blob: 358b39d0e291080ce259f019ba3b8d32ee319abb [file] [log] [blame] [raw]
package li.cil.oc.server.component
import com.naef.jnlua._
import java.io.{FileNotFoundException, IOException}
import java.lang.Thread.UncaughtExceptionHandler
import java.util.concurrent._
import java.util.concurrent.atomic.AtomicInteger
import java.util.logging.Level
import li.cil.oc.api
import li.cil.oc.api.Persistable
import li.cil.oc.api.network.environment.{Arguments, Context, LuaCallback}
import li.cil.oc.api.network.{Component, Message, Visibility}
import li.cil.oc.common.tileentity
import li.cil.oc.util.ExtendedLuaState.extendLuaState
import li.cil.oc.util.LuaStateFactory
import li.cil.oc.{OpenComputers, Config}
import net.minecraft.nbt._
import net.minecraft.tileentity.TileEntity
import net.minecraft.world.World
import net.minecraftforge.event.ForgeSubscribe
import net.minecraftforge.event.world.ChunkEvent
import scala.Array.canBuildFrom
import scala.Some
import scala.collection.convert.WrapAsScala._
import scala.collection.mutable
import scala.math.ScalaNumber
/**
* Wrapper class for Lua states set up to behave like a pseudo-OS.
* <p/>
* This class takes care of the following:
* <ul>
* <li>Creating a new Lua state when started from a previously stopped state.</li>
* <li>Updating the Lua state in a parallel thread so as not to block the game.</li>
* <li>Synchronizing calls from the computer thread to other game components.</li>
* <li>Saving the internal state of the computer across chunk saves/loads.</li>
* <li>Closing the Lua state when stopping a previously running computer.</li>
* </ul>
* <p/>
* Computers are relatively useless without drivers. Drivers are a combination
* of Lua and Java/Scala code that allows the computer to interact with the
* game world, or more specifically: with other components, by sending messages
* across the component network the computer is connected to (see `Network`).
* <p/>
* Host code (Java/Scala) cannot directly call Lua code. It can only queue
* signals (events, messages, packets, whatever you want to call it) which will
* be passed to the Lua state one by one and processed there (see `signal`).
* <p/>
*
*/
class Computer(val owner: Computer.Environment) extends Persistable with Runnable {
// ----------------------------------------------------------------------- //
// General
// ----------------------------------------------------------------------- //
private var state = Computer.State.Stopped
private val stateMonitor = new Object() // To synchronize access to `state`.
private var future: Option[Future[_]] = None
private var lua: LuaState = null
private var kernelMemory = 0
private val components = mutable.Map.empty[String, String]
private val addedComponents = mutable.Set.empty[Component]
private val signals = new mutable.Queue[Computer.Signal]
private val rom = Option(api.FileSystem.
fromClass(OpenComputers.getClass, Config.resourceDomain, "lua/rom")).
flatMap(fs => Option(api.FileSystem.asManagedEnvironment(fs, "rom")))
private val tmp = Option(api.FileSystem.
fromMemory(512 * 1024)).
flatMap(fs => Option(api.FileSystem.asManagedEnvironment(fs, "tmpfs")))
// ----------------------------------------------------------------------- //
private var timeStarted = 0L // Game-world time [ms] for os.uptime().
private var worldTime = 0L // Game-world time for os.time().
private var lastUpdate = 0L // Real-world time [ms] for pause detection.
private var cpuTime = 0L // Pseudo-real-world time [ns] for os.clock().
private var cpuStart = 0L // Pseudo-real-world time [ns] for os.clock().
private var sleepUntil = Double.PositiveInfinity // Real-world time [ms].
private var wasRunning = false // To signal stops synchronously.
private var message: Option[String] = None // For error messages.
// ----------------------------------------------------------------------- //
def recomputeMemory() = stateMonitor.synchronized(if (lua != null) {
lua.setTotalMemory(Int.MaxValue)
lua.gc(LuaState.GcAction.COLLECT, 0)
lua.setTotalMemory(kernelMemory + owner.installedMemory)
})
// ----------------------------------------------------------------------- //
def start() = stateMonitor.synchronized(
(owner.node.network != null && state == Computer.State.Stopped) && init() && {
// Initial state. Will be switched to State.Yielded in the next update()
// due to the signals queue not being empty (
state = Computer.State.Suspended
// Remember when we started, for os.clock().
timeStarted = owner.world.getWorldInfo.getWorldTotalTime
// Mark state change in owner, to send it to clients.
owner.markAsChanged()
// Push a dummy signal to get the computer going.
signal("dummy")
// All green, computer started successfully.
owner.node.network.sendToVisible(owner.node, "computer.started")
true
})
def stop() = stateMonitor.synchronized(state match {
case Computer.State.Stopped => false // Nothing to do.
case _ if future.isEmpty => close(); true // Not executing, kill it.
case _ =>
// If the computer is currently executing something we enter an
// intermediate state to ensure the executor or synchronized call truly
// stopped, before switching back to stopped to allow starting the
// computer again. The executor and synchronized call will check for
// this state and call close(), thus switching the state to stopped.
