SECP384R1_GX \ |
| "AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B98" \ |
| "59F741E082542A385502F25DBF55296C3A545E3872760AB7" |
| #define SECP384R1_GY \ |
| "3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147C" \ |
| "E9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F" |
| #define SECP384R1_N \ |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \ |
| "C7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973" |
| |
| /* |
| * Domain parameters for secp521r1 |
| */ |
| #define SECP521R1_P \ |
| "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \ |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \ |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" |
| #define SECP521R1_B \ |
| "00000051953EB9618E1C9A1F929A21A0B68540EEA2DA725B" \ |
| "99B315F3B8B489918EF109E156193951EC7E937B1652C0BD" \ |
| "3BB1BF073573DF883D2C34F1EF451FD46B503F00" |
| #define SECP521R1_GX \ |
| "000000C6858E06B70404E9CD9E3ECB662395B4429C648139" \ |
| "053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127" \ |
| "A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66" |
| #define SECP521R1_GY \ |
| "0000011839296A789A3BC0045C8A5FB42C7D1BD998F54449" \ |
| "579B446817AFBD17273E662C97EE72995EF42640C550B901" \ |
| "3FAD0761353C7086A272C24088BE94769FD16650" |
| #define SECP521R1_N \ |
| "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \ |
| "FFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148" \ |
| "F709A5D03BB5C9B8899C47AEBB6FB71E91386409" |
| |
| /* |
| * Set a group using well-known domain parameters |
| */ |
| int ecp_use_known_dp( ecp_group *grp, size_t index ) |
| { |
| switch( index ) |
| { |
| case POLARSSL_ECP_DP_SECP192R1: |
| grp->modp = ecp_mod_p192; |
| return( ecp_group_read_string( grp, 16, |
| SECP192R1_P, SECP192R1_B, |
| SECP192R1_GX, SECP192R1_GY, SECP192R1_N ) ); |
| |
| case POLARSSL_ECP_DP_SECP224R1: |
| return( ecp_group_read_string( grp, 16, |
| SECP224R1_P, SECP224R1_B, |
| SECP224R1_GX, SECP224R1_GY, SECP224R1_N ) ); |
| |
| case POLARSSL_ECP_DP_SECP256R1: |
| return( ecp_group_read_string( grp, 16, |
| SECP256R1_P, SECP256R1_B, |
| SECP256R1_GX, SECP256R1_GY, SECP256R1_N ) ); |
| |
| case POLARSSL_ECP_DP_SECP384R1: |
| return( ecp_group_read_string( grp, 16, |
| SECP384R1_P, SECP384R1_B, |
| SECP384R1_GX, SECP384R1_GY, SECP384R1_N ) ); |
| |
| case POLARSSL_ECP_DP_SECP521R1: |
| grp->modp = ecp_mod_p521; |
| return( ecp_group_read_string( grp, 16, |
| SECP521R1_P, SECP521R1_B, |
| SECP521R1_GX, SECP521R1_GY, SECP521R1_N ) ); |
| } |
| |
| return( POLARSSL_ERR_ECP_GENERIC ); |
| } |
| |
| /* |
| * Fast mod-p functions expect their argument to be in the 0..p^2 range. |
| * |
| * In order to guarantee that, we need to ensure that operands of |
| * mpi_mul_mpi are in the 0..p range. So, after each operation we will |
| * bring the result back to this range. |
| * |
| * The following macros are shortcuts for doing that. |
| */ |
| |
| /* |
| * Reduce a mpi mod p in-place, general case, to use after mpi_mul_mpi |
| */ |
| #define MOD_MUL( N ) MPI_CHK( ecp_modp( &N, grp ) ) |
| |
| /* |
| * Reduce a mpi mod p in-place, to use after mpi_sub_mpi |
| */ |
| #define MOD_SUB( N ) \ |
| while( mpi_cmp_int( &N, 0 ) < 0 ) \ |
| MPI_CHK( mpi_add_mpi( &N, &N, &grp->P ) ) |
| |
| /* |
| * Reduce a mpi mod p in-place, to use after mpi_add_mpi and mpi_mul_int |
| */ |
| #define MOD_ADD( N ) \ |
| while( mpi_cmp_mpi( &N, &grp->P ) >= 0 ) \ |
| MPI_CHK( mpi_sub_mpi( &N, &N, &grp->P ) ) |
| |
| /* |
| * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1) |
| */ |
| static int ecp_normalize( const ecp_group *grp, ecp_point *pt ) |
| { |
| int ret; |
| mpi Zi, ZZi, T; |
| |
| if( mpi_cmp_int( &pt->Z, 0 ) == 0 ) |
| return( 0 ); |
| |
| mpi_init( &Zi ); mpi_init( &ZZi ); mpi_init( &T ); |
| |
| /* |
| * X = X / Z^2 mod p |
| */ |
| MPI_CHK( mpi_inv_mod( &Zi, &pt->Z, &grp->P ) ); |
| MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi ); |
| MPI_CHK( mpi_mul_mpi( &pt->X, &pt->X, &ZZi ) ); MOD_MUL( pt->X ); |
| |
| /* |
| * Y = Y / Z^3 mod p |
| */ |
| MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &ZZi ) ); MOD_MUL( pt->Y ); |
| MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &Zi ) ); MOD_MUL( pt->Y ); |
| |
| /* |
| * Z = 1 |
| */ |
| MPI_CHK( mpi_lset( &pt->Z, 1 ) ); |
| |
| cleanup: |
| |
| mpi_free( &Zi ); mpi_free( &ZZi ); mpi_free( &T ); |
| |
| return( ret ); |
| } |
| |
| /* |
| * Point doubling R = 2 P, Jacobian coordinates (GECC 3.21) |
| */ |
| static int ecp_double_jac( const ecp_group *grp, ecp_point *R, |
| const ecp_point *P ) |
| { |
| int ret; |
| mpi T1, T2, T3, X, Y, Z; |
| |
| #if defined(POLARSSL_SELF_TEST) |
| dbl_count++; |
| #endif |
| |
| if( mpi_cmp_int( &P->Z, 0 ) == 0 ) |
| return( ecp_set_zero( R ) ); |
| |
| mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 ); |
| mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z ); |
| |
| MPI_CHK( mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 ); |
| MPI_CHK( mpi_sub_mpi( &T2, &P->X, &T1 ) ); MOD_SUB( T2 ); |
| MPI_CHK( mpi_add_mpi( &T1, &P->X, &T1 ) ); MOD_ADD( T1 ); |
| MPI_CHK( mpi_mul_mpi( &T2, &T2, &T1 ) ); MOD_MUL( T2 ); |
| MPI_CHK( mpi_mul_int( &T2, &T2, 3 ) ); MOD_ADD( T2 ); |
| MPI_CHK( mpi_mul_int( &Y, &P->Y, 2 ) ); MOD_ADD( Y ); |
| MPI_CHK( mpi_mul_mpi( &Z, &Y, &P->Z ) ); MOD_MUL( Z ); |
| MPI_CHK( mpi_mul_mpi( &Y, &Y, &Y ) ); MOD_MUL( Y ); |
| MPI_CHK( mpi_mul_mpi( &T3, &Y, &P->X ) ); MOD_MUL( T3 ); |
| MPI_CHK( mpi_mul_mpi( &Y, &Y, &Y ) ); MOD_MUL( Y ); |
| |
| /* |
| * For Y = Y / 2 mod p, we must make sure that Y is even before |
| * using right-shift. No need to reduce mod p afterwards. |
| */ |
| if( mpi_get_bit( &Y, 0 ) == 1 ) |
| MPI_CHK( mpi_add_mpi( &Y, &Y, &grp->P ) ); |
| MPI_CHK( mpi_shift_r( &Y, 1 ) ); |
| |
| MPI_CHK( mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X ); |
| MPI_CHK( mpi_mul_int( &T1, &T3, 2 ) ); MOD_ADD( T1 ); |
| MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X ); |
| MPI_CHK( mpi_sub_mpi( &T1, &T3, &X ) ); MOD_SUB( T1 ); |
| MPI_CHK( mpi_mul_mpi( &T1, &T1, &T2 ) ); MOD_MUL( T1 ); |
| MPI_CHK( mpi_sub_mpi( &Y, &T1, &Y ) ); MOD_SUB( Y ); |
| |
| MPI_CHK( mpi_copy( &R->X, &X ) ); |
| MPI_CHK( mpi_copy( &R->Y, &Y ) ); |
| MPI_CHK( mpi_copy( &R->Z, &Z ) ); |
| |
| cleanup: |
| |
| mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 ); |
| mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z ); |
| |
| return( ret ); |
| } |
| |
| /* |
| * Addition or subtraction: R = P + Q or R = P + Q, |
| * mixed affine-Jacobian coordinates (GECC 3.22) |