state = Computer.State.Stopping
true
})
def isRunning = state != Computer.State.Stopped && lastUpdate != 0
// ----------------------------------------------------------------------- //
def signal(name: String, args: Any*) = stateMonitor.synchronized(state match {
case Computer.State.Stopped | Computer.State.Stopping => false
case _ if signals.size >= 256 => false
case _ =>
signals.enqueue(new Computer.Signal(name, args.map {
case null | Unit | None => Unit
case arg: java.lang.Boolean => arg
case arg: java.lang.Byte => arg.toDouble
case arg: java.lang.Character => arg.toDouble
case arg: java.lang.Short => arg.toDouble
case arg: java.lang.Integer => arg.toDouble
case arg: java.lang.Long => arg.toDouble
case arg: java.lang.Float => arg.toDouble
case arg: java.lang.Double => arg
case arg: java.lang.String => arg
case arg: Array[Byte] => arg
case arg =>
OpenComputers.log.warning("Trying to push signal with an unsupported argument of type " + arg.getClass.getName)
Unit
}.toArray))
true
})
def addComponent(component: Component) {
if (!components.contains(component.address)) {
addedComponents += component
}
}
def removeComponent(component: Component) {
if (components.contains(component.address)) {
components -= component.address
signal("component_removed", component.address, component.name)
}
addedComponents -= component
}
private def processAddedComponents() {
for (component <- addedComponents) {
if (component.canBeSeenBy(owner.node)) {
components += component.address -> component.name
signal("component_added", component.address, component.name)
}
}
addedComponents.clear()
}
def update() {
// Add components that were added since the last update to the actual list
// of components if we can see them. We use this delayed approach to avoid
// issues with components that have a visibility lower than their
// reachability, because in that case if they get connected in the wrong
// order we wouldn't add them (since they'd be invisible in their connect
// message, and only become visible with a later node-to-node connection,
// but that wouldn't trigger a connect message anymore due to the higher
// reachability).
processAddedComponents()
// Update last time run to let our executor thread know it doesn't have to
// pause.
lastUpdate = System.currentTimeMillis
// TODO This seems to be the "run time", not the elapsed ingame time. For example, when doing /time set 0 the game
// should jump to the next day, but this value does not jump. Is this just Forge or do we have to find some other
// way around this? CC seems to use getWorldTime, which is really odd, since that should be only within the range
// of a single day (0 to 24000), which it *is*... perhaps vanilla Minecraft (not re-compiled) behaves different?
// Update world time for computer threads.
worldTime = owner.world.getWorldInfo.getWorldTotalTime
def cleanup() {
rom.foreach(rom => rom.node.network.remove(rom.node))
tmp.foreach(tmp => tmp.node.network.remove(tmp.node))
owner.node.network.sendToVisible(owner.node, "computer.stopped")
// If there was an error message (i.e. the computer crashed) display it on
// any screens we used (stored in GPUs).
if (message.isDefined) {
println(message.get) // TODO remove this at some point (add a tool that can read these error messages?)
// Clear any screens we use before displaying the error message on them.
// TODO this is fugly, think of some other way, e.g. listen to stopped/crashed in gpu or sth.
owner.node.network.sendToNeighbors(owner.node, "gpu.fill",
Double.box(1.0), Double.box(1.0), Double.box(Double.PositiveInfinity), Double.box(Double.PositiveInfinity), " ".getBytes("UTF-8"))
for ((line, row) <- message.get.replace("\t", " ").lines.zipWithIndex) {
owner.node.network.sendToNeighbors(owner.node, "gpu.set", Double.box(1.0), Double.box(1.0 + row), line.getBytes("UTF-8"))
}
}
}
// Signal stops to the network. This is used to close file handles, for example.
if (wasRunning && !isRunning) {
cleanup()
}
wasRunning = isRunning
// Check if we should switch states.
stateMonitor.synchronized(state match {
// Computer is rebooting.
case Computer.State.Rebooting => {
close()
cleanup()
start()
}
// Resume from pauses based on signal underflow.
case Computer.State.Suspended if !signals.isEmpty => execute(Computer.State.Yielded)
case Computer.State.Sleeping if lastUpdate >= sleepUntil || !signals.isEmpty => execute(Computer.State.Yielded)
// Resume in case we paused because the game was paused.
case Computer.State.Paused => execute(Computer.State.Yielded)
case Computer.State.SynchronizedReturnPaused => execute(Computer.State.SynchronizedReturn)
// Perform a synchronized call (message sending).
case Computer.State.SynchronizedCall => {
assert(future.isEmpty)
// These three asserts are all guaranteed by run().
assert(lua.getTop == 2)
assert(lua.isThread(1))
assert(lua.isFunction(2))
// We switch into running state, since we'll behave as though the call
// were performed from our executor thread.
state = Computer.State.Running
try {
// Synchronized call protocol requires the called function to return
// a table, which holds the results of the call, to be passed back
// to the coroutine.yield() that triggered the call.
lua.call(0, 1)
lua.checkType(2, LuaType.TABLE)
// Nothing should have been able to trigger a future.
assert(future.isEmpty)
// If the call lead to stop() being called we stop right now,
// otherwise we return the result to our executor.
if (state == Computer.State.Stopping)
close()
else {
assert(state == Computer.State.Running)
execute(Computer.State.SynchronizedReturn)
}
} catch {
case _: LuaMemoryAllocationException =>
// This can happen if we run out of memory while converting a Java
// exception to a string (which we have to do to avoid keeping
// userdata on the stack, which cannot be persisted).
message = Some("not enough memory")
close()
case e: java.lang.Error if e.getMessage == "not enough memory" =>
message = Some("not enough memory")
close()
case e: Throwable =>
OpenComputers.log.log(Level.WARNING, "Faulty Lua implementation for synchronized calls.", e)
message = Some("protocol error")
close()
}
}
case _ => // Nothing special to do, just avoid match errors.