| * |
| * The coordinates of Q must be normalized (= affine), |
| * but those of P don't need to. R is not normalized. |
| * |
| * If sign >= 0, perform addition, otherwise perform subtraction, |
| * taking advantage of the fact that, for Q != 0, we have |
| * -Q = (Q.X, -Q.Y, Q.Z) |
| */ |
| static int ecp_add_mixed( const ecp_group *grp, ecp_point *R, |
| const ecp_point *P, const ecp_point *Q, |
| signed char sign ) |
| { |
| int ret; |
| mpi T1, T2, T3, T4, X, Y, Z; |
| |
| #if defined(POLARSSL_SELF_TEST) |
| add_count++; |
| #endif |
| |
| /* |
| * Trivial cases: P == 0 or Q == 0 |
| * (Check Q first, so that we know Q != 0 when we compute -Q.) |
| */ |
| if( mpi_cmp_int( &Q->Z, 0 ) == 0 ) |
| return( ecp_copy( R, P ) ); |
| |
| if( mpi_cmp_int( &P->Z, 0 ) == 0 ) |
| { |
| ret = ecp_copy( R, Q ); |
| |
| /* |
| * -R.Y mod P = P - R.Y unless R.Y == 0 |
| */ |
| if( ret == 0 && sign < 0) |
| if( mpi_cmp_int( &R->Y, 0 ) != 0 ) |
| ret = mpi_sub_mpi( &R->Y, &grp->P, &R->Y ); |
| |
| return( ret ); |
| } |
| |
| /* |
| * Make sure Q coordinates are normalized |
| */ |
| if( mpi_cmp_int( &Q->Z, 1 ) != 0 ) |
| return( POLARSSL_ERR_ECP_GENERIC ); |
| |
| mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 ); mpi_init( &T4 ); |
| mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z ); |
| |
| MPI_CHK( mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 ); |
| MPI_CHK( mpi_mul_mpi( &T2, &T1, &P->Z ) ); MOD_MUL( T2 ); |
| MPI_CHK( mpi_mul_mpi( &T1, &T1, &Q->X ) ); MOD_MUL( T1 ); |
| MPI_CHK( mpi_mul_mpi( &T2, &T2, &Q->Y ) ); MOD_MUL( T2 ); |
| |
| /* |
| * For subtraction, -Q.Y should have been used instead of Q.Y, |
| * so we replace T2 by -T2, which is P - T2 mod P |
| */ |
| if( sign < 0 ) |
| { |
| MPI_CHK( mpi_sub_mpi( &T2, &grp->P, &T2 ) ); |
| MOD_SUB( T2 ); |
| } |
| |
| MPI_CHK( mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 ); |
| MPI_CHK( mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 ); |
| |
| if( mpi_cmp_int( &T1, 0 ) == 0 ) |
| { |
| if( mpi_cmp_int( &T2, 0 ) == 0 ) |
| { |
| ret = ecp_double_jac( grp, R, P ); |
| goto cleanup; |
| } |
| else |
| { |
| ret = ecp_set_zero( R ); |
| goto cleanup; |
| } |
| } |
| |
| MPI_CHK( mpi_mul_mpi( &Z, &P->Z, &T1 ) ); MOD_MUL( Z ); |
| MPI_CHK( mpi_mul_mpi( &T3, &T1, &T1 ) ); MOD_MUL( T3 ); |
| MPI_CHK( mpi_mul_mpi( &T4, &T3, &T1 ) ); MOD_MUL( T4 ); |
| MPI_CHK( mpi_mul_mpi( &T3, &T3, &P->X ) ); MOD_MUL( T3 ); |
| MPI_CHK( mpi_mul_int( &T1, &T3, 2 ) ); MOD_ADD( T1 ); |
| MPI_CHK( mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X ); |
| MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X ); |
| MPI_CHK( mpi_sub_mpi( &X, &X, &T4 ) ); MOD_SUB( X ); |
| MPI_CHK( mpi_sub_mpi( &T3, &T3, &X ) ); MOD_SUB( T3 ); |
| MPI_CHK( mpi_mul_mpi( &T3, &T3, &T2 ) ); MOD_MUL( T3 ); |
| MPI_CHK( mpi_mul_mpi( &T4, &T4, &P->Y ) ); MOD_MUL( T4 ); |
| MPI_CHK( mpi_sub_mpi( &Y, &T3, &T4 ) ); MOD_SUB( Y ); |
| |
| MPI_CHK( mpi_copy( &R->X, &X ) ); |
| MPI_CHK( mpi_copy( &R->Y, &Y ) ); |
| MPI_CHK( mpi_copy( &R->Z, &Z ) ); |
| |
| cleanup: |
| |
| mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 ); mpi_free( &T4 ); |
| mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z ); |
| |
| return( ret ); |
| } |
| |
| /* |
| * Addition: R = P + Q, result's coordinates normalized |
| */ |
| int ecp_add( const ecp_group *grp, ecp_point *R, |
| const ecp_point *P, const ecp_point *Q ) |
| { |
| int ret; |
| |
| MPI_CHK( ecp_add_mixed( grp, R, P, Q , 1 ) ); |
| MPI_CHK( ecp_normalize( grp, R ) ); |
| |
| cleanup: |
| return( ret ); |
| } |
| |
| /* |
| * Subtraction: R = P - Q, result's coordinates normalized |
| */ |
| int ecp_sub( const ecp_group *grp, ecp_point *R, |
| const ecp_point *P, const ecp_point *Q ) |
| { |
| int ret; |
| |
| MPI_CHK( ecp_add_mixed( grp, R, P, Q, -1 ) ); |
| MPI_CHK( ecp_normalize( grp, R ) ); |
| |
| cleanup: |
| return( ret ); |
| } |
| |
| /* |
| * Compute a modified width-w non-adjacent form (NAF) of a number, |
| * with a fixed pattern for resistance to SPA/timing attacks, |
| * see <http://rd.springer.com/chapter/10.1007/3-540-36563-X_23>. |
| * (The resulting multiplication algorithm can also been seen as a |
| * modification of 2^w-ary multiplication, with signed coefficients, |
| * all of them odd.) |
| * |
| * Input: |
| * m must be an odd positive mpi less than w * k bits long |
| * x must be an array of k elements |
| * w must be less than a certain maximum (currently 8) |
| * |
| * The result is a sequence x[0], ..., x[k-1] with x[i] in the range |
| * - 2^(width - 1) .. 2^(width - 1) - 1 such that |
| * m = (2 * x[0] + 1) + 2^width * (2 * x[1] + 1) + ... |
| * + 2^((k-1) * width) * (2 * x[k-1] + 1) |
| * |
| * Compared to "Algorithm SPA-resistant Width-w NAF with Odd Scalar" |
| * p. 335 of the cited reference, here we return only u, not d_w since |
| * it is known that the other d_w[j] will be 0. Moreover, the returned |
| * string doesn't actually store u_i but x_i = u_i / 2 since it is known |
| * that u_i is odd. Also, since we always select a positive value for d |
| * mod 2^w, we don't need to check the sign of u[i-1] when the reference |
| * does. Finally, there is an off-by-one error in the reference: the |
| * last index should be k-1, not k. |
| */ |
| static int ecp_w_naf_fixed( signed char x[], size_t k, unsigned char w, |
| const mpi *m ) |
| { |
| int ret; |
| unsigned int i, u, mask, carry; |
| mpi M; |
| |
| mpi_init( &M ); |
| |
| MPI_CHK( mpi_copy( &M, m ) ); |
| mask = ( 1 << w ) - 1; |
| carry = 1 << ( w - 1 ); |
| |
| for( i = 0; i < k; i++ ) |
| { |
| u = M.p[0] & mask; |
| |
| if( ( u & 1 ) == 0 && i > 0 ) |
| x[i - 1] -= carry; |
| |
| x[i] = u >> 1; |
| mpi_shift_r( &M, w ); |
| } |
| |
| /* |
| * We should have consumed all the bits now |
| */ |
| if( mpi_cmp_int( &M, 0 ) != 0 ) |
| ret = POLARSSL_ERR_ECP_GENERIC; |
| |
| cleanup: |
| |
| mpi_free( &M ); |
| |
| return( ret ); |
| } |
| |
| /* |
| * Integer multiplication: R = m * P (GECC 5.7, SPA-resistant) |
| */ |
| int ecp_mul( const ecp_group *grp, ecp_point *R, |
| const mpi *m, const ecp_point *P ) |
| { |
| int ret, cmp; |
| size_t pos; |
| ecp_point Q[2]; |
| |
| cmp = mpi_cmp_int( m, 0 ); |
| |
| if( cmp < 0 ) |
| return( POLARSSL_ERR_ECP_GENERIC ); |
| |
| /* |
| * The general method works only for m != 0 |
| */ |
| if( cmp == 0 ) { |
| return( ecp_set_zero( R ) ); |
| } |
| |
| ecp_point_init( &Q[0] ); ecp_point_init( &Q[1] ); |
| |
| MPI_CHK( ecp_set_zero( &Q[0] ) ); |
| |
| for( pos = mpi_msb( m ) - 1 ; ; pos-- ) |