})
}
// ----------------------------------------------------------------------- //
def load(nbt: NBTTagCompound) {
val computerNbt = nbt.getCompoundTag("oc.computer")
state = computerNbt.getInteger("state") match {
case id if id >= 0 && id < Computer.State.maxId => Computer.State(id)
case _ => Computer.State.Stopped
}
if (state != Computer.State.Stopped && init()) {
// Unlimit memory use while unpersisting.
lua.setTotalMemory(Integer.MAX_VALUE)
try {
// Try unpersisting Lua, because that's what all of the rest depends
// on. First, clear the stack, meaning the current kernel.
lua.setTop(0)
if (!computerNbt.hasKey("kernel") || !unpersist(computerNbt.getByteArray("kernel")) || !lua.isThread(1)) {
// This shouldn't really happen, but there's a chance it does if
// the save was corrupt (maybe someone modified the Lua files).
throw new IllegalStateException("Invalid kernel.")
}
if (state == Computer.State.SynchronizedCall || state == Computer.State.SynchronizedReturn) {
if (!computerNbt.hasKey("stack") || !unpersist(computerNbt.getByteArray("stack")) ||
(state == Computer.State.SynchronizedCall && !lua.isFunction(2)) ||
(state == Computer.State.SynchronizedReturn && !lua.isTable(2))) {
// Same as with the above, should not really happen normally, but
// could for the same reasons.
throw new IllegalStateException("Invalid stack.")
}
}
val componentsNbt = computerNbt.getTagList("components")
components ++= (0 until componentsNbt.tagCount).
map(componentsNbt.tagAt).
map(_.asInstanceOf[NBTTagCompound]).
map(c => c.getString("address") -> c.getString("name"))
val signalsNbt = computerNbt.getTagList("signals")
signals ++= (0 until signalsNbt.tagCount).
map(signalsNbt.tagAt).
map(_.asInstanceOf[NBTTagCompound]).
map(signalNbt => {
val argsNbt = signalNbt.getCompoundTag("args")
val argsLength = argsNbt.getInteger("length")
new Computer.Signal(signalNbt.getString("name"),
(0 until argsLength).map("arg" + _).map(argsNbt.getTag).map {
case tag: NBTTagByte if tag.data == -1 => Unit
case tag: NBTTagByte => tag.data == 1
case tag: NBTTagDouble => tag.data
case tag: NBTTagString => tag.data
case tag: NBTTagByteArray => tag.byteArray
case _ => Unit
}.toArray)
})
rom.foreach(rom => {
val romNbt = computerNbt.getCompoundTag("rom")
rom.node.load(romNbt)
rom.load(romNbt)
})
tmp.foreach(tmp => {
val tmpNbt = computerNbt.getCompoundTag("tmp")
tmp.node.load(tmpNbt)
tmp.load(tmpNbt)
})
kernelMemory = computerNbt.getInteger("kernelMemory")
timeStarted = computerNbt.getLong("timeStarted")
cpuTime = computerNbt.getLong("cpuTime")
if (computerNbt.hasKey("message")) {
message = Some(computerNbt.getString("message"))
}
// Limit memory again.
recomputeMemory()
// Ensure the executor is started in the next update if necessary.
assert(future.isEmpty)
state match {
case Computer.State.Yielded =>
state = Computer.State.Paused
case Computer.State.SynchronizedReturn =>
state = Computer.State.SynchronizedReturnPaused
case _ => // Will be started by update() if necessary.
}
} catch {
case e: LuaRuntimeException => {
OpenComputers.log.warning("Could not unpersist computer.\n" + e.toString + "\tat " + e.getLuaStackTrace.mkString("\n\tat "))
close()
}
}
}
// Init failed, or we were already stopped.
else state = Computer.State.Stopped
}
def save(nbt: NBTTagCompound): Unit = this.synchronized {
assert(state != Computer.State.Running) // Lock on 'this' should guarantee this.
assert(state != Computer.State.Stopping) // Only set while executor is running.
processAddedComponents()
val computerNbt = new NBTTagCompound()
computerNbt.setInteger("state", (state match {
case Computer.State.Paused => Computer.State.Yielded
case Computer.State.SynchronizedReturnPaused => Computer.State.SynchronizedReturn
case Computer.State.Sleeping => Computer.State.Yielded
case other => other
}).id)
if (state != Computer.State.Stopped) {
// Unlimit memory while persisting.
lua.setTotalMemory(Integer.MAX_VALUE)
try {
// Try persisting Lua, because that's what all of the rest depends on.
// Save the kernel state (which is always at stack index one).
assert(lua.isThread(1))
computerNbt.setByteArray("kernel", persist(1))
// While in a driver call we have one object on the global stack: either
// the function to call the driver with, or the result of the call.
if (state == Computer.State.SynchronizedCall || state == Computer.State.SynchronizedReturn || state == Computer.State.SynchronizedReturnPaused) {
assert(if (state == Computer.State.SynchronizedCall) lua.isFunction(2) else lua.isTable(2))
computerNbt.setByteArray("stack", persist(2))
}
val componentsNbt = new NBTTagList()
for ((address, name) <- components) {
val componentNbt = new NBTTagCompound()
componentNbt.setString("address", address)
componentNbt.setString("name", name)
componentsNbt.appendTag(componentNbt)
}
computerNbt.setTag("components", componentsNbt)
val signalsNbt = new NBTTagList()
for (s <- signals.iterator) {
val signalNbt = new NBTTagCompound()
signalNbt.setString("name", s.name)
val args = new NBTTagCompound()
args.setInteger("length", s.args.length)
s.args.zipWithIndex.foreach {
case (Unit, i) => args.setByte("arg" + i, -1)
case (arg: Boolean, i) => args.setByte("arg" + i, if (arg) 1 else 0)
case (arg: Double, i) => args.setDouble("arg" + i, arg)
case (arg: String, i) => args.setString("arg" + i, arg)
case (arg: Array[Byte], i) => args.setByteArray("arg" + i, arg)
}
signalNbt.setCompoundTag("args", args)
signalsNbt.appendTag(signalNbt)
}
computerNbt.setTag("signals", signalsNbt)
val romNbt = new NBTTagCompound()
rom.foreach(rom => {
rom.save(romNbt)
rom.node.save(romNbt)
})
computerNbt.setCompoundTag("rom", romNbt)
val tmpNbt = new NBTTagCompound()
tmp.foreach(tmp => {
tmp.save(tmpNbt)
tmp.node.save(tmpNbt)
})
computerNbt.setCompoundTag("tmp", tmpNbt)
computerNbt.setInteger("kernelMemory", kernelMemory)
computerNbt.setLong("timeStarted", timeStarted)
computerNbt.setLong("cpuTime", cpuTime)
message.foreach(computerNbt.setString("message", _))
} catch {
case e: LuaRuntimeException => {
OpenComputers.log.warning("Could not persist computer.\n" + e.toString + "\tat " + e.getLuaStackTrace.mkString("\n\tat "))
computerNbt.setInteger("state", Computer.State.Stopped.id)
}
}
// Limit memory again.
recomputeMemory()
}
nbt.setCompoundTag("oc.computer", computerNbt)
}
private def persist(index: Int): Array[Byte] = {
lua.getGlobal("persist") // ... obj persist?
if (lua.isFunction(-1)) {
// ... obj persist
lua.pushValue(index) // ... obj persist obj
lua.call(1, 1) // ... obj str?
if (lua.isString(-1)) {
// ... obj str
val result = lua.toByteArray(-1)
lua.pop(1) // ... obj
return result
} // ... obj :(
} // ... obj :(
lua.pop(1) // ... obj
Array[Byte]()
}
private def unpersist(value: Array[Byte]): Boolean = {
lua.getGlobal("unpersist") // ... unpersist?
if (lua.isFunction(-1)) {
// ... unpersist
lua.pushByteArray(value) // ... unpersist str
lua.call(1, 1) // ... obj
true
} // ... :(
else false
}
// ----------------------------------------------------------------------- //
private def init(): Boolean = {
// Utility functions for varargs callbacks.
def parseArgument(lua: LuaState, index: Int): AnyRef = lua.`type`(index) match {
case LuaType.BOOLEAN => Boolean.box(lua.toBoolean(index))
case LuaType.NUMBER => Double.box(lua.toNumber(index))
case LuaType.STRING => lua.toByteArray(index)
case _ => Unit
}
def parseArguments(lua: LuaState, start: Int) =
for (index <- start to lua.getTop) yield parseArgument(lua, index)
def pushList(value: Iterator[(Any, Int)]) {
lua.newTable()
var count = 0
value.foreach {
case (x, index) => {
x match {
case (entry: ScalaNumber) =>
pushResult(lua, entry.underlying())
case (entry) =>
pushResult(lua, entry.asInstanceOf[AnyRef])
}
lua.rawSet(-2, index + 1)
count = count + 1
}
}
lua.pushString("n")
lua.pushInteger(count)
lua.rawSet(-3)
}
def pushResult(lua: LuaState, value: AnyRef): Unit = value match {
case null | Unit => lua.pushNil()
case value: java.lang.Boolean => lua.pushBoolean(value.booleanValue)
case value: java.lang.Byte => lua.pushNumber(value.byteValue)
case value: java.lang.Character => lua.pushString(String.valueOf(value))
case value: java.lang.Short => lua.pushNumber(value.shortValue)
case value: java.lang.Integer => lua.pushNumber(value.intValue)
case value: java.lang.Long => lua.pushNumber(value.longValue)
case value: java.lang.Float => lua.pushNumber(value.floatValue)
case value: java.lang.Double => lua.pushNumber(value.doubleValue)
case value: java.lang.String => lua.pushString(value)
case value: Array[Byte] => lua.pushByteArray(value)
case value: Array[_] => pushList(value.zipWithIndex.iterator)
case value: Product => pushList(value.productIterator.zipWithIndex)
case value: Seq[_] => pushList(value.zipWithIndex.iterator)
// TODO maps?
case _ =>
OpenComputers.log.warning("A component callback tried to return an unsupported value of type " + value.getClass.getName + ".")
lua.pushNil()
}
// Reset error state.
message = None
// Creates a new state with all base libraries and the persistence library
// loaded into it. This means the state has much more power than it
// rightfully should have, so we sandbox it a bit in the following.