| { |
| MPI_CHK( ecp_double_jac( grp, &Q[0], &Q[0] ) ); |
| MPI_CHK( ecp_add_mixed( grp, &Q[1], &Q[0], P, 1 ) ); |
| MPI_CHK( ecp_copy( &Q[0], &Q[ mpi_get_bit( m, pos ) ] ) ); |
| |
| if( pos == 0 ) |
| break; |
| } |
| |
| MPI_CHK( ecp_copy( R, &Q[0] ) ); |
| MPI_CHK( ecp_normalize( grp, R ) ); |
| |
| cleanup: |
| |
| ecp_point_free( &Q[0] ); ecp_point_free( &Q[1] ); |
| |
| return( ret ); |
| } |
| |
| |
| #if defined(POLARSSL_SELF_TEST) |
| |
| /* |
| * Checkup routine |
| */ |
| int ecp_self_test( int verbose ) |
| { |
| int ret; |
| size_t i; |
| int j, jj; |
| ecp_group grp; |
| ecp_point R; |
| mpi m; |
| unsigned long add_c_prev, dbl_c_prev; |
| char *exponents[] = |
| { |
| "400000000000000000000000000000000000000000000000", |
| "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", |
| "555555555555555555555555555555555555555555555555", |
| "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", |
| /* "000000000000000000000000000000000000000000000010", TODO */ |
| }; |
| signed char x[3]; |
| |
| ecp_group_init( &grp ); |
| ecp_point_init( &R ); |
| mpi_init( &m ); |
| |
| if( verbose != 0 ) |
| printf( " ECP test #0 (naf): " ); |
| |
| for( j = 1; j < 32; j += 2 ) |
| { |
| mpi_lset( &m, j ); |
| |
| x[0] = x[1] = x[2] = 0; |
| MPI_CHK( ecp_w_naf_fixed( x, 3, 2, &m ) ); |
| jj = ( 2 * x[0] + 1 ) + 4 * ( 2 * x[1] + 1 ) + 16 * ( 2 * x[2] + 1 ); |
| |
| if( j != jj || |
| x[0] > 1 || x[0] < -2 || |
| x[1] > 1 || x[1] < -2 || |
| x[2] > 1 || x[2] < -2 ) |
| { |
| if( verbose != 0 ) |
| printf( "failed\n" ); |
| |
| printf( "%i != %i (%i, %i, %i)\n", j, jj, x[0], x[1], x[2] ); |
| |
| ret = 1; |
| goto cleanup; |
| } |
| |
| x[0] = x[1] = x[2] = 0; |
| MPI_CHK( ecp_w_naf_fixed( x, 2, 3, &m ) ); |
| jj = ( 2 * x[0] + 1 ) + 8 * ( 2 * x[1] + 1 ); |
| |
| if( j != jj || |
| x[0] > 3 || x[0] < -4 || |
| x[1] > 3 || x[1] < -4 || |
| x[2] != 0 ) |
| { |
| if( verbose != 0 ) |
| printf( "failed\n" ); |
| |
| printf( "%i != %i (%i, %i)\n", j, jj, x[0], x[1] ); |
| |
| ret = 1; |
| goto cleanup; |
| } |
| } |
| |
| if( verbose != 0 ) |
| printf( "passed\n" ); |
| |
| MPI_CHK( ecp_use_known_dp( &grp, POLARSSL_ECP_DP_SECP192R1 ) ); |
| |
| if( verbose != 0 ) |
| printf( " ECP test #1 (SPA resistance): " ); |
| |
| add_count = 0; |
| dbl_count = 0; |
| MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) ); |
| MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G ) ); |
| |
| for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ ) |
| { |
| add_c_prev = add_count; |
| dbl_c_prev = dbl_count; |
| add_count = 0; |
| dbl_count = 0; |
| |
| MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) ); |
| MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G ) ); |
| |
| if( add_count != add_c_prev || dbl_count != dbl_c_prev ) |
| { |
| if( verbose != 0 ) |
| printf( "failed (%zu)\n", i ); |
| |
| ret = 1; |
| goto cleanup; |
| } |
| } |
| |
| if( verbose != 0 ) |
| printf( "passed\n" ); |
| |
| cleanup: |
| |
| if( ret < 0 && verbose != 0 ) |
| printf( "Unexpected error, return code = %08X\n", ret ); |
| |
| ecp_group_free( &grp ); |
| ecp_point_free( &R ); |
| mpi_free( &m ); |
| |
| if( verbose != 0 ) |
| printf( "\n" ); |
| |
| return( ret ); |
| } |
| |
| #endif |
| |
| #endif |