LuaStateFactory.createState() match {
case None =>
lua = null
return false
case Some(value) => lua = value
}
// Connect the ROM and `/tmp` node to our owner.
if (owner.node.network != null) {
rom.foreach(rom => owner.node.network.connect(owner.node, rom.node))
tmp.foreach(tmp => owner.node.network.connect(owner.node, tmp.node))
}
try {
// Push a couple of functions that override original Lua API functions or
// that add new functionality to it.
// Push a couple of functions that override original Lua API functions or
// that add new functionality to it.
lua.getGlobal("os")
// Custom os.clock() implementation returning the time the computer has
// been actively running, instead of the native library...
lua.pushScalaFunction(lua => {
lua.pushNumber((cpuTime + (System.nanoTime() - cpuStart)) * 10e-10)
1
})
lua.setField(-2, "clock")
// Return ingame time for os.time().
lua.pushScalaFunction(lua => {
// Game time is in ticks, so that each day has 24000 ticks, meaning
// one hour is game time divided by one thousand. Also, Minecraft
// starts days at 6 o'clock, so we add those six hours. Thus:
// timestamp = (time + 6000) / 1000[h] * 60[m] * 60[s] * 1000[ms]
lua.pushNumber((worldTime + 6000) * 60 * 60)
1
})
lua.setField(-2, "time")
// The time the computer has been running, as opposed to the CPU time.
lua.pushScalaFunction(lua => {
// World time is in ticks, and each second has 20 ticks. Since we
// want os.uptime() to return real seconds, though, we'll divide it
// accordingly.
lua.pushNumber((worldTime - timeStarted) / 20.0)
1
})
lua.setField(-2, "uptime")
// Allow the system to read how much memory it uses and has available.
lua.pushScalaFunction(lua => {
lua.pushInteger(lua.getTotalMemory - kernelMemory)
1
})
lua.setField(-2, "totalMemory")
lua.pushScalaFunction(lua => {
// This is *very* unlikely, but still: avoid this getting larger than
// what we report as the total memory.
lua.pushInteger(lua.getFreeMemory min (lua.getTotalMemory - kernelMemory))
1
})
lua.setField(-2, "freeMemory")
lua.pushScalaFunction(lua => {
lua.pushBoolean(signal(lua.checkString(1), parseArguments(lua, 2): _*))
1
})
lua.setField(-2, "pushSignal")
// Allow the computer to figure out its own id in the component network.
lua.pushScalaFunction(lua => {
Option(owner.node.address) match {
case None => lua.pushNil()
case Some(address) => lua.pushString(address)
}
1
})
lua.setField(-2, "address")
// And it's ROM address.
lua.pushScalaFunction(lua => {
rom.foreach(rom => Option(rom.node.address) match {
case None => lua.pushNil()
case Some(address) => lua.pushString(address)
})
1
})
lua.setField(-2, "romAddress")
// And it's /tmp address...
lua.pushScalaFunction(lua => {
tmp.foreach(tmp => Option(tmp.node.address) match {
case None => lua.pushNil()
case Some(address) => lua.pushString(address)
})
1
})
lua.setField(-2, "tmpAddress")
// Pop the os table.
lua.pop(1)
// Until we get to ingame screens we log to Java's stdout.
lua.pushScalaFunction(lua => {
println((1 to lua.getTop).map(i => lua.`type`(i) match {
case LuaType.NIL => "nil"
case LuaType.BOOLEAN => lua.toBoolean(i)
case LuaType.NUMBER => lua.toNumber(i)
case LuaType.STRING => lua.toString(i)
case LuaType.TABLE => "table"
case LuaType.FUNCTION => "function"
case LuaType.THREAD => "thread"
case LuaType.LIGHTUSERDATA | LuaType.USERDATA => "userdata"
}).mkString(" "))
0
})
lua.setGlobal("print")
// How long programs may run without yielding before we stop them.
lua.pushNumber(Config.timeout)
lua.setGlobal("timeout")
// Component interaction stuff.
lua.newTable()
lua.pushScalaFunction(lua => components.synchronized {
val filter = if (lua.isString(1)) Option(lua.toString(1)) else None
lua.newTable(0, components.size)
for ((address, name) <- components) {
if (filter.isEmpty || name.contains(filter.get)) {
lua.pushString(address)
lua.pushString(name)
lua.rawSet(-3)
}
}
1
})
lua.setField(-2, "list")
lua.pushScalaFunction(lua => components.synchronized {
components.get(lua.checkString(1)) match {
case Some(name: String) =>
lua.pushString(name)
1
case _ =>
lua.pushNil()
lua.pushString("no such component")
2
}
})
lua.setField(-2, "type")
lua.pushScalaFunction(lua => {
owner.node.network.sendToAddress(owner.node, lua.checkString(1), "component.methods") match {
case Array(methods: Array[_]) =>
lua.newTable()
for ((method, index) <- methods.zipWithIndex) {
method match {
case (name: String, asynchronous: Boolean) =>
lua.pushString(name)
lua.pushBoolean(asynchronous)
lua.rawSet(-3)
case _ =>
}
}
1
case _ =>
lua.pushNil()
lua.pushString("no such component")
2
}
})
lua.setField(-2, "methods")
lua.pushScalaFunction(lua => {
val address = lua.checkString(1)
val method = lua.checkString(2)
val args = parseArguments(lua, 3)
try {
(Option(owner.node.network.node(address)) match {
case Some(node: Component) if node.canBeSeenBy(owner.node) =>
owner.node.network.sendToAddress(owner.node, address, "component.invoke", Seq(method) ++ args: _*)
case _ => throw new Exception("no such component")
}) match {
case results: Array[_] =>
lua.pushBoolean(true)
results.foreach(pushResult(lua, _))
1 + results.length
case _ =>
lua.pushBoolean(true)
1
}
} catch {
case e: IllegalArgumentException if e.getMessage != null =>
lua.pushBoolean(false)
lua.pushString(e.getMessage)
2
case e: Throwable if e.getMessage != null =>
lua.pushBoolean(true)
lua.pushNil()
lua.pushString(e.getMessage)
3
case _: ArrayIndexOutOfBoundsException =>
lua.pushBoolean(false)
lua.pushString("index out of bounds")
2
case _: IllegalArgumentException =>
lua.pushBoolean(false)
lua.pushString("bad argument")
2
case _: NoSuchMethodException =>
lua.pushBoolean(false)
lua.pushString("no such method")
2
case _: FileNotFoundException =>
lua.pushBoolean(true)
lua.pushNil()
lua.pushString("file not found")
3
case _: SecurityException =>
lua.pushBoolean(true)
lua.pushNil()
lua.pushString("access denied")
3
case _: IOException =>
lua.pushBoolean(true)
lua.pushNil()
lua.pushString("i/o error")
3
case _: Throwable =>
lua.pushBoolean(true)
lua.pushNil()
lua.pushString("unknown error")
3
}
})
lua.setField(-2, "invoke")
lua.setGlobal("component")
// List of installed GPUs - this is used during boot to allow giving some
// feedback on the process, since booting can take some time. It feels a
// bit like cheating, but it's really the only way to communicate with
// our components at this low level.
// val gpus = owner.network.fold(Iterable.empty[String])(_.neighbors(owner).filter(_.name == "gpu").map(_.address.get)).toArray
// lua.pushScalaFunction(lua => {
// lua.newTable(gpus.length, 0)
// for (i <- 0 until gpus.length) {
// lua.pushString(gpus(i))
// lua.rawSet(-2, i + 1)
// }
// 1
// })
// lua.setGlobal("gpus")
// Run the boot script. This sets up the permanent value tables as
// well as making the functions used for persisting/unpersisting
// available as globals. It also wraps the message sending functions
// so that they yield a closure doing the actual call so that that
// message call can be performed in a synchronized fashion.
lua.load(classOf[Computer].getResourceAsStream(Config.scriptPath + "boot.lua"), "=boot", "t")
lua.call(0, 0)
// Load the basic kernel which sets up the sandbox, loads the init script
// and then runs it in a coroutine with a debug hook checking for
// timeouts.
lua.load(classOf[Computer].getResourceAsStream(Config.scriptPath + "kernel.lua"), "=kernel", "t")
lua.newThread() // Left as the first value on the stack.
// // Run to the first yield in kernel, to get a good idea of how much
// // memory all the basic functionality we provide needs.
// val results = lua.resume(1, 0)
// if (lua.status(1) != LuaState.YIELD)
// if (!lua.toBoolean(-2)) throw new Exception(lua.toString(-1))
// else throw new Exception("kernel return unexpectedly")
// lua.pop(results)
// Clear any left-over signals from a previous run.
signals.clear()
return true
}
catch {
case ex: Throwable => {
OpenComputers.log.log(Level.WARNING, "Failed initializing computer.", ex)
close()
}
}
false
}
private def close(): Unit = stateMonitor.synchronized(
if (state != Computer.State.Stopped) {
state = Computer.State.Stopped
lua.setTotalMemory(Integer.MAX_VALUE)
lua.close()
lua = null
kernelMemory = 0
signals.clear()
timeStarted = 0
cpuTime = 0
cpuStart = 0
future = None
sleepUntil = Long.MaxValue
// Mark state change in owner, to send it to clients.
owner.markAsChanged()
})
// ----------------------------------------------------------------------- //
private def execute(value: Computer.State.Value) {
assert(future.isEmpty)
sleepUntil = Long.MaxValue
state = value
future = Some(Computer.Executor.pool.submit(this))
}
// This is a really high level lock that we only use for saving and loading.
override def run(): Unit = this.synchronized {
val callReturn = stateMonitor.synchronized {
val oldState = state
state = Computer.State.Running
// See if the game appears to be paused, in which case we also pause.
if (System.currentTimeMillis - lastUpdate > 200) {
state = oldState match {
case Computer.State.SynchronizedReturn => Computer.State.SynchronizedReturnPaused
case _ => Computer.State.Paused
}
future = None
return
}
oldState
} match {
case Computer.State.SynchronizedReturn => true
case Computer.State.Yielded | Computer.State.Sleeping => false
case s =>
OpenComputers.log.warning("Running computer from invalid state " + s.toString + ". This is a bug!")
close()
return
}
// The kernel thread will always be at stack index one.
assert(lua.isThread(1))
try {
// Help out the GC a little. The emergency GC has a few limitations that
// will make it free less memory than doing a full step manually.
lua.gc(LuaState.GcAction.COLLECT, 0)
// Resume the Lua state and remember the number of results we get.
cpuStart = System.nanoTime()
val results = if (callReturn) {
// If we were doing a synchronized call, continue where we left off.
assert(lua.getTop == 2)
assert(lua.isTable(2))
lua.resume(1, 1)
}
else stateMonitor.synchronized(signals.dequeueFirst(_ => true)) match {
case Some(signal) =>
lua.pushString(signal.name)
signal.args.foreach {
case Unit => lua.pushNil()
case arg: Boolean => lua.pushBoolean(arg)
case arg: Double => lua.pushNumber(arg)
case arg: String => lua.pushString(arg)
case arg: Array[Byte] => lua.pushByteArray(arg)
}
lua.resume(1, 1 + signal.args.length)
case _ =>
lua.resume(1, 0)
}
cpuTime += System.nanoTime() - cpuStart
// Check if this was the first run, meaning the one used for initializing
// the kernel (loading the libs, establishing a memory baseline).
if (kernelMemory == 0) {
// Run the garbage collector to get rid of stuff left behind after the
// initialization phase to get a good estimate of the base memory usage
// the kernel has. We remember that size to grant user-space programs a
// fixed base amount of memory, regardless of the memory need of the
// underlying system (which may change across releases).
lua.gc(LuaState.GcAction.COLLECT, 0)
kernelMemory = (lua.getTotalMemory - lua.getFreeMemory) + Config.baseMemory
recomputeMemory()
}
// Check if the kernel is still alive.
stateMonitor.synchronized(if (lua.status(1) == LuaState.YIELD) {
// Intermediate state in some cases. Satisfies the assert in execute().
future = None
// Someone called stop() in the meantime.
if (state == Computer.State.Stopping)
close()
// If we have a single number that's how long we may wait before
// resuming the state again.
else if (results == 1 && lua.isNumber(2)) {
val sleep = lua.toNumber(2) * 1000
lua.pop(results)
// But only sleep if we don't have more signals to process.
if (signals.isEmpty) {
state = Computer.State.Sleeping
sleepUntil = System.currentTimeMillis + sleep
}
else execute(Computer.State.Yielded)
}
// If we get one function it must be a wrapper for a synchronized call.
// The protocol is that a closure is pushed that is then called from
// the main server thread, and returns a table, which is in turn passed
// to the originating coroutine.yield().
else if (results == 1 && lua.isFunction(2))
state = Computer.State.SynchronizedCall
// Check if we are shutting down, and if so if we're rebooting. This is
// signalled by boolean values, where `false` means shut down, `true`
// means reboot (i.e shutdown then start again).
else if (results == 1 && lua.isBoolean(2)) {
if (lua.toBoolean(2))
state = Computer.State.Rebooting
else
close()
}
else {
// Something else, just pop the results and try again.
lua.pop(results)
if (signals.isEmpty)
state = Computer.State.Suspended
else
execute(Computer.State.Yielded)
}
// State has inevitably changed, mark as changed to save again.
owner.markAsChanged()
}
// The kernel thread returned. If it threw we'd we in the catch below.
else {
assert(lua.isThread(1))
// We're expecting the result of a pcall, if anything, so boolean + (result | string).
if (!lua.isBoolean(2) || !(lua.isString(3) || lua.isNil(3))) {
OpenComputers.log.warning("Kernel returned unexpected results.")
}
// The pcall *should* never return normally... but check for it nonetheless.
if (lua.toBoolean(2)) {
OpenComputers.log.warning("Kernel stopped unexpectedly.")
}
else {
lua.setTotalMemory(Int.MaxValue)
val error = lua.toString(3)
if (error != null)
message = Some(error)
else
message = Some("unknown error")
}
close()
})
}
catch {
case e: LuaRuntimeException =>
OpenComputers.log.warning("Kernel crashed. This is a bug!\n" + e.toString + "\tat " + e.getLuaStackTrace.mkString("\n\tat "))
message = Some("kernel panic")
close()
case e: LuaGcMetamethodException =>
if (e.getMessage != null)
message = Some("kernel panic:\n" + e.getMessage)
else
message = Some("kernel panic:\nerror in garbage collection metamethod")
close()
case e: LuaMemoryAllocationException =>
message = Some("not enough memory")
close()
case e: java.lang.Error if e.getMessage == "not enough memory" =>
message = Some("not enough memory")
close()
case e: Throwable =>
OpenComputers.log.log(Level.WARNING, "Unexpected error in kernel. This is a bug!\n", e)
message = Some("kernel panic")
close()
}
}
}
object Computer {
trait Environment extends tileentity.Environment with tileentity.Persistable with Context {
val node = api.Network.createComponent(api.Network.createNode(this, "computer", Visibility.Network))
node.setVisibility(Visibility.Neighbors)
protected val instance: Computer
def world: World
def installedMemory: Int
/**
* Called when the computer state changed, so it should be saved again.
* <p/>
* This is called asynchronously from the Computer's executor thread, so the
* computer's owner must make sure to handle this in a synchronized fashion.
*/
def markAsChanged(): Unit
// ----------------------------------------------------------------------- //
def address = node.address
def signal(name: String, args: AnyRef*) = instance.signal(name, args: _*)
// ----------------------------------------------------------------------- //
@LuaCallback("start")
def start(context: Context, args: Arguments): Array[Object] =
Array(Boolean.box(instance.start()))
@LuaCallback("stop")
def stop(context: Context, args: Arguments): Array[Object] =
Array(Boolean.box(instance.stop()))
@LuaCallback("isRunning")
def isRunning(context: Context, args: Arguments): Array[Object] =
Array(Boolean.box(instance.isRunning))
// ----------------------------------------------------------------------- //
override def onMessage(message: Message) = {
message.source match {
case component: Component =>
message.name match {
case "system.connect" => instance.addComponent(component)
case "system.disconnect" => instance.removeComponent(component)
case _ =>
}
case _ =>
}
if (instance.isRunning) {
message.data match {
// Arbitrary signals, usually from other components.
case Array(name: String, args@_*) if message.name == "computer.signal" =>
instance.signal(name, Seq(message.source.address) ++ args: _*)
case _ =>
}
}
super.onMessage(message)
}
override def onConnect() {
super.onConnect()
instance.rom.foreach(rom => node.network.connect(node, rom.node))
instance.tmp.foreach(tmp => node.network.connect(node, tmp.node))
}
override def onDisconnect() {
super.onDisconnect()
instance.rom.foreach(rom =>
Option(rom.node.network).foreach(_.remove(rom.node)))
instance.tmp.foreach(tmp =>
Option(tmp.node.network).foreach(_.remove(tmp.node)))
}
// ----------------------------------------------------------------------- //
override def load(nbt: NBTTagCompound) {
super.load(nbt)
node.load(nbt)
instance.load(nbt)
}
override def save(nbt: NBTTagCompound) {
super.save(nbt)
node.save(nbt)
instance.save(nbt)
}
}
@ForgeSubscribe
def onChunkUnload(e: ChunkEvent.Unload) =
onUnload(e.world, e.getChunk.chunkTileEntityMap.values.map(_.asInstanceOf[TileEntity]))
private def onUnload(w: World, tileEntities: Iterable[TileEntity]) = if (!w.isRemote) {
tileEntities.
filter(_.isInstanceOf[tileentity.Computer]).
map(_.asInstanceOf[tileentity.Computer]).
foreach(_.turnOff())
}
/** Signals are messages sent to the Lua state from Java asynchronously. */
private class Signal(val name: String, val args: Array[Any])
/** Possible states of the computer, and in particular its executor. */
private object State extends Enumeration {
/** The computer is not running right now and there is no Lua state. */
val Stopped = Value("Stopped")
/** The computer is running but yielded and there were no more signals to process. */
val Suspended = Value("Suspended")
/** The computer is running but yielded but will resume as soon as possible. */
val Yielded = Value("Yielded")
/** The computer is running but yielding for a longer amount of time. */
val Sleeping = Value("Sleeping")
/** The computer is paused and waiting for the game to resume. */
val Paused = Value("Paused")
/** The computer is up and running, executing Lua code. */
val Running = Value("Running")
/** The computer is currently shutting down (waiting for executor). */
val Stopping = Value("Stopping")
/** The computer executor is waiting for a synchronized call to be made. */
val SynchronizedCall = Value("SynchronizedCall")
/** The computer should resume with the result of a synchronized call. */
val SynchronizedReturn = Value("SynchronizedReturn")
/** The computer is paused and waiting for the game to resume. */
val SynchronizedReturnPaused = Value("SynchronizedReturnPaused")
/** Computer is currently rebooting. */
val Rebooting = Value("Rebooting")
}
/** Singleton for requesting executors that run our Lua states. */
private object Executor {
val pool = Executors.newScheduledThreadPool(Config.threads,
new ThreadFactory() {
private val threadNumber = new AtomicInteger(1)
private val group = System.getSecurityManager match {
case null => Thread.currentThread().getThreadGroup
case s => s.getThreadGroup
}
def newThread(r: Runnable): Thread = {
val name = OpenComputers.getClass.getSimpleName + "-" + threadNumber.getAndIncrement
val thread = new Thread(group, r, name)
if (!thread.isDaemon)
thread.setDaemon(true)
if (thread.getPriority != Thread.MIN_PRIORITY)
thread.setPriority(Thread.MIN_PRIORITY)
thread.setUncaughtExceptionHandler(new UncaughtExceptionHandler {
def uncaughtException(t: Thread, e: Throwable) {
OpenComputers.log.log(Level.WARNING, "Unhandled exception in worker thread.", e)
}
})
thread
}
})
}
